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Quantum statistics of parametric oscillation
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We present a quantum-statistical analysis of the steady-state light fields in driven

parametric oscillation in a cavity. Using the solution of a Fokker-Planck equation for the
generalized I' representation of the signal and idler modes, we calculate the mean photon
numbers, second-order correlation functions, and intermode correlation function as func-
tions of the driving field. The generalized I' distribution describes the signal and idler
modes statistics over the whole range of driving-field strengths except in the region far
below the oscillation threshold. The second-order correlation functions are found to violate
the Cauchy-Schwartz inequality, a violation allowed because the I' distribution is complex.
Squeezing is also found in a linear combination of the signal and idler fields.

I. INTRGDUCTIGN

Over the last two decades there has been great in-
terest in the field of nonlinear optics, for both the
practical applications and the theoretical aspects of
the nonlinear effects possible. Among the more
popular processes studied are second harmonic and
subharmonic generation, and the corresponding non-
degenerate processes, frequency upconversion and
parametric oscillation. '

Here we shall investigate the quantum statistics of
the steady-state signal fields in an intracavity
parametric oscillator. One of the problems in the
study of the quantum statistics is the divergence of
the quasiprobability functions normally used. We
avoid this problem by using the generalized proba-
bility functions introduced by Drummond and Gar-
diner.

by an external laser at frequency coi. Modes 2 and 3
are the signal and idler modes.

The interaction Hamiltonian for this process is

H;„,=ifiK(a ia za 3
—a iaza3), (2.1)

where a; and a; are the annihilation and creation
operators for mode i. The coupling constant K is
proportional to the second-order susceptibility of the
medium and to (e

"' —1)/(b. k.L), where I. is the
path length in the medium and Ak = ki —(kz+ k3)
is the wave-number mismatch between the modes.

The pumping of mode 1 is described by the fol-
lowing interaction picture Hamiltonian:

Hv„p itic, (a, ———ai), (2.2)

where ei is proportional to the amplitude of the
driving laser field. Irreversible damping of the
modes is represented by the Hamiltonian

II. MODEL AND EQUATIONS
GF MGTIGN

H;„„=g (a;I;+a; I;), (2.3)

We assume the parametric oscillation will occur
in a suitable medium inside an optical cavity tuned
to allow three modes of the light field of frequencies
co]p co2p and co3 with coi ——co2+co3 ~ Mode 1 is pumped

where the I; and I; are heat-bath operators.
Using standard techniques to eliminate the heat

baths, we find the following interaction picture
equation of motion for the reduced density operator
of the three modes:

[H,.„,+H „,p]+ gy, -(2a,pa, - —a, a,p —pa;a;)+ +2n, y;(a,pa; —pa;a; —a;a p+a;pa;), (24)
i=1
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where the y; are the mode damping rates, and the
n; are the mean numbers of thermal photons of fre-th

quency co; in the heat baths.
This operator equation may be converted into a

c-number Fokker-Planck equation using the general-
ized form of the Glauber P representation developed
by Drummond and Gardiner:

s = f dv&l~l, l~'l&P&l~l, l~') &
I l~l && l~'l l,

(2.5)

where Ia}):—a1,a2,a3) is a three-mode coherent
state. dp( I a}, at }) is the integration measure
chosen so that P is a well-behaved function on the
region over which integrations are done. The sto-
chastic variables a; and a; correspond to the opera-
tors a; and a;; however, a; and a; are no longer
complex conjugates as in the original formulation by
Glauber. That is, a;&a*;. Using the usual operator
algebra rules' we derive from Eq. (2.4) the follow-
ing Fokker-Planck equation for P:

aP
Bt Gal t (« —'Yta 1

—Ka2a3)—
CX1

( y2a—2+Kala3)
CX2

t ( y2a2+Kala3) ( y3a3+Kala2)
CX2 Ba3

&-( —y3a3+Ka 1a2)+
0'3 a2 a3

th+ t t Ka1+ g Yini'Ba2Ba3; 1 Ba;Ba;
(2.6)

T

e1 —y1O, 1
—En2CZ3 0

E1 —yta 1
—'Ka2a3 —

yt n 1

+
a1

at a',
(2.7)

1/2

The Fokker-planck equation derived by Graham ' using the Glauber P representation is formally ident1cal to
Eq. (2.6).

The Langevin equations corresponding to this equation (using Ito rules) are
1/2

—,
'
y, n',"

Bt a3
u'A'3

—y2a2+ Ka1a3
—y2a2+Ka1a3
—y3a3+Ka ta2

—y3a 3 +Ka 1a 2

th
2 'Y2n 2

+ —Ko, 1

0 0

0 0

p /3+3
th

th
2Y2 2 2 1

—Eo,1

1

th
2 'Y3n 3

0

2I2(t)

r]2(t)

q3(t)

2I,(t)

where the 2I;(t) and q;(t) are delta-correlated stochastic forces with zero mean:

(~,(t)) =(~,'(t)) =0,
(q, (t)q,'(t') ) =&;,5(t —t') .

(2.8)

These Langevin equations will be useful later when we adiabatically eliminate mode 1.

III. STEADY-STATE SOLUTION together with the complex-conjugate equations. The
OF THE FOKKER-PLANCK EQUATION steady-state behavior of the signal mode with in-

IN THE ADIABATIC LIMIT creasing driving e1 shows an abrupt transition
behavior

First, let us review the semiclassical behavior of
this system. The semiclassical equations of motion
for the field amplitudes a; follow from Eqs. (2.7)
when the stochastic forces 2I;(t) and rt;(t) and the
stochastic nature of the a; are ignored'.

0, thres
E'1 (E1

1/2
y3 thres q thres

(3.2)

a1 ——e1 —y1a1 —Ka2a3,

a2 = —y2a 2 +Ka ta 3

a3 = —y3a3+Ka ta2

where the threshold driving field
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We now return to the stochastic equations, Eq.
(2.7). We shall assume that mode 1 is so heavily
damped (yi »y2, y3) that it may be adiabatically el-
iminated. That is, we assume ai ——a, =0 and we use
the resulting expressions for ai and a, in the equa-
tions for a2 and a3. This step simplifies the
mathematics without altering the physics too much.
(cf. Ref. 3). As a further simplification, we note
that at normal to low temperatures the thermal

means n,'"=(e ~ —1) ' are much less than 1.
This means the terms 2

Y;n" in the diffusion ma-
trices in Eqs. (2.7) are, in general, much smaller than
the terms —,Kai and —,Kai which are of the order

1

1

—,y2 according to Eqs. (3.1) and (3.2). Hence we
shall ignore the thermal noise terms , y—;n

" in the
diffusion matrices, retaining only the quantum noise
terms —,Ka 1 and —,Ka i. The resulting set of
Langevin equations for modes 2 and 3 is then

a2

a2

Bt a3

aa3

—p2a2+ Ea ia3

72a2+ Ka ia3 0
+ 1

Y3a3 +Ka ia2

Y3a3+Ka la2

0

—La1

1

1—Ka 1

—Ka1

1

1/2

i)2(t)

g, (t)

rl3(t)

g3(t)

(3.3)

with ai ——1/yi(ei —Ka2a3) and ai ——1/Yi(ei —Ka2a3).
The Fokker-Planck equation corresponding to this set of equations is

T

aP a
72a2+Kala3) t ( Y2a2+Kala3)

Bt Ba2 Ba2

82 8+ Kai+
& tKai P,

a2 a3 Ba2a3

( —Y3a3+Ka ia2) — ( —y3a3+ Ka ia2)
a3 aa3+

(3.4)

where ai ——1/yi(ei —Ka2a3), a, = 1/yi(ei —Ka2a3), and Ia} is the set (a2,a2,a3,a3). We are interested in the
steady-state solution of this equation, from which we can calculate the steady-state statistical properties of
modes 2 and 3.

Equation (3.4) has a potential solution in the steady state provided y2
——y3, so we shall make this not un-

reasonable assumption (cf. Ref. 11). The steady-state solution is then P(Iaj)=N exp[/(Iaj)], where N is a
suitable norrrialization factor and the potential P( I a j ) is

p( I a j ) =2a2a2+2a3a3+
2 YIY2

K
—1 ln(Ka2a3 Ei ) +

t'

2l 1Y2

K
—1 ln(Ka2a3 61) (3.5)

We note that the terins 2a2a2 and 2a3a3 would cause P( Ia j ) to diverge at large a2 or a3 if the integration
domain was defined in the normal way with a; =a*;.

IV. STATISTICS OF THE STEADY-STATE
LIGHT FIELDS

I „= a2a2 a3a3 "P a p a (4.1)

using the non-nor=xrxalized function P( I a j )

The solution (3.5) may now be used to calculate
the statistics of the modes 2 and 3 in the steady
state. Here we shall evaluate normally ordered aver-
ages of the type (a2zaz a3™a3)which are intensity
moments or intensity correlations. The non-
norinalized moments are

=exp[/(Ia})]. The averages are obtained by divid-
ing the appropriate I „by Ioo.

This integral is evaluated in several steps. First,
the a2 and a3 integrals are done using the change of
variables u=(K/ei)a2a3 and v=(K/ei)aza3. The
u and v integrals are then the integral forms of de-
generate hypergeometric functions; each integration
path is a Pochammer contour. ' The a2 and a3 in-
tegrals are done using the change of variables
co =(K /E'1)a2a3 and z =a2/a3. The to integration
path is any closed path around the origin, and gives
a constant independent of m or n. At this stage the
non-normalized moments have the following forni:
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I (m+1)I (n+1)
I (m+q+2)l (n+q+2)

r

26'1
z " ' I+,m+q+2; z

26'
QM n+1,n+q+2; —dz, (4.2)
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8(~~/&) (3)k 2e,
I20 I02

[~(q+4)l'k=oki[(q+4)k]' . &

where the I' are gamma functions, the M are degen-
erate hypergeometric functions, and q=2y'y2/K
—1. The single remaining integration can be done
straightforwardly using the residue theorem, taking
a closed integration contour around z =0. Thus, for
example,

—0.8
I » I I »

0 5 10 'I5 20 25 30 35 40 05 '50

'~ /K,

E1(a,a, )—E
'Yi'V2 1

g 0 —1—
4(e'/K)

(a,a,a,a, ) -1+
(a,a, ) (a,a, ) 4(~)/&)

(4.4)

FIG. 1. Semiclassical photon number ( ———), mean
photon number ( — ), second-order correlation function
(—.—), intermode correlation ( ———), and the quantity
g' '(0)+1/(a a ) ( . . ) as functions of e, /I». ; e',"' =20.

where (x)k =x(x+1)(x+2) (x+k —1) and
(x)o——1. The fact that Iio=Ioi» I2=I02» and so
forth, is due to the symmetry imposed by taking
r2= y3.

Figure 1 shows the mean photon number (a2a2),
the second-order correlation function

Note that the mean is less than the deterministic
value by —,. However, this difference is far too
small to be observable.

More general moments, of the form

g"'0= (a,'a,') /(a, a, )',
and the intermode correlation

((a 2)"(a2)'(a 3) (a3)")

nz aza3 a3P a p a (4.5)

(a2a2a3 3)/(( 2 2)(a3 3))
as functions of the driving field e&. The mean pho-
ton number follows the semiclassical result [Eq.
(3.2) with y2 ——y3] closely, except there is a small
nonzero intensity below threshold due to amplifica-
tion of spontaneous emission by the noise term. The
modes are highly correlated for low driving fields,
but rapidly become uncorrelated for higher e&. The
second-order correlation function g' '(0) for a single
mode starts from the value 2[(q+2)/(q+3)] [see
Eq. (4.3) with e& ——0], then drops quite sharply
through the threshold region, reaching an asymptot-
ic value of 1. The asymptotic (large e&) forms can be
straightfowardly calculated from Eq. (4.2) using the
asymptotic forms for the M functions' and evaluat-
ing the integrals by the method of steepest descents:

(a, ) =(a, ) =0,
((a )') =((a, )') =0,

(&'/~)
I (q+2)l (q+3)

( +1)
k=o (q+2)k(q+3)k

2k
261

K

(4.6)

may be calculated using a straightforward generali-
zation of the above method. In this case, the to in-
tegration leading to the form corresponding to Eq.
(4.2) is zero unless (k —l)=(m n); oth—erwise the
moments take forms similar to those in Eq. (4.3).
Thus
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These particular moments have been given for later
use in Sec. V.

(a2a2a3a3 ) (3) (3)(g3 (0)g3 (0)
asap a 3a3

(5.1)

We have considered a model for parametric oscil-
lation in a cavity driven by an external laser. A
quantum-statistical analysis showed that as well as
theriacal noise, noise arising from quantum effects is
also present (see also Refs. 2 and 3). For norinal to
low temperatures, this quantum noise dominates the
ther-xiial noise except for very much below the oscil-
lation threshold.

Here we derived a Fokker-Planck equation for the
(generalized) P representation describing the pump,
signal, and idler modes. The steady-state solution of
this equation was found in the limit when the pump
mode can be adiabatically eliminated, the signal and
idler modes have equal loss rates, and the thermal
noise is negligible compared with the quantum
noise. This gave a single expression describing the
statistics of the signal and idler modes over the
whole range of driving-field strengths except in a
very small region far below threshold where thermal
noise and quantum noise become comparable.

Using this distribution function we derived ex-
pressions for the mean photon numbers, the second-
order correlation functions and the intermode corre-
lation as functions of the driving field. Far enough
above threshold the modes become uncorrelated, and
their second-order correlation functions tend to 1,
the value for a coherent state.

It is interesting to ask whether or not the light
fields here exhibit any nonclassical effects such as
photon antibunching [g' '(0) values less than 1].
The e&~0 limit of g' '(0) is 2[(q+2)/(q+3)]
which is less than 1 for qe( —1,~2—1) so anti-
bunching is predicted in the region near e& ——0.
However, such q values seems incompatible with the
adiabatic elimination requirement that y& be large.
Further, in the region near E&

——0 thermal noise can-
not be ignored, and this will tend to increase g' '(0)
towards the thermal field value of 2. According to
the asymptotic expressions, Eq. (4.4), for large driv-

ing fields g' '(0) is slightly less than 1. However,
this difference is very small and cannot be resolved
on the scale used in Fig. 1.

However, there is one nonclassical effect ap-
parent. If the I' distribution were a standard real,
non-negative distribution, the intermode correlation
and second-order functions would have to satisfy the
following Cauchy-Schwartz inequality':

(a,"a,a,a, )'( ((a,a, )') ((a 3a3)') . (5.3)

In the present case„because of the symmetry be-
tween the two modes, this reduces to

(aza3a3a3) ((a,a, ) )2

(a3a3 ) (a3a3 ) 2

g(&)(0)+
(a,az )

(5.4)

which is a weaker inequality than (5.1). Figure 1

shows that this inequality is, as expected, always
obeyed. In fact, from this graph we see that

g(2)o ~
(a,a, ) (a,a, )

(5.5)

&g"'(o)+
azar

According to Fig. 1, the LHS of (5.4) is very close
to the right-hand side (RHS), especially above
threshold. That is, for the parametric oscillator, the
intermode correlation is so high that it approaches
the limit allowed by the inequality (5.4). This high
correlation is not unexpected here, since each photon

Zubairy has recently shown that this inequality is
violated in the two-photon laser. ' In our case, be-
cause of the symmetry between modes 2 and 3,
gq '(0) =g3 '(0) and Eq. (5.1) reduces to

(a 3a 3a 3a 3 ) (p)&g3 (0) . (5.2)
apa3 a 3a3

Figure 1 shows that g3 '(0) is always less than or
equal to the interm. ode correlation, with equality in
the limit of large driving field e&. The nonreal na-
ture of the I' distribution thus allows the relation
(5.1) to be violated. This violation exists even above
threshold, so for this system the effect should be rel-
atively accessible to experimental investigation. The
experiments of Burnham and Weinberg on
parametric fluorescence' have shown that the inter-
mode correlation is in fact very high, although they
did not measure the corresponding g' '(0) values for
COIIlPMlSOIl.

Although the nonpositive-real behavior of the P
distribution allows the "strong" inequality (5.1) to be
violated, there is a weaker inequality which cannot
be violated. Since a a is a Hermitian operator, we
must have ((aza3+Aa3a3) ) )0 for all real A, . The2

left-hand side (LHS) of this inequality is a quadratic
in A, , and the inequality means this quadratic has no
real roots. Thus its discriminant must be less than
or equal to zero, which gives the following inequali-
ty:
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in one mode is produced as the partner of a photon
produced in the other mode.

There is one other nonclassical effect attracting
much attention at present: "squeezing. " In this ef-
fect, one of the quadrature fluctuations ((~) )
=&(X—(X)) ) or ((hY) ) =((Y—( Y)) ) in the
complex field amplitude operator a =X+iY be-

1

comes less than ~ . A state where

((~) ) =
4

= ((b, Y) ) is a minimum uncertainty
state, in which the product ((~) )((hY) ) takes
the minimum value allowed by the Heisenberg un-
certainty principle. A state in which either ((~) )

1

or ((5Y) ) is less than —, is usually called a
"squeezed" state. ' ' The potential application of
such states in gravity wave detection and optical
communications has been discussed in the litera-

18719

Calculation of the appropriate quantities for the
parametric oscillator here shows that some squeez-
ing does occur. However, this squeezing is not in
the field modes az or a3 themselves; rather, in the
"coupled mode" d = ( I /W2)(a 2+a 3 ). If we let
d =X+i Y, then, since [dt,d]=1, we have

&(~)'& =-, +-, (2(d'd )+«"&

+ &d'& —2(dt) &d &

—(d )'—(d &'),

((~Y) ) = —,+ —,(2(dtd) —(dt ) —(d2)

—2(d )&d)

+ (dt &'+ (d &')

Using the results (4.6) and the symmetry
(aza2) =(a3a3), these can be written for the
parametric oscillator as

((~)')=-,'+-,'(&.,",)+&..., &),

((~Y)') = —,
' + —,

'
(&aza2 &

—&aza3 &) ~

0.250

0.225

0.200

~ 0.175

0.150

0.125—
't0 20

&~le

30 40

FIG. 2. Squeezing in the coupled mode (1/V 2)(aq+a3)
as a function of e, /E; e',""'=20.
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Figure 2 shows the behavior of ((hY) ) as a
function of the driving field. Maximum squeezing
[minimum value of ((b.Y) )] occurs just above
threshold, where the fluctuations in Yare reduced to
about 0.125. This behavior is similar to the squeez-
ing found in the degenerate parametric oscillator,
although in that case, the squeezing occurs directly
in the signal mode. As pointed out in Ref. 20 this
amount of squeezing is not enough for practical ap-
plications in optical communication systems or
gravity wave detectors.
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