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Theory of resonance fluorescence in a fluctuating laser field
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A method of calculation of multiple-time correlation functions of the resonance fluores-
cence light from a two-level atom driven by a realistic laser field with phase and amplitude
fluctuations is developed. Both kinds of fluctuations are assumed to be Gaussian. The
phase fluctuations are treated in the phase-diffusion model. The averaging over the ampli-
tude fluctuations can be performed in a closed way when the relative mean-square ampli-
tude fluctuation is small compared with the ratio of the amplitude correlation decay rate to
the characteristic atomic relaxation rate. There is no restriction to Markovian amplitude
fluctuations. Arbitrary values for the mean Rabi frequency are allowed. Results are
presented for the intensity, the intensity correlation function, and the spectrum of the
fluorescent light. It is shown that even in the case when the relative strength of the ampli-
tude fluctuations is small, significant effects can occur due to the finite correlation length of
the fluctuations. The results for fast amplitude correlation decay correspond to the situa-
tion without amplitude fluctuations. When the correlation time of the amplitude fluctua-
tions becomes comparable with the atomic relaxation times, the Rabi oscillations of the in-

tensity and the intensity correlation function are nearly washed out, and non-Lorentzian line

shapes for the side peaks in the spectrum are observed. It is found that the ratio of the
heights of the central peak to the side peak increases with increasing correlation time.

I. INTRODUCTION

For the last few years the theory of resonant in-
teraction between atomic systems and fluctuating
light fields has been a subject of increasing in-
terest. ' ' Various effects have been studied, such
as the spectrum and the intensity correlation func-
tion of the resonance fluorescence light from a two-
level atom, optical double resonance, and multipho-
ton ionization.

A simple case of a fluctuating light field is a laser
field the phase of which fluctuates according to a
Wiener-Levy process. For such a phase-diffusion
field the statistical averaging of the atomic equa-
tions of motion can be performed exactly. ' The
effect of amplitude fluctuations was first studied by
Eberly on the basis of decorrelation assumptions.

Recently, methods have been developed to study
the effects of Markovian field fluctuations. The
averaging of the atomic equations of motion leads,
in general, to an infinite set of coupled differential
or integral equations, which are solved, after trunca-
tion, by numerical methods. In particular, calcula-
tions have been perfoi-ined for chaotic fields,

Gaussian-amplitude fields, ' and phase-diffusion
fields. In a recent work' the problem of resonant
interaction between a fluctuating single-mode laser
field with a two-level atom has been treated by uti-
lizing a kind of multiple —time-scale method. Since
this method gives an expansion in powers of the ra-
tio of the atomic decay constant to the Rabi fre-
quency the expression derived for the fluorescent
spectrum is valid as a high —driving-field approxi-
mation. All the results of investigation of the spec-
trum of resonance fluorescence show that the side
peaks appearing in the case of a resonant, intense,
coherent, driving field' are washed out due to the
amplitude fluctuations of the exciting field.

Besides the spectrum there has been a growing in-
terest in the intensity correlation function of the
fluorescent light. This interest results partly from
the possibility of observing the effect of photon anti-
bunching and testing the quantum nature of
light and partly from possibilities of spectroscopic
applications. ' Both aspects require a careful in-
vestigation of the effects of fluctuating, driving
fields.

As has been shown, ' ' the intensity correlation
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function of the resonance fluorescence light from a
two-level atom can be decomposed into two intensi-
ties when the exciting field is a coherent or a phase-
diffusion field. For other kinds of driving fields the
situation can drastically change. Analytical calcula-
tions" ' performed for various stochastic, driving
fields in the weak-field limit show that for chaotic
pump fields" and laser fields with amplitude fluc-
tuations' ' the factorization of the intensity corre-
lation function is, in general, impossible. It is worth
noting that in the case of laser fields with phase
fluctuations leading to non-Lorentzian line shapes
the factorization is a very good approximation. '

The effects of extremely strong, stochastic, driving
fields have been studied as well. ' However, the va-
lidity of the analytical results presented for
Gaussian-amplitude fields and chaotic fields are re-
stricted by the condition that the mean-square devia-
tion of the Rabi frequency and the bandwidth of the
exciting field must be large compared with the line
width of the atomic transition because the atomic
relaxation is disregarded in the theory. The results
are only valid as long as the time remains small
compared with atomic relaxation time. Therefore
the attempt ' has been made to utilize the
methods outlined above. Numerical calculations
are in preparation.

An alternative, analytical method for treating the
effects of fluctuating light fields in optical processes
has recently been developed by making use of
Feynman's operator-algebra and path-integration
technique. "" This method, which is equivalent
to van Kampen's cumulant expansion, ' requires
small and/or fast fluctuations. Furthermore, it is,
in general, restricted to one-time averages and can-
not be applied to the calculation of the spectrum,
the intensity correlation function, and other higher-
order correlation properties of the resonance fluores-
cence light in a straightforward way.

In this paper we present a theory of resonance
fluorescence from a two-level atom driven by a real-
istic single-mode laser field with Gaussian phase and
amplitude fluctuations, the latter satisfying the con-
dition that the relative mean-square deviation of the
Rabi frequency is small compared with the ratio of
a characteristic atomic relaxation time to the corre-
lation time of the amplitude fluctuations. We note
that for a laser with intensity fluctuations of the or-
der of a percent this condition is no restriction to
fast correlation decay. The phase fluctuations are
taken into account within the phase-diffusion model
usually used. We present closed solutions for the in-
tensity correlation function (Sec. II) and for the
spectrum (Sec. III) of the fluorescent light, without
assumptions about the value of the Rabi frequency,
without assumptions about the time scale, and

without the restriction to Markovian amplitude fluc-
tuations.

II. INTENSITY CORRELATION OF THE
FLUORESCENCE

~E(+)(t + )E~(+)(t) ) (2.2)

where the vector components E; of the operator of
the electric field strength are decomposed into
positive- (E + ') and negative- (E ') frequency
parts. In the case of resonant interaction between a
two-level atom and a pump light field the intensity
and the intensity correlation function of the scat-
tered light can be expressed in terms of atomic
correlation functions

& t +— =f ( r )cr22(t), (2.3)

(2.4)

where the spatial function is given by

(Dz). r)r
p 3

(2.5)

A@21 and D21, respectively, being the atomic transi-
tion frequency and the transition matrix element of
the electric dipole operator. The occupation proba-
bility for the excited atomic quantum state cr22(t)
and the correlation function G22(t, t +~) can be writ-
ten as expectation values of flip operators A„(t)
[A„(t=O)=

~

n )(m
~

with n, m =1,2 and with ~1)
and ~2), respectively, being the atomic ground-state
vector and the excited-state vector]:

cr»(t) = (&»(t) ),
22(t~ ++) (~21(t)~»(t + r)~12(t))

(2.6)

(2.7)

In order to calculate G»(t, t+~) we turn to the
Bloch equations of motion. For this purpose we
write the excitation laser field in the fo11m

The intensity I(t) and the intensity correlation
function G' '(t, t+r) of a given light field (at fixed
space point r) are defined by the following equa-
tions:

(2.1)
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El (t)=El+'(t)~El '(t),
E'+'(t)= [E—~5E (t)]e (2.8)

and write the Bloch equations of motion in the com-
pact vector forin

E(—)(t) [E(+)(t)]g ~%(t, t ~r))=M(t ~r) ~%'(t, t ~&)), (2.10)

A2((t) =A )q(t),
(2.9)

where 5EL (t) and @L (t), respectively, are real Gauss-
ian random variables for the amplitude and the
phase fluctuations of the laser field. The Yariv-
Caton laser model used in this paper is outlined in
Appendix A. We now introduce slowly varying
atomic operators defined by

(1 )
4'(t, t +r) ) = (A 2((t)A2p(t +w)A (2( t) ),

(2 ( %(t,t~r))=(A»(t)A»(t ~~)A»(t)),
(3 ( e(t, t ~1))=(A2((t)A(2(t /7)A)2(t)),
(4

~
e(t, t /1. ))= (A2)(t)A2)(t /7)A(2(t)),

and the 4)&4 matrix M(t) is given by

(2.11)

(2.12)

(2.13)

(2.14)

where the components of the four-dimensional vec-
tor

~
+(t,t+r)) are defined by

M(t) = ~

——[Qz+5Qz(t)]
2

—[Q„~5Qg (t)]
2

l l——[Qg ~5Q~(t)] —[Qg ~5Qg (t)] i 5' 12~—ij—I (t)
2 2

2
—[Qg ~5Qg(t)]

——[Qz+5Qz(t)]
2 (2.15)

—[Q~ ~5Q~(t)]
2

e

——[Q~ ~5Qg(t)]
2

i 5' —I I. ij I (t)—

Here the amplitude and the amplitude fluctuation of
the driving laser field are expressed in terms of Rabi
frequencies [Q+,5Qz(t)]. I

&
and I 2, respectively,

are the rates of energy and phase relaxation,
5co=coz( —cuL. From Eqs. (2.11)—(2.14) the initial
condition for

~
4(t, t ~r)) is seen to be

The solutions of Eqs. (2.10) and (2.17), which
satisfy the initial conditions given by Eqs. (2.16) and
(2.22), can be found by formal integration. The re-
sult is

~

0 (t, t ~~))=S(t, t ~ r) )
0 (t, t))

(i
~

II(t, t))=5;2(A»(t)) . (2.16)
=S(t,t /~)

~

2)(1
~
e(t)), (2.23)

In order to calculate (A22(t) ) we again make use of
the Bloch equations:

where S(t&, t2) is the time-ordered exponential ma-
trix

~c(t))=M(t) ~4(t)), (2.17)
t —t2 1

S(t),t2) = T exp d~M(t( ~r)
0

(2.25)

(1~&(t))=(A (t)),
(2 [ e(t))=(A), (t)),

(2.18)

(2.19)

Combining Eqs. (2.7), (2.9), (2.11), (2.23), and (2.24)
the correlation function G22(t, t +r) can be
represented in the following form:

(3
~
+(t))=(A)2(t)),

(4
~
~(t)) =(A»(t) & .

(2.20)

(2.21)

G»(t, t ~~)
=(1

i
S(t, t ~~)

i
2)(1

i
S(O, t)

i
2) . (2.26)

(i
~
@(0))=5; (2.22)

We now assume that at time t=O the atom is in the
ground state. This implies the following initial con-
dition for

( N(t) ):

We note that Gz2(t, t ~r) is equal to the product of
two occupation probabilities for the upper atomic
quantum state. In Eq. (2.26), (1

~
S(O, t)

~
2)=o22(t)

is the probability that at time t the upper atomic lev-
el is occupied provided that at time t=O the ground
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state has been occupied. Analogously,
(1 (S(t,t+r)

~
2) is the occupation probability for

the upper atomic quantum state at time t+~ when
at time t the atom has been in the ground state.

In the case of a stochastic, driving field we have
to average Eq. (2.26) over the fluctuations of the
field:

( G»(t, t +v) )„
= ((1 [ S(t, t +7 ) ( 2)(1 [ S(O, t) [ 2))„. (2.27)

The average excited-state population is given by

(o»(t))„=((1(S(O,t) i 2))„. (2.28)

It is seen that, in general, the average correlation
function given by Eq. (2.27) cannot be decomposed
into two average excited-state populations.

From the derivation of Eq. (2.27) it is seen that
this equation holds for arbitrary, stochastic, driving
fields. It is not restricted to the stochastic model
considered in this paper. Equation (2.27) was first
derived for the case of vanishing atomic relaxa-
tion. ' More general conditions have recently been
considered.

We now turn to the problem of performing in Eq.
(2.27) the averaging over the amplitude and the
phase fluctuations of the driving laser field under
consideration. For this purpose we assume the
phase of the laser field is a Wiener-Levy process. In

I

this phase-diffusion model jvL is a Gaussian random
variable with

(q&(t)).,=0,
(2.29)

5Qg (t)
M(t) =MD 1+— 5Q~ (t)

M),
QR

(2.30)

where the matrices M0 and M~ are defined by

(j (t)j (t') )„=2r,5(t —t'),
where 2I L is the line width of the laser light. Ow-

ing to the 5 correlation assumed the averaging over
the phase fluctuations in Eq. (2.27) can be per-
formed by averaging (1

~
S(t, t+r)

~
2) and

(1 ( S(Q, t)
~
2) independently of each other. Stan-

dard methods' lead to the result that in the ma-
trices M(t+v. ) and M(t) defined by Eq. (2.1S) both
ijvL and ipL mu—st be replaced by —I L, . The ef-
fect of the phase fluctuations therefore is the modi-
fication of the dephasing rate: I z rz+ rL, .

The remaining problem of performing the averag-
ing over the amplitude fluctuations is, in general,
more complicated because of their finite correlation
time. In order to find a suitable approximation we
subdivide the matrix M given by Eq. (2.15) into
three parts (after substituting —I L for the ijL and
—i+L ):

0
l——Qg

l—QR

l—Qg
2

l——Qg
2

l——Qg
2

l—Qg

—i 5~—r, —r,

l—QR

l——Qg
2

i5a) —I p
—I L,

(2.31)

li Q

0
0 0

0 —i 5~ —r, —r,
i 5~ r, r, — —

(2.32)

For our laser model we can assume that the condi-
tion

((5Q„)')„
I ~„((1, I =max(I ),I p+rL, )

Qii
(2.33)

is fulfilled, vz being the correlation time of the am-
plitude fluctuations. For simplicity we confine our-
selves to the case of exactly resonant excitation, that
is, 5' =0. If the amplitude fluctuations are not too

I

strong, as should be realistic for many cases, the
condition (2.33) is no restriction to fast correlation
decay. In consequence of the condition (2.33) we
can now disregard in Eq. (2.30) the terixi proportion-
al to M~ (see Appendix B):

5Qg (t)
M(t)=M, 1+ (2.34)

QR

Combining the results from Eqs. (2.25), (2.27), and
(2.34) we obtain
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( G22(t t ++)~st

r QQ~(t +~()
1 exp Mo 7 + 7]

0 QR

Mlg (r2)
(2)() (exp Mtt t+ f dt't

Q,R
(2.35)

It is convenient to perform the statistical averaging in the Mo representation

Mo I4)=~k
I
~k) .

Standard methods yield

(2.36)

(G22(t, t+r))st= g Ck' Ct' e " ' exp
k, i

(2.37)

where

t2
g'"(t, , tt) fdt f=dt (st4(tt '+t)M„(tt+t'))„, (2.38)

(2.39)

and

(2.40)

2

((222(t))„=g Ck' e exp 2
g"'(O, t)

k Qg
(2.43)

The eigenvalues A, k and the coefficients Ck' can be
found by straightforward calculation. The result is

When the Rabi frequency becomes large com-
pared with the atomic damping rates and the laser
linewidth we can simplify Eqs. (2.37) and (2.43) and
obtain

0.4-

1,2 =0,

0.3-

0.2-

Q, 1-

32

(2.42)

I ( I ) +A, 3)(I ) +A,4)

2 A,4(A.3 —A,4)

It should be noted that when the amplitude fluctu-
ates according to a stationary Gaussian process
g'"(t&, t2) does not depend on t&. We further em-
phasize that the result (2.37) is valid for arbitrary
values of the (mean) Rabi frequency Qz and that
there is no restriction to Markovian amplitude fluc-
tuations. As can easily be seen the average excited-
state population is given by

FIG. 1. Time development of the stationary fluores-
cent light intensity correlation function, which is propor-
tional to (G22(r))„, for various values of the Rabi fre-
quency Q~. Radiative damping (I"2——y, I,=2y) and
small laser linewidth (1 i. ——0.01) are assumed. Rate of
amplitude correlation decay is chosen to be I &

——2y.
Behavior in the case of a realistic laser with small mean-
square amplitude fluctuation (e=0.1, full lines) is com-
pared with the behavior in the case without amplitude
fluctuations (e=0, dotted curves). Note that the station-
ary fluorescent light intensity correlation function is pro-
portional to the fluorescent intensity because

( G22(r) )st ((r22( 0() ) )st((r22(r) )st
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& G22(t, t+r) &,t ——&t722(t) &st& t722(r) &„+& 22 t, t

&o t)&„=—,
'

f1 —cos(Q„t)exp[ ——,(I,+I +I ) —g'"I t —'"(O, t)]},
&aG„(t,t+r) &„=- ——r + r +r, )( +r —g ",t 1 r) '—"(t,r) —g' "(O,t)]s exp[ 2( 1 2

h[ ' '(t r)] —1}+sin(Qttt)sin(Qttr)sinh[g' '(t, r ]Q (cos(QII t)cos(Qttr) Icos ig

(2.44)

(2.46)

n &EG (t, t+r)&„ is the deviation o
& G22(t, t +r) &„ from the factorized va ue
&~22( )&st&~22( )&st'

A ing exponential correlation decay or t e
A5) intoampiu e1't d fluctuations and inserting q.

imitin. (2.45) we find by comparison that m the im
'

g
/Q 0 the resulting expression or

&tr (t & is in agreement with the result obtained ybCT22 t st is 1I1 agI'eeIlleI1
Note that the

atter as a high-field approximation yields practic-
a e results in the limit I /QII~0 only. Since for
fixed values of &(5QII) &s„rg, all in i
our approximation condition ( .
b h thods are expected to lead to equa resu ts.

f r an small
ut finite value of I /Qtt the high-field resu ts given

in qs. (2.44)—(2.46) remain valid provided that t e
va ues of & (5Qtt ) &„,rz, and I fulfill the inequality

inEs.From an inspection of the results given in qs.
(2.37) and (2.43) we find that the intensity corre a-
tion runction anf '

d the intensity of the fluorescent
light epen on

'
h d d the correlation function of the am-

plitude fluctuations of the driving aser ie
&5Qtt(ti )5Qtt(t2) &st via the time-integrated corre a-
tion functions g, a'"(t' t) and g' '(t', t) defined in Eqs.
( .38) and (2.39) (examples are presented in Appen-
dix A). We thus expect that for a wide c ass o
correlation functions & 5QII ( t I )5Q (t )) the prop-

I

of the fluorescent light do not differ su stan-erties o e
e e endence

'
ll . Let us consider, for example, t e p

of the intensity correlation function on g
that the amplitude of the exciting aser iesume a

r rocess:ut.tua es arl t according to a stationary p
ort-g (t, t =g) —'"(0 t). From Eq. (2.38) both the s o

h
' f g'"(0 t) and the asymptotic ong-

ftime behavior are easily seen to be independent o
the concrete o rishi of —— f the correlation function
&5Qtt(ti )5QII(t2) &„:

—&(5Q )') t' fo««r~
2g(1)(() t)
I t for t&&r~,

(2.47)

where

I = dr& 5Qtt (r)5Qtt (0)&„.0
(2 48)

Some results of Eqs. (2.37) and (2.4 are present-
ed in Figs. —. nF' . 1—3 In all figures radiative damping

=2 ) and small laser linewidt
of' the relative(I I ——10 ) are assumed. The value o

mean-square amp i u e1't d fluctuation is chosen to be

e= &(5QII ) &„/Qtt ——0. 1 .

The calculations were performed by uti izing t e

0.3

0.&

'o

0.1 - '

I

I

l

} / I
I

J

2 3

'6

'50

yt

FIG. 2. Time development of the stationary fluores-
cent light intensity correlation function, which is propor-

1 to (G (r))„, for various values of the rate of am-
xcitin laser field inplitude correlation decay I & of the exci ing a

the case of sma mean-
'

nf ll n-square amplitude fluctuation
@=0.1. Radiative damping (I 2 ——y, I t ——yI =2 and sma
laser linewi t'd h (I =0.01y) are assumed, and the Rabi
frequency Qz ——10.

FIG. 3. Time eve opmT' d lopment of the nonstationary
fluorescent ig i1' ht 'ntensity correlation function, which is

ro ortional to (G22(t, t+r))„, for various values of the
rae ot f amplitude correlation decay & o

1d in the case of small mean-square ampam litudelaser ie in e ca

and small laser linewidth (I t ——0.01y) are assumed, and
Dotted curves representthe Rabi frequency Att ——10y. Dotted

the factorization result (o2z(t))„(o22(r))„.
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correlation functions given by Eqs. (A4), (A8), and
(A12). In accordance with the above, the results
were nearly equal. There were no deviations larger
than l%%uo.

In Fig. 1 the steady-state intensity correlation
function of the fluorescent light is shown for certain
values of the Rabi frequency Qz and for relatively
slow correlation decay (I z ——2y). It is seen that the
amplitude fluctuations are responsible for damping
the Rabi oscillations. This effect is further seen to
increase with increasing value of Qz/y. In the oth-
er case when the Rabi frequency becomes compar-
able with the damping rate y or smaller than y
(Qz/y(1) the intensity correlation function shows
the same behavior as if there were no amplitude
fluctuations. Indeed, from an inspection of Eqs.
(2.37)—(2.39), (2.41), and (2.43) we see that when

flz /y ( 1, the last exponential functions in Eqs.
(2.37) and (2.43) give rise to contributions of the or-
der

Small deviations can only be observed under nonsta-
tionary conditions when the amplitude correlation
decay is not too fast (see Fig. 3). They are negligi-
bly small in the steady-state case. This is within the
validity of the approximation condition (2.33), in
agreement with the results found for the weak-field
Hmit. ' '

It is worth noting that the applicability of our
theory is not restricted to the case of weak ampli-
tude fluctuations considered above. From the condi-
tion (2.33) it is easily seen that the case of stronger
amplitude fluctuations with sufficiently fast correla-
tion decay can be treated as well. In this case the ef-
fect of amplitude fluctuations can be described by
the (nonvanishing) rate

as is seen from an inspection of Eqs. (2.33), (2.37),
(2.43), (2.47), and (2.48). This rate is simply given
by I provided that the driving field is sufficiently
strong,

which can be neglected due to the condition (2.33).
In particular, in the limit of the weak pump field
(Qz /y && 1) the effect of the amplitude fluctuations
is unimportant provided that

This result is in full agreement with results derived
by means of perturbation theory. '

In Figs. 2 and 3 the intensity correlation function
of the fluorescent light is shown for certain values
of the rate of amplitude decay I z ——~„', the value
of the Rabi frequency being Qz ——10y. In Fig. 2 the
steady-state intensity correlation function is shown,
whereas in Fig. 3 an example for nonstationary
behavior is presented. Although the strength of the
amplitude fluctuation is assumed to be small
(@=0.1), the effect of finite correlation length can
become considerable. From Figs. 2 and 3 it is seen
that in the case of relatively slow correlation decay
(I z ——2y) the Rabi oscillations are quickly damped
out. With decreasing correlation length, that is,
with increasing value of I ~, this damping effect ob-
viously vanishes. The intensity correlation function
tends to become increasingly oscillatory with time as
the amplitude correlation decay becomes fast. The
curves presented for the fast correlation decay
I „=50y are nearly the same as in the case of
coherent, driving field. Furthermore, from Figs. 2
and 3 it is seen that within our theory, which is
based on the condition given by Eq. (2.33), the fac-
torization of the intensity correlation function is a
very good approximation:

The different behavior of the steady-state intensity
correlation function for weak and for strong ampli-
tude fluctuations is shown in Fig. 4, the value of the
rate I being fixed. Radiation damping is assumed
(I 2=y, I",=2y) and the value of the Rabi frequen-
cy is Qz ——10y. It can be seen that in the case of
strong amplitude fluctuations the Rabi oscillations
are rapidly damped out with the rate I . We em-
phasize that this result is valid for both Markovian
and non-Markovain amplitude fluctuations. The
value of I depends, of course, on the model used.
In the case of weak amplitude fluctuations the

0.3

0.2

FIG. 4. Time development of the stationary fluores-
cent light intensity correlation function, which is propor-
tional to (G2z(r) )„, in the case of weak and slow ampli-
tude fluctuations of the exciting laser field (@=0.1,
1 q ——2y) and in the case of strong and fast amplitude
fluctuations (@=2.S, I q ——SOy), the rate I =eQ~ /I q be-

ing fixed in both cases (I =Sy). Radiative damping
(I q

——y, I'~ ——2y) and small laser liuewidth (1 I ——0.01y)
are assumed, and the Rabi frequency A~ ——10y.
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damping behavior is more complicated. It is deter-
mined by the full function g'" defined by Eq. (2.38).

We finally note that from our theory the results
that have recently been derived for a Gaussian-
amplitude field' can easily be obtained. After
disregarding the laser linewidth (I I ——0) and the re-
laxation rates (I

&
——I z ——0) we set Qz ——0 and find

from Eqs. (2.44)—(2.46)

(Gzz(t, t+r))„
—g) "(o,~i —g")(~,~)

4

—[g~) )(o, t)+g ') )(t, )]~cosh[g (z)(t r)] I

(2.49)

(2.50)

III. STATIONARY SPECTRUM OF THE
FLUORESCENCE

In order to calculate (Azi(t)A, z(t+v)) we follow
the procedure outlined in Sec. II. After introducing
slowly varying atomic operators defined by Eq. (2.9)
we define the four-dimensional vector

)
0'(t, t+r)}

by its components (i
~
%(t, t +~) }as follows:

(1
~

P(t, t +~))= (A»(t)A»(t +~)), (3.3)

(2
~

%1(t,t +~))= (A»(t)A»(t +r) ), (3.4)

(3
~
+(t t +&)) (Azi(t)A iz(t ++) ) (3 5)

(4~ P(t, t +~))=( A»(t)A»(t +~)) . (3.6)

( %(t, t +~)) satisfies the Bloch equation

nance fluorescence from a two-level atom the 6"'
correlation function of the scattered light is propor-
tional to the atomic correlation function
(Az&(t)A, z(t+~)) (Refs. 10, 12, and 19) we define
the spectrum by

S(m)= lim f dec' ')A„())A„()~~)) . )3.2)

We now turn to the calculation of the stationary
spectrum of the fluorescent light from a two-level
atom driven by a laser field with phase and ampli-
tude fluctuations. As is well known, the Wiener-
Khintchin spectrum of a given light field is obtained
by a Fourier transformation of the two-time correla-
tion function

~
+(t, t +r) ) =M(t +~)

~

%'(t, t +~)),
7

the initial condition being

(1
~
W(t, t))=0, (2

~
q(t, t))=(A„(t)),

(3 i%'(t, t))=(A»(t)), (4 i%(t, t))=0.

(3.7)

(3.8)

6"'(t t+~}=g (E,' '(t)E,'+'(t+v),' . (3.1)

Taking into consideration that in the case of reso-

The matrix M(t) is defined by Eq. (2.15). The solu-
tion of Eq. (3.7) which satisfies the initial condition
(3.8) can be found by formal integration. The result
IS

I
+« t+~))=s« t+~)

I
»(21+« t)}+s(t,t+~)

[
3)(3

(
0'(t, t))

=S(t,t+r)
~

2)(A„(t))+S(t,t+~)
~
3)(A»(t)),

where the time-ordered exponential matrix S is defined by Eq. (2.25). (Az&(t) ) and (Azz(t) ) are calculated by
means of Eqs. (2.20), (2.21), and (2.24). We obtain

(A»(t) ) =(4
~
S(O, t)

~
2), (A»(t) ) =(1

~
S(O, t)

~
2) . (3.10)

Combining the results of Eqs. (2.9), (3.5), (3.9), and (3.10) we now express the correlation function
(Azi(t)A iz(t +~) ) in the form

(Azi(t)A &z(t +w) ) =exp[

iridal

~ i yl (t +—~)+iqr—L (t)]

&& [(3 [ S(t,t+r)
(
2)(4 (S(o,t) [ 2)+(3

( S(t, t +r) (
3)(1 ( S(o,t) [ 2)] . (3.11)

In order to take into account the stochastic features of the driving laser field we have to average the
quantum-mechanical correlation function (Azi (t)A &z(t +~) ) over the phase and amplitude fluctuations, bef'ore
calculating the spectrum of the fluorescent light. In the first place, we perform the averaging over the phase
fluctuations by making use of the phase-diffusion model [cf. Eq. (2.29)]. If the strength of the phase fluctua-
tions is sufficiently small the result simply consists in substituting in Eq. (3.11) for iyL (t +r)+i—pL (t) the
quantity —I I ~ and in substituting in the matrix M(t) defined by Eq. (2.15) for iipl and i@L the quan—tity
—I I . In the second place, we perform the averaging over the amplitude fluctuations in the approximation
given by Eqs. (2.33) and (2.34). In a way analogous to that of Sec. II we finally obtain the result
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((A pi (t)A ip(t +r) ))„
=e ge 'ex IQ [A, "'(t )+A, '"(O, t)+Akim, ' '(t, ~)]I(Ck' Ct' +Ck' Ct' )

k, l

(3.12)

which reads in the limit t~ 00 as

lim ((Api(t)A]p(t+~))), g=e
&~ oo

2

k Qg
(3.13)

Ci' ———Qp, Ci' =0,
2 A3A4

i Q~(l i+4)
2 A, 3(A,4—A,3)

' (3.14)

32=
4

33Ci' ——

33=
3

33=
4

t Qg(l i+A4)
2 A,4(A, 3

—A,4)

3 3 1

0, Cp' ———, ,

Qg

2(A4 —A,3)(I i+A4)

Qg

2(A3 —A4)(I i+f3)

(3.15)

The coefficients CI'J are defined by Eq. (2.40). In
particular, we obtain

Ci' is given by Eq. (2.42) and C, ' = —Ci' . The A,;
values are given by Eq. (2.41). In accordance with
the arguments given in Sec. II we found the correla-
tion function ((Aqi(t)Aiq(t+r)))„ is nearly equal
for the three kinds of correlation functions
(5Q~ (ti )5Qz (tz ) )„studied in Appendix A. In or-
der to derive an explicit expression for the stationary
spectrum we will therefore confine ourselves to the
particular case of Markovian amplitude correlation.
Making use of Eqs. (A5) and (A7) we insert Eq.
(3.13) into Eq. (3.2) and perfor iii the Fourier
transfornl, after expanding exp( . g' ") into a
power series. This yields the (averaged) spectrum of
the fluorescent light for arbitrary values of the Rabi
frequency in the forrri

1 4 IS(to)= g, z.=o n'
k I ~k i kg exp —
z

I
i (tot co)+I r +n—I g —A,k—

+C.C.
k
2
R

(3.16)

where I is given by Eq. (A7).
In the strong-field limit Eq. (3.16) can be simplified to

S(oi)=So(co)+S+(co)+S (to), (3.17)

(I &+21 z)
So(to) =—

2 ( L, ) +(I q+21 L )

n
r n'„" 1

S~ (t0) = —,e
n=0

(I,+ I +31 I, +21 +2n I „)
[to (toz+Q~—)] + —,(I i+I q+31 L+2I +2nI )

(3.1S)

(3.19)

This result corresponds to the lowest order in the ex-
pansion in powers of y/Qa, as has also been ob-
tained by means of the multiple —time-scale
method. ' This method as a high-field approxima-
tion has the disadvantage that it is only practicable
when the driving field is sufficiently strong. Our
method, however, does not exhibit this problem.

We note that the results recently derived for a
Gaussian-amplitude field' are involved in our more

general theory. They can be obtained with the help
of the procedure outlined at the end of Sec. II.

If we examine the result given by Eq. (3.16) and
remember the condition (2.33) we observe that the
effect of the amplitude fluctuations is a modifica-
tion of the side peaks of the fluorescent spectrum,
whereas the central peak remains unchanged. When
the Rabi frequency becomes comparable with or
smaller than the atomic relaxation rates the effect of
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FIG. 5. Full stationary spectrum of the fluorescence
for various values of the Rabi frequency Qz. Radiative
damping (I 2

——y, I ~
——2y) and small laser linewidth

(I l. ——0.01y) are assumed. Rate of amplitude correlation
decay is chosen to be I &

——2y. Behavior in the case of a
realistic laser with small mean-square amplitude fluctua-
tion (@=0.1, full lines) is compared with the behavior in
the case without amplitude fluctuations (@=0, dotted
curves).

FIG. 6. Stationary spectrum of the fluorescence for
various values of the rate of amplitude correlation decay
I ~ of the exciting laser field in the case of small mean-
square amplitude fluctuation @=0.1. Radiative damping
(I z ——y, I ~

——2y) and small laser linewidth (I I, ——0.01y)
are assumed, and the Rabi frequency 0& ——10y. Rayleigh
scattering term is omitted.

IV. SUMMARY

the amplitude fluctuations obviously vanishes. The
dependence of the stationary spectrum on the Rabi
frequency is shown in Fig. 5 for relatively slow de-
cay of amplitude correlation (I ~

——2y), and the rela-
tive mean-square amplitude fluctuation @=0.1. In
this figure and the following ones radiative damping
( I z ——y, I

&

——2y) and small laser linewidth
(I I ——10 y) are assumed.

Some spectra for certain values of the amplitude
correlation decay rate I ~ are presented in Fig. 6, the
value of the Rabi frequency being QR ——10y. The
side peaks (superpositions of Lorentzians) are non-
Lorentzians. The deviation of the line shape from a
Lorentzian increases with increasing value of I /I ~,
that is, for fixed strength of the amplitude fluctua-
tions the deviation becomes larger as the amplitude
correlation decay becomes slower. It is further seen
that with increasing value of I z the spectrum tends
to the Mollow spectrum' observed in the case of a
coherent, driving field. The spectrum shown for the
fast correlation decay I"„=50y is, in very good ap-
proximation, the Mollow spectrum. Substantial de-
viations from the Mollow spectrum are seen in the
case of relatively slow correlation decay (I ~ ——2y).
The side peaks are broadened at the expense of their
heights. Non-Lorentzian line shapes for the side
peaks are observed.

We note that in the case of strong amplitude fluc-
tuations with fast correlation decay the situation be-
comes quite different, as can be seen from Fig. 7. In
this case the only important term in the expansion
(3.19) is that with n=0. Therefore, in contrast to
the case of weak amplitude fluctuations, the side
peaks remain Lorentzians which are, however, ex-
tremely broadened.

We have examined the resonant interaction of a
two-level atom undergoing energy and phase relaxa-
tion with an external laser field with Cxaussian phase
and amplitude fluctuations. We have presented
closed solutions for the intensity, the intensity corre-
lation function, and the stationary spectrum of the
fluorescent light, without the introduction of factor-
ization conditions and without the restriction to
Markovian amplitude fluctuations. The method
used is based on the realistic assumptions that, first,
the phase fluctuations can be treated in the phase-
diffusion model and that, second, the product of the
relative mean-square amplitude fluctuation, the am-
plitude correlation decay time, and the characteristic

1.0

0.8
3

0.6 [A» [

0.4

0.2

0
2 4 6 8 10 12 14 16 18 20

FIG. 7. Stationary spectrum of the fluorescence in the
case of weak and slow amplitude fluctuations of the excit-
ing laser field (@=0.1, I „=2y) and in the case of strong
and fast amplitude fluctuations (@=2.5, I ~ ——50y), the
rate I"=eQz/I & being fixed in both cases (I =5y). Ra-
diative damping ( I 2 ——y, I

&
——2y) and small laser

linewidth (I L, ——0.01y) are assumed, and the Rabi fre-
quency Q~ ——10y. Rayleigh scattering term is omitted.
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atomic relaxation rate is small compared to unity:

+col EI (t) =N(t) . (Al)

In this equation, v is connected with the resonator
losses; P and /EL, , respectively, characterize the
pump mechanism and the saturation behavior, g re-

[Eq. (2.33)]. The main advantage of the theory is
that it can be applied under the following various
conditions.

(i) The inequality (2.33) is fulfilled in the limit of
vanishing atomic relaxation (I ~0). Especially in
the case of a Gaussian-amplitude field (Q~ ~0) the
results of Le Berre-Rousseau et al. ' are recovered.

(ii) The inequality (2.33) is fulfilled in the limit of
fast correlation decay (r~ ~0). The fluctuations can
become strong and the effect of fluctuations is sim-
ply described by means of a rate as has been found
for the case of one-time averages. ' '

(iii) The inequality (2.33) is fulfilled in the satura-
tion limit (I /Q~~O). The results agree with the
recent ones of Chaturvedi and Gardiner. '

(iv) In the case of a realistic single-mode laser
with relatively small amplitude fluctuations
(((5Q„) )„/ Qz && 1) the theory is neither restrict-
ed to fast correlation decay nor to the strong-field
limit.

We have found that the effect of amplitude fluc-
tuations increases with increasing Rabi frequency.
Even when the strength of the amplitude fluctua-
tions is small the effect of the length of the ampli-
tude fluctuations can become considerable. Substan-
tial modifications, in comparison with the case of
coherent, driving fields, occur when the amplitude
correlations decay slowly. Then the Rabi oscilla-
tions of the intensity and the intensity correlation
function of the fluorescent light are rapidly damped
out and the side peaks of the spectrum are
broadened in a non-Lorentzian way. The modifica-
tions occurring due to non-Markovian amplitude
fluctuations are found to be negligbly small. Final-
ly, we would like to emphasize that our method is
not restricted to the calculation of two-time correla-
tion functions of the fluorescent light as has been
considered in this paper. It can be applied to the
calculation of higher-order correlation functions as
well.

APPENDIX A: LASER MGDEL

Within the framework of the Yariv-Caton laser
model the electric field strength obeys the differen-
tial equationd'EL(t), dEL (t)

+ [v—13+/EL, (t)]
dt t

suiting from the third-order susceptibility. N(t) is a
Gaussian noise. Sufficiently high above threshold
Eq. (Al) can be linearized by means of the ansatz
(2.8). The result is

dyL, (t)
dt

d 5EL (t)
+y, 5EL (t) =

2coL

(A2)

g' '(t', t) = (e ' —1)(e ' —1), (A6)

((5Q„)')„
Qg

(A7)

The correlation time of the amplitude fluctuation
~~ ——I ~

' defined by

(5EL(t)5EL (t+rg))„=((5EI ) )„/e
is simply given by rz ——y, '.

(ii) When A /B « 1 and the fluorescence line
shape function is Lorentzian the amplitude fluctu-
ates in a non-Markovian way. This process, howev-
er, can be represented as a stationary two-
dimensional Markov process:

N (t) =Nc(t) cos(coL, t) +Ng(t)sin(coL. t),
Nc(t) and Nz(t) being uncorrelated. The power
spectra of Nc(t) and Nz(t) are given by

P~ (co) =P~ (ro)=A +Bg (~), (A3)

where g(co) is the fluorescence line-shape function
of the atomic laser transition with weight B, and A

describes an additional white-noise spectrum result-
ing from the resonator losses and the theriiial back-
ground radiation.

When the value of A/B is large compared with
unity or, as has been shown recently, ' when the
value of the laser linewidth I I is small compared
with the fluorescence linewidth yii of the laser tran-
sition the phase qrL (t) can be assumed to fluctuate
according to a Wiener-Levy process (note that for a
He-Ne»s«rl. /yfi=10 ').

Let us now study the amplitude fluctuations.
(i) When A/B ~~1, the amplitude fluctuates ac-

cording to a stationary Gauss-Markov process:

(5EI (t)5EL(t'))„=((5EL ) )„e ' . (A4)

The functions g'"(t', t) and g' '(t', t) defined by Eqs.
(2.38) and (2.39) are derived to be

g"'(t', t) =g' "(O,t) = I t + (e ' 1), — (A5)
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I I

(5EL(t)5EL(t ) ) ((5EL ) ) ( Yfl
'e

'Ys —'Yfl

The functions g"'(t', t) and g' '(t', t) are calculated to be

(A8)

g'"(t', t)=g"'(O, t)=I t+I [Yfl (e "—1) Y—, (e ' —1)],
s fl

I I

g' '(t', t)=l [Yfl '(e ' —l)(e " —1)—Y, '(e ' —l)(e ' —1)],
Ys ) fl

(A9)

(A10)

I =eQfl- s+ Yfl
(A 1 1)

1 flYs

The correlation time w~ ——I „ is a function on Y, and yfl. In the Markovian limiting cases Yfl/Y, &&1 and
/Yfl « 1, we have I z ——Yfl and I „=y„respectively.
(iii) When & /& «1 and the fluorescence line shape function g (co) is assumed to be Gaussian with yfl «y„

the amplitude fluctuation cannot be treated as a (n-dimensional) Markov process. The correlation function is
now given by

(5EL(t)5EL(t') )„=((5EL )')„exp (t —t')' (A12)

and rz ——I z
' ——2/yfl. The functions g'"(t', t) and g' '(t', t) are derived to be

Hfl
exp — t —1

4 (A13)
r

{ )( )
2I Yfl @ Yfl

Yfl

Yfl @ Yfl Yfl
(

p )@
Yfl

(
p

)2' 2' 2
' '

2
' '

fl Yfl
exp — (t t') +e—xp — t —exp4 (A14)

I = Q' (A15)

where @ is the error function.

APPENDIX 8: DERIVATION OF THE
INEQUALITY (2.33)

This approximation can be justified when the effect
of Ml5Qz(t)/Q„ is sufficiently small. Since

Let us consider the matrix

5Qff (t)M'(t) =Mo 1+ (81)

5Qff (t)
M(t)=(Mo —Ml) 1+

we have

(84)

where the matrix Mo is given by Eq. (2.31). From
Eq. (2.30) the matrix M'(t) is seen to be related to
the matrix M(t) according to

5Qff (t)M'(t) =M (t)+ M, , (82)
Qg

where Ml is the so-called relaxation matrix given by
Eq. (2.32). The main step in the derivation of the
results of the foregoing sections is the substitution
of M'(t) for M(t) in the equation of motion:

d ( %(t)) =M(t) i%(t))=M'(t) i%'(t)) . (83)

5Qff (t)
M'(t) =(Mo —Ml ) 1+— +M', (t),

where the new relaxation matrix

5Qff (t)
Ml (t)=Ml 1+

(85)

(86)

(note that Mo —Ml only dePends on Qz). We see
that the matrices M(t) and M'(t) differ in the relax-
ation matrix. In order to study the relaxation
behavior governed by the matrix M l (t) we calculate
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T exP ~M1 ~ ——exP M1 t t
0 st

M, ~ ~) 5Q~(r)) 5Qg(~z)
M, (t) —M, + f dr, f dr&

0 0 R R st

The matrtx M& (t) can simply be dertved from M& by substituting

I1
I t~l ( 1 — a(t)

(87)

(88)

I z+I L+i 5'(I" +I +i 5') (I +I +i 5~) 1—
I a(t)

where

ta(()=,—f dr, f dr, (6f)x(r, )S()x(r,))„,
A~t

(810)

(811)

(812)

We thus find that when a(t) fulfills the inequality

a(t) «1 (813)

the matrices M~ and M& (t) describe equal relaxation
behavior, and the matrix M, 50~(t)/Q~ in Eq. (82)
can be omitted. Moreover, th. e averaged matrix of
time evolution

as is seen from the expansion of the time-ordered ex-
ponential matrix in Eq. (814). The substitution of
M'(t) for M(t) is thus expected to be a good approx-
imation provided that a(t) is sufficiently small.
Making use of the estimation

t 7

+1 V2 R +1 R +2 st

(6'(())„=(Txxp f drM (r)'
0 st

can be written in the form

( (t)6)„=( TxfxpdrM(r)
0 st

+ g tz"(t)S„(r)
n=1

(814) (816)

where r„ is the correlation time of the amplitude
fluctuations, the inequality (813) can be written in
the form

(817)
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