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Theory of laser-induced chemi-ionization. I. Quantal formulation
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The quantal theory of field-free associative ionization and Penning ionization, due to
O Malley, Bieniek, and others, is generalized to include the closely analogous laser-induced
chemi-ionization processes 2+B+A~~AB++e, 3 -+B++e . The principal limitations
of the theory are its reliance upon the two-state approximation and its neglect of Born-
Oppenheimer terms. Formulas are derived for several scattering cross sections descriptive
of the energy spectra and angular distributions of the reaction products. These cross sec-
tions vary with the direction of polarization of the laser radiation. The polarization depen-
dences of the heavy-particle (A+B+) energy-angle double-differential cross section and of
the associated heavy-particle (or photoelectron) energy distribution assume simple cosine-

squared forms provided that there is a large number of contributing partial waves. Numeri-

cal calculations of these cross sections should be no more difficult to perform than for com-

parable field-free processes.

I. INTRODUCTIGN

We recently constructed a classical path theory of
laser induced -(LI) chemi-ionization processes,
which closely paralleled earlier classical path
theories of free field (FF) -associative ionization and
Penning ionization. Here further connections are es-
tablished between the theories of LI and FF col-
lisional events and, in particular, it is demonstrated
that the quantal formalism appropriate to LI pro-
cesses differs in no essential way from that for com-
parable FF events. However, in place of the elect-
ronic energy operator which plays the central role in
theories of FF chemi-ionization, it is the electric-
dipole-moment operator (and the associated transi-
tion amplitude for photoionization) that dominates
the stage in LI chemi-ionization.

The theory presented here can be extended to
many other situations, including LI nonionizing col-
lisional transitions. However, our present considera-
tions will be limited to photoionization processes
with the schematic representation

A+8 [(A . 8) (A 8)++e —
]

A+8++e, LIPI
AB++e, LIAI

and which are exemplified by the two cases depicted
in Fig. 1. Events corresponding to the two different
final states indicated in (1.1) will be called laser-
induced Penning ionization (LIPI) and laser-induced

associative ionization (LIAI), respectively. Weiner
and his co-workers have conducted crossed-beam
experiments with alkali-metal atoms that involved
laser-induced processes such as these. The laser fre-
quency ro is chosen to lie below the ionization limits
of both A and 8 and is not resonant with any elec-
tronic transitions of these two atoms. However,
when the value of the internuclear separation falls
below a critical value R*(co), photoionization of the
composite, two-atom system can occur. This is il-
lustrated in Fig. 1 by the curves labeled A +8+Ace;

these are plots of Ed(R)+duo, the sum of the adia-
batic (diabatic) electronic energy of the initial AB
state and the energy of a single laser photon. Pho-
toionization is energetically possible at internuclear
separations for which the value of Ed (R ) + fico

exceeds the electronic energy E,(R) of the AB+
molecular ion.

A qualitative grasp of the situation can be extract-
ed from simple energetic considerations. These es-
tablish that the energy of the ejected electron and
the postcollisional heavy-particle motions depend
not only upon the (experimentally controllable) laser
frequency and relative kinetic energy of the colliding
atoms, but on the internuclear separation at which
photoionization occurs. Figures 1(a) and 1(b) are
drawn for fixed values of the first and second of
these three variables. The function e(R) is the ener-

gy of the electron that is ejected when photoioniza-
tion takes place at the separation R &R*(co). Ef(R)
is the corresponding value of the heavy-particle en-

ergy, that is, the sum of the relative kinetic energy
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more concerned with questions of how to formulate
and solve close-coupled equations that involve con-
tinuum electronic states.

We began this study by extending O'Malley's
theory of laser-free dissociative attachment to LIPI
and LIAI, but then shortly thereafter discovered a
more recent paper by Bieniek which dealt
thoroughly and in great detail with the theory of
laser free A-I and PI. Both of these very excellent
papers, especially the second, have aided us im-
mensely in conducting the present investigation. In
recognition of this we have patterned our presenta-
tion after Bieniek's and, whenever feasible, have
adopted his notation.

H, I =T,i+ V
2

n Pi

2' e

Zg Zii e

Zge ZBe

PBi

lf 2+gi)j ij

(2.1)

II. FORMAL THEORY

The theory presented here is specific to a steady
state, crossed-beam experiment in which a single
mode laser is focused on the region where the two
beams intersect. Our analysis of the dynamic events
that occur under these conditions is formulated in
the Schrodinger picture. The radiation field is treat-
ed in the Coulomb gauge with the static interactions
among the charged particles taken as a part V of the
electronic energy operator

The electronic state of the initial AB configuration
is denoted by the ket ~(I5d)= ~p~~). Associated
with this state is the wave function pd(r

~

R). Here
r indicates the aggregate of electronic (position and
spin) coordinates and R=rii —rz is the vector ex-
tending from nucleus A to nucleus B. The electronic
energy of this initial state is given by the expectation
value

Fr(R)== f dr ()r(r
)
R)H„pr(r

)
R) (2A)

of the operator
f2 n

g V;+ V(r, R) .
2me

In the case depicted in Fig. 1(a) (t)d is a variational,
configuration-interaction (CI) wave function ap-
propriate to the initial state of the neutral AB sys-
tem. In the case of Fig. 1(b) it is (for R &R*) the
wave function of a resonance for which a CI ap-
proximation can be constructed by the stabilization
method.

Because H, i and R'~ (the operator associated with
the classical variable R) commute, there is a ket

~ pd, R )) which simultaneously satisfies the two
eigenvalue equations

H.i I 4d R» Ed«)
I A R»

R"
~ yd, R)) =R

~ yd, R)& .

We choose for this ket the normalization

((yd, R~yd, R )) =S(R—R ) .
rB —~W

The Hamiltonian of the combined system of mate-
rial particles (m) and radiation (r) can be written
(in the nuclear center of mass frame) as the sum

Associated with
~
pd, R)) is the wave function

(& r ' R '
I pd R » =« '

I
& r '

~ pd, R & &

=pd(r
~

R)&(R—R'), (2.6)
H=H +H„+H;„, (2.2) aild so

with II =T„+H,i, and where T„=p„/2)M denotes
the relative kinetic energy of the two atomic nuclei
[reduced mass p=mzmii/(mz+mii)]. H;„, is the
energy of interaction between the charged particles
and the laser field; its explicit form is given in the
Appendix. The Hamiltonian of the free radiation
field is

with

ldr(R)) = f dr
~
r)()r(r

~

R)
all d

(2.8)

)
()rR)) = f dr 'dR') r ', R'))(( r ', R') drR))

= )R) f dr) r)Pr(r )R)=) R) )dr(R))
(2.7)

H, =ficoata .
'

(2.3) (2.9)

Here a and a denote creation and annihilation
operators of photons, each with polarization a,
momentum file, and energy fico =itic~. The states of
the pure, single mode laser field are indicated by the
symbols

~

K) with

Here and henceforth we adopt Bieniek's notation,
using a double bra, ((4 ~, or ket, ~%')) to denote
states that include a complete nuclear and electronic
configuration. Single bras, (0' ~, and kets,

~

4'), in-
dicate states that either are nuclear or electronic, but
not both.

Analogous to
~ pd ) =

~ p~~ ) is the electronic ket

14-, &= id~a+ e «e)&



H. P. SAHA, JOHN S. DAHLER, AND SVEND ERIK NIELSEN

associated with an ionized continuum state,
MB++ e . e and e appearing here denote the kinet-
ic energy and direction of motion of the unbound
electron. These electronic continuum states are
orthogonal to

I Pd ). They are so normalized that

(P-, P-, )=p(~) '&(e —~'), (2.10)

(P-,
I
a.~ I P-, ) =(~+E, )p(~) '&(e —e') .

(2. 1 1)

Here p(e) is the density of electronic continuum
states

These involve transitions from the initial electronic
state

I Pd ) to a final state
I P -, ). Depending upon

a variety of conditions (see Fig. 1), these events ei-
ther may or may not involve simultaneous absorp-
tion (or emission) of laser photons. Thus the pro-
cesses of interest are characterized more completely
as transitions between the initial state

6(e —e ')—:5(e —e')5(e —e),
and E, is the (n —1)-electron analog of Ed.

Our objective is to derive cross-section formulas
for the ionizing events

fico

3 +8~38++e —,A +8++e
—.

(a —E, ) Ie&)=0 (2.14)

(Hpp ET)P
I

—+))= HpgQ—
I
4)),

(Hgg E,)QI~&&= HgpPI~&&

(2.15a)

(2.15b)

with Hpp =PHP, Hgg =QHQ, Hpg =PHQ, and
Hgp QHP. ——Associated with these is the corre-
sponding pair of homogeneous equations,

(Hpp ET)P %—p)) =0,
(Hgg —ET)Q

I
+g)) =0,

(2.16a)

(2.16b)

descriptive of the uncoupled dynamics specific to
the ionized and bound electronic states, respectively.
By multiplying (2.16b) with (PdN I

one obtains for

the wave equation

is to be solved for a value of the total energy
Er =E„, equal to E+N~+Ed( co ). Here E
denotes the initial relative kinetic energy of the two
colliding atoms and Neo is the energy of N laser
photons. The energy of the matter system is equal
to Ed(oo) when (i) the electrons occupy the state

I Pd ), and (ii) the two nuclei are infinitely separated
and at rest.

The projections of I%')) upon the P and Q sub-
spaces approximately satisfy the pair of coupled
equations

and one of the final states
( T. + Tdd + I'd —E)

I '4x & =0
with

(2.17)

(2.18)

with N'=0, 1, . . . ,N —I,N, N+1, . . . . (In the cases
that concern us most directly the only accessible fi-
nal states are those with N'=N and N'=N —1.)
Henceforth we neglect the influence upon these tran-
sitions of all other electronic states and, in so doing,
restrict our attention to the space which is
spanned by the basis set I I

PdN );
I P -, N'),

N'=0, 1, . . .,N, N+1, . . . I. The ionizing events are
transitions from the part of this space (a two-state
approximation to the Hilbert space of electronic
states) associated with the projection operator

p= g J dc. '
~
p-, N')p(e ')(p-, N'~. .(2.13)

(2.12)

to that associated with the (approximately) comple-
mentary, orthogonal projection operator

+2&4; IP. I4, & p. ) . (2.19)

The R representative of the nuclear ket
I
+d~) is

the wave function '41/(E, N
I

R)=(R
I ed~). The

symbol E=(E,K) appearing here includes the chan-
nel energy E and a unit vector K which gives the
asymptotic value of the direction of relative motion
of the A and B fragments. +d(E,N

I
R) satisfies the

wave equation

[TR +Tgg (R)+ Vd(R) —Ej%'g(E,N
I
R)=0,

(2.20)

and where Tdd is a diagonal element of the matrix
of Born-Oppenheimer coupling terms,

«C; p'. Ic, &

2p

These operators satisfy the conditions P =P,
Q =Q, PQ=QP=0, and P+Q= l.

The time-independent Schrodinger equation

wherein

(2.21a)
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Vd(R) =Ed(R) Ed(—oo ),

Ed(R)=(R
l (pd lH, i l pd) l

R)

r d r i d I R

(2.21b)

(2.21c)

(2.21d)

ionization), solutions of the wave equation (2.23) ex-
ist only for the discrete energy eigenvalues, E'=E„,
of the AB + square-integrable eigenfunctions
%p (E„,N'

l R);

(+p (E„N )
l
+p (E ' N ) ) =6EE'~I.L'~MM' .

Here n', L', and M' are the conventional vibrational
and rotational angular momentum quantum num-
bers that characterize these states.

The collection of functions I + p(E ',N'
l
R);

4P (E„,N'
l
R)I is a complete set for the nuclear

motions associated with the ionized AB++e elect-
ronic state. The density of these states is p(E'); for
E'~0,

Analogously, we find from (2.16a) that the nuclear
ket

satisfies the equation

(T„+T-, -, ~ + V, E')
l

)Ijp—(E',N')) =0 (2.22)

with V, =E, E, ( 00 ). Th—e R representative of this
ket is the wave function )IIp(E ', N'

l
R), with

E'=(E',K') and

E'=E —e+(N N')%co ——[E,( oo ) Ed( oo )] .—

It is a solution of the wave equation

[T~ +T-, , -, , (R)+ V, (R) E']Vp(E'—,N'
l
R) =0 .

(2.23)

When E is positive valued (Penning ionization), the
nuclear motion governed by this equation is un-
bounded. However, when E' is negative (associative

I

T=«ep lIHg
l

-e+
&) (2.24)

for transitions to ionized final states. The super-
scripts (+ ) and ( —) in (2.24) refer to states which
conform to the conventionally defined "out" and
"in" boundary conditions of scattering theory. Thus

l

%'+ )) and
l
%p )) are solutions of (2.14) and

(2.16a) whose asymptotic forms include outgoing
and incoming scattered waves, respectively.

We shall be concerned primarily with ionizing
collisional events which require absorption of a sin-
gle photon. The T matrix for events of this sort is
given by the formula

(E') =(4m. ) '5(E —E„).

Throughout the remainder of this section we shall
use the single symbol %p (or +P) to denote one of
these AB+ states, regardless of whether it is descrip-
tive of bounded or unbounded nuclear motions.

The cross sections which we wish to compute are
directly related to the T matrix

(2.25)

where

T(E', E) E)= f BRYAN (E',N —(
)

R)"(T,N —(
)

R N )Xg (E N
)
R) (2.26)

is the T matrix for production of an ionized electron in the state e =(e,e) together with a heavy-particle state
characterized by E ' = (E',K '). The quantity

N 1
l
R N) =(&P N 1 R l~

I
ya»R&&

= ((p:, ,R l (N 1
l H~„,

l

N ) l Qd—,R)) (2.27)

that occurs in (2.26) is the photoionization transition amplitude specific to the internuclear separation R.
Xd+(E,N

l
R)—:((PdN, R

l
4+)) and %p (E',N 1

l
R)—:((P:,N —1,R

l
%p )) are n—uclear wave functions, the

latter of which is a solution of (2.23).
What now must be derived is the wave equation satisfied by

Xd+(E,N
l
R)=(R

l
Xd+ ) .
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To accomplish this we write the "out" solution of (2.15b) in the form

Q ~

~+&&=Q
~
~,+&&+G,+QHP

~

~+&&

with G& ——[Q(ET~io —H)Q] ', and the corre-
sponding solution of (2.15a) as

p
~

e+
&& =Gp+paQ

~

e+
&& .

These are then combined to yield the formula

Q
~

e+
&& =(1 G~+Q—HPG~+PHQ) 'Q

~

-e~+
&&

I

transform (2.28) into the expression

~

X+
& =(1 g+—F+) '

~

e+ &,

y~N I Gg I gd N & and
F+—:& PdN

~

HPGp+Pa
~
PdN &. Finally, this in turn

can be rewritten as the wave equation

(2.28)

for Q ~

0'+ &&. Next, by using the definition of Q, we

( Tn+ Tdd + I d +F+—E)
I
&~~ & =0

the R representation of which is

(2.29)

[Tg + +dd & &&+&+d&&& & EPd &E &&
l

&&&= —J d&'&&& lF+
l

&&'A'g+&E»
l

R'& (2.30)

The nonlocal interaction & R
~

F+
~

R & couples the incident, AB channel to those associated with the ionized,
AB +e electronic configuration. By substituting the projection operator definitions, (2.12) and (2.13), into
the formula

F+ = &y,N ~

apG+ pa
~ y,N &

we obtain the expression

F+= X f «'«"'&W~&&'I~ IW'-, &'&p&~'&&&-, ~'I &~T+'&&

)&p(e ")&y+„N"
~

H
~
ydN &, (2.31)

wherein

& y,N
~

a
~ y-, ,N'

&
=5~~ Td-, , ~ & y,N

~
a;„,

~ y, ,N'
& . (2.32)

To this point the analysis has been essentially exact. However, in order to obtain relatively simple, computa-
tionally tractable results we now shall introduce a number of approximations. The first of these is to neglect
Born-Oppenkeimer (BO) terms whenever they occur, namely, the diagonal elements appearing on the left-hand
sides of the wave equations (2.20), (2.23), and (2.30) and the (electronic) off-diagonal contributions to the ma-
trix elements of H that appear in the formula (2.31) for F+. In each case the argument in support of this ap-
proximation is that the terms retained are expected to produce significantly greater contributions to the transi-
tion rate under consideration than do the BO terms which are being discarded. To this approximation the R
representative of the coupling operator F+ becomes

Xf «'« "»&~='»&~ "&&~+'»'~lk»&'&~+", ~" I&i'»&
N', X"

X«y+-, „R( &N ~(Z, ~iO —H)-'~N"& ~y+~„,R &&. (2.33)

O«second approximation is to neglect both the BO and H;„, contributions to the P-space propagator occur-
ring in this expression, viz. ,

&N'~(F-r+iO a) '~N" &=5„—-(F.,~iO T„H„NV—)— —

The consequence « t»»s that «p-, ,R (
&N'

~
(ET+io H) '

~

N"
& [ &t +-, „,R—'&& reduces to the product of

5~ ~-5( e ' —e ")p( e ') ' with the factor
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(R
~

[E+Nfico+E~( m )+iO—T„—V, —e' —NKVD@]
'

~

R')
E' E" R p E', ' E'

x&e~+(Z', N )
~
tE —&'~(N —N')~ —[E,( ) —E,( )]—Z'„—V, ~&0I '~+p+g, ",N')&

xp(I")('Il+(I",N')
~

R')
E' E' p+E', ' R' p+E', ' R E—e' — ' —,ac —Eg 00 — ' i

Here it is to be understood that the set I %~+(E',N'
~

R) I includes the discrete AB+ molecular ion eigenfunc-
tions of Eq. (2.23) as well as the continuum, 3+8 scattering states. From this result we obtain in place of
(2.23) the approximation

&"
I

~'
I

~ '& = 2 f «'~«'&& ~ +'»'
I

k&)'& ~+',&'
I

&',»
X 9' I dE'p E&')%p+ E&', N'

~

R')'%p+&E', N'~ R)

X I E e'~(—N N')M— [E,( ~ ) —E~( ~ )]——E'I -'

—im K' E0 %p+ Eo, ' R' *%'p+ ED, (2.34)

where ED ——(ED,K ') and E0 E—e'+——(N —N')fico —[E,( oo ) E~( oo )]. T—he operator H extracts the principal
part of the integral upon which it acts.

One could proceed, without further approximation, using this simplified form of the nonlocal coupling be-
tween the initial- and final-state channels. However, we ultimately are interested in establishing connections
between the quantal and classical path theories of LI chemi-ionization processes, the latter of which is limited
intrinsically to the localized description of autoionizing and photoabsorptive events. Furthermore, there is an
abundance of evidence that supports the accuracy of the local approximation, especially for photoexcitation
and photoionization.

The procedure for constructing this approximation has been given by Bardsley and later elaborated upon by
Bieniek. We illustrate it here by considering the contribution (R

~

F+
~

R')z which arises from the second
term in the large parentheses, ( ), of (2.34). The first step is to replace the variable of integration e with E0 so
that

(2.35a)

dK'de'(. )= dK'de'de'( )= dK'dEade '(. )= de'dEQ( . ) .

Next comes the crucial assumption that the function p( e ') ( e +',N'
~
R,N )*(e +',N'

~

R ',N ) varies so slowly
with e' that its dependence on Ea can be ignored. Then, because the collection of functions 4+(pE', N'

~

R)
forms a complete set for the nuclear motions, it follows that

«I++ I&'&&= —~~&'« —&'~X f ~~'&s&~'~l &~' &'lk» I'&-.

Finally, for the average I I,„we use the value of the function evaluated with e' set equal to
e(R) =(N N')fico —[E,(R) E~—(R)] which, acco—rding to the Franck-Condon principle, is the same as

E E'~(N N')A—co —[(E,( —oo ) Eg( oo )] . —
The implication attendant to this last approximation is that the angular momentum associated with the motion
of the heavy particles is unaffected by the occurrence of photoionization (and/or autoionization).

Using this same approximation we replace E' with E e(R ) + (N —N—')fun —[E,( oo ) E~ ( oo )] in the-
denominator factor of the first term in (2.34) and so obtain

(R)~+ [R'),=S(R—R')a+ d~'p(~') ~
('

e(R) —e'

The function

l ~, I( ',N'URN)
2m. ~, e(R ) —e' (2.351)
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((e',N'(RN)—=2e J d ep(e ')
)
(e+ ,N'') RN)

)
(2.36)

appearing here is the width of the state
~ Pd ), associated with an ionizing electronic transition which is accom-

panied by the change N~ N in the number of laser photons. For the case depicted in Fig. 1(a) this is the pho-
toionization width of the AB electronic configuration. We shall see in the following section that this width de-
pends on the angle cos '(a R ) between the internuclear axis and the photon polarization. In the case illustrat-
ed by Fig. 1(b) there are two contributing widths, one for photoionization and another for laser-free autoioniza-
tion. The latter of these is independent of the orientation of the internuclear axis.

Combination of (2.3S) and (2.36) produces the formula

(R) F+(R') =5(R—R')g de f de' '
', ——F(e(R) N') R N)

e(&)—~' (2.37)

[Ta + Vd(R, co) E]Xd+(E—,N i
R)=0 . (2.38)

Here Vd(R, co ) denotes the complex valued potential
function

Vg(R, co)= V~(R) ——,iI (R, co), (2.39)

for the local approximation to the channel coupling
operator. And finally, if it is assumed as before that
the function p(e ')

~
( c +',N'

~
R,N )

~
in (2.36) has

only a very weak dependence on the energy e' of the
ejected electron, the level shift [first term in (2.37)]
then vanishes and the wave equation (2.30) reduces
to

t

and

I (R, co) = g I (e(R),N'
i
R,N)

N'
(2.40)

with co =(co,a), is the total width of the initial
electronic state.

The objective of this section has now been
achieved. Thus the task of computing the T matrix
of Eq. (2.26) has been reduced to that of evaluating
the electronic matrix elements Ed,E, and
( e ', N'

~
R,N ) and constructing scattering solutions

of the two wave equations (2.23) and (2.38).

III. PHOTOIONIZATION TRANSITION AMPLITUDE

The quantity upon which the theory of the preceding section depends most crucially is the photoionization
transition amplitude [cf. (2.27)]

(e,N —( (R N) = f drd:, (r
)

R)"((rR( (N () H;„,
)
N)

( rR))de(r—(R) . 3

It is shown in the Appendix that

(3.3)

W (e,r;
~

R) —a(p)rz'sin[krz+k 'in(2krz) —, Am+o"]—.

((r,R [ (N —1
~
H;„t

~

N) ) r, R))=i(2mIRco/c)'~2a d, (3.2)

where d —= —g,.e r; denotes the contribution from the electrons to the electronic-dipole-moment operator and
I is the incident flux of laser photons. This flux is given by I=c(N/0) with c the velocity of light and 0 the
volume of the region to which the radiation field is confined.

The object pd(r
~
R) appearing in (3.1) is the BO approximation to the wave function for the initial AB elect-

ronic state. This BO state is an eigenfunction, with eigenvalue A;, of the operator I.z ——R g,". r; X p; for the
component of electronic orbital angular momentum parallel to the internuclear axis. P =, is the corresponding
BO wave function for the ionized, AB++e electronic state. It is conventional ' ' to use for this an n
electron CI wave function with Slater determinants composed of n —1 bound molecular orbitals, taken from
the same set used to construct the CI approximation to Pd(r

~
R), plus a single continuum orbital with the

partial-wave representation

P
—( e, r;

~

R)= g Y~&(e)z Y~& (r; )zi e+ 'W~(e,—r;
~
R ) .

A,p

The subscripts R of the angular variables indicate the direction of the polar axis to which the spherical har-
monics are referred. The absence of such a subscript implies reference to the (nonrotating) center-of-mass
frame. The radial function ~ (e, r;

I
&) behaves asymptotically as a Coulomb wave function centered on nu-

cleus 8, i.e.,
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(3.5)

Af+P =m+4;
or )cc =)Mo+ m. Thus (3.4) becomes

with r;z ——
~
r; —Rz

~

and k =(2m, e/A' )' and where cr" is the Coulomb phase shift.
As a consequence of (3.2) and (3.3) the photoionization amplitude can be written as the sum of terms

(e,N 1—
~

R,N) =i(2mIAco/c)' gi e' Y~„(e)z(g,i„„~a d
~ Pd) (3.4)

A,p

with P,~&( r
~

R) denoting a CI wave function constructed from n —1 bound orbitals and Yi,&(rc)z& (e, r;
~

R ).
The state described by this function consists of an ejected electron with the projection quantum number )M and
an (n —1)-electron "core" with an angular momentum projection quantum number Af equal to that of the
product AB+ diatomic ion. The nuclear motion in this final state may, of course, be either bounded or un-
bounded. The photoionization amplitude of (3.4) is defined for states with prescribed values of A;(AB) and
Af(AB ) and so is specific to a transition for which po=A; —Af has some definite numerical value.

The matrix elements appearing in (3.4) may be written more explicitly as

(0 i,i la did'a)= g (4ir/3)' 'Yi (a)ii(4' ~) ld
m=0, +1

where the quantities d~ =e~ d are the spherical components [eo ——R, e+ 2——'~ (X+iY)] of the operator d,
referred to the rotating frame of reference with the orthonormal Cartesian basis (X, Y,Z=R). The selection
rule for the matrix element (P,i,& ~

d~
~

(t)d ) is

( &,N 1~ R,N)—=(4ir/3)' g Yg „,+ (e)„"Yi (a)~ V,g „+ (R,co)
A,m

with

(3.6)

V,g„,+ (,co)=i(2ir Picnic)' i e' (P,i „+~ ~

d Pd) . (3.7)

The angular arguments of the spherical harmonics occurring in (3.6) are referred to a coordinate frame
whose polar axis coincides with the direction of the internuclear axis. This expression for (e,N 1~ R,N)—
can be rewritten in the form

(e,N 1~ R,N) =—(4m. /3)'~ g g Ygp (e)Yi~ (a)Wp. p +~(R)&~' ~(R)( —1) V,gp +~(R,co),

(3.8)

where the angular arguments of the spherical har-
monics now are referred to the center-of-mass
frame. The functions

(R ) =—W'J' ($,0,0)

are representation coefficients of the three-
dimensional rotation group, as defined by Messiah. '

Their arguments 8 and P are the polar spherical
coordinates of the unit vector R, measured in the
center-of-mass frame. These representation coeffi-
cients are related in the manner

(R)=r'1' (8)exp( —imP)

to functions r J~ ~ (8) which are proportional to Jaco-
bi polynomials.

Corresponding to (3.1), (3.6), and (3.8), respective-
ly, are the three expressions

V,„„(R)=i e' (P, „~H„~P ) (3.10)

is a matrix element of the electronic energy operator
The significant difference between the formu-

las for the photoionization and autoionization am-
plitudes is due, of course, to the different tensor
ranks of the associated vector and scalar operators d
and II,i, respectively. Dipole absorption of a laser

( fN(RX) = f, dr (), (F(R)"H&P&(r
(
R),

= g Yg„, (e)~ V,g„,(R),

Yg„(e )W„'„' (R ) V, i,„,(R )

p

(3.9)

for the transition amplitude for laser-free autoioni-
zation. Here
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photon may leave unaltered the projection quantum
number of the total electronic orbital angular
momentum or it may change it by one. Only the
first of these is possible in laser-free autoionization.

The expressions (3.6) and (3.9) lead from the defi-
I

nition (2.36) to the two formulas

I (e,N
(
R,N)=2m p(e)g (

V,~„(R)
(

and

(3.11)

r(e, N —1)R,N)=2~p(e)g [(4~/3)'"&, (&)„-~'g
~

V,g„,~ (&,~) [' (3.12)

for the widths specific to autoionization and photoionization, respectively. The second of these can be written
in the alternative form

r(e, N —1~ R,N)= —,'(r, ~r, )~ —,'(2r, —r, —r, )(a.Z)'

with

=2 p(e)X I V„„+

(3.13)

=Pi[4m'p(e)Mesa]g
( (P,g „, (

(d /e)
( P~) [

', (3.14)

and where a =e /Ac is the fine-structure constant.
It is readily verified that A' I (e,N —1

~

R,N) equals the absorption rate of polarized (a ) photons by an AB
"molecule" with fixed internuclear separation and orientation; A' 'I (e,co

~

R ) is the rate of absorption by the
e component of the electric dipole moment, a process which changes by mh' the component of total electronic
orbital angular momentum along the internuclear axis. Finally, the orientation average of the absorption rate
given by (3.13) is

'I'(eN ((R N)—= (4 ) 'f d—R )( '('(E)(' —( (kV)= —,g)( '(' (e, (R)

4m.
p(&)~~~X g I &4.~,„,+m I

(~~ /e )
I k~ & I

' . (3.15)

In the particular case considered here these photoab-
sorption rates are, of course, rates of photoionization
as well.

IV. CROSS SECTIONS

The analysis now will be carried a step further by
resolving the solutions of the various wave equations
into partial waves and thereby replacing them with
ordinary differential equations for the radial com-
ponents of the channel amplitudes. The relevant
differential and integral cross sections then will be
expressed in terms of the solutions of these equa-
tions.

Because the imaginary part of the complex poten-
tial V~(R, co) is noncentral, the radial wave func-
tions associated with the partial-wave expansion of
X~+(E,N

~

R) depend not only upon the orbital angu-
lar momentum numbers L, but on the corresponding
projection quantum numbers M as well. Further-
more, I (e,N —1

~
R,N) given by (3.12) couples each

partial wave to four others; thus the L wave is cou-
pled to those with the orbital angular momentum

quantum numbers L+1 and L+2. There is, of
course, nothing to prevent us from conducting a
partial-wave analysis of X~+ which would incorpo-
rate these effects of the noncentral complex poten-
tial. However, the inclusion of these effects pro-
duces cross-section formulas which are quite com-
plex and, in our opinion, unnecessarily so. Indeed, if
it were our intention to determine only the lowest-
order (first) dependence of the cross sections on the
laser intensity, we could completely neglect the
orientation (and laser intensity) dependent photoion-
ization contribution to r(R, co). The somewhat less
restrictive approximation that we actually shall
adopt is to replace I (R,co) with its angle average
I (R,co), i.e., the factor (a.R ) in (3.12a) is replaced
with

(4n) ' J dk(d R)'

To this approximation V~(R, co ) becomes

Vg(R, co )—:Vg(R) ——,il (R,co )

and the partial-wave expansion of the initial (i) state
wave function can be written in the conventional
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6IIII
~-L

xd (E N
I
R) g YI.M(Ki )YLM(R )i e'"'

L,M

XR 'F, (E,N IR) . (4.1)

The bars over the phase shift r7; and the radial am-
plitude F; indicate that these functions are complex
valued. We adopt for Xd+ the energy delta-function

I

noi nlalization

&xd+(E,N) Ixd (E',N)) =s(E—E')

=5(E E'—)5(K; —K ) .

The radial wave functions F; are the solutions of
the ordinary differential equations [gotten from
(2.38) and (4.1)]

2 2 2L
+ V (R) —, &'1 (R—,co) EF; (E—,N

I
R)=0,

2p dR2 2pR2

which behave regularly at the origin and have the asymptotic forms

F; (E,N
I
R) —(2p, /m. A K;)' sin(K;R —, mL+2T; —) .

(4.2)

(4.3)

Here K; =(2pE/fi )'i is the magnitude of the propagation vector K; =K;K; associated with the initial relative
motion of the two colliding atoms.

A. Laser-induced Penning ionization

The wave functions %z for unbound (E' )0) final (f) states of the AB+ molecular ion can be written in the
I III

% p(E ',N'
I
R) = y Yl*'M'(Kf )YI 'M'(R )i e R Ff (E',N'

I
R )

L'M'
(4.4)

I

These functions are normalized to energy delta functions. The channel amplitudes Ff are real valued func-
tions which satisfy the differential equations [from (2.23) to (4.4))

+ 2 + V (R) E' Ff (E', N—'I R)=0
2p dR 2pR

are regular at the origin, and have the asymptotic forms

Ff (E',N'
I

R ) —(2p/n A Kf )
' sin(Kf R —, mL '+ 2if )—

(4.5)

(4.6)

wherein Kf (2pE'/I )'——
By substituting (3.8), (4.1), and (4.4) into the defining formula (2.26) we obtain for T(E,e

I
E) the expression

T(E,e
I
E)= g g YLM(K;)YL, M (Kf )Y2,„'(e)Yi (&)[4'ir(2L+1)(2L'+1)/3]

LM A,

with

L'M' p, 'm'

X ( —1) i e '
Tz ~ (E'L 'M', ELM, eA, ;co)

Tz ~ (E'L'M', ELM eA, ;co ) = gA~(LL'A l
I

MM'p'm')T(E'L', EL,ef(m;co),

(4.7)

(4.8)

and where

T(E'L', EL,elm;co)=( —1) (Ff (E',N —1 I R)
I V,g„,+~(R,co)

I

F(i(E,N I R))

(1 X ~i(1
(LL gl IMM p m')= g(2J'+1) m' p' —0 —m po+m —po

(4.9)
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The polar axis of the center-of-mass frame will now be chosen to coincide with the initial direction of the rela-
tive 3 Bm-otion, that is,

K;=(0;,P;)=(0,0) .

This reduces (4.7) to the form

T(E' & IE)= 2 2 YL'~(Kf) Y~p'(e) Ylm'(+)[(2L +1)/3]'"
L'M' Ap'm'

i{q +g )—
X( —1) g(2L+1)i e ' f T& (E'L'M', ELO, eA;co), ,

L
(4. 1 1)

where it is here and henceforth to be understood that the angular coordinates of Kf, e, and cc are measured
from the initial direction of the relative nuclear motion K;.

The generalized differential cross section
4 8' 277 3 277

dededE'dKf f dedE' (
T(E', &

(
E) ('&(E;—Ef)p(E)p(E')p(e)

is the product of g;, the statistical weight of the initial state, and the i ~f transition rate d 8'/d e dE ', divided
by the incident fiux,

f:(Xd+(E—,N (
oo ) ( (fIK;/p)p(E) '=[K; /(2ir) fip(E)) .

The energies of the initial and final states are

E; =E+Nfico+Ed(oo )

aIld

Ef E'+e+(N———1)&o+E,( ~ ),
respectively. From this general expression we immediately obtain the two triple-differential cross sections

aIlcl

3 4",
( T(E...-(E) ('p(E)p(E. )p(.-),

de dt dKf"
3 2~ 4

(E,E') =g;, ( T(E ', &p
(
E) ( 'p(E)p(E ')p( eo)

dEdE dKf 'Kg

(4.13a)

(4.13b)

with Eo E —e + fico ———[E,( oo ) Ed ( oo )] and—eo E E'+ fico———[E,( co—) Ed ( ao ) ]. For co—nvenience, we now
select

p(E) =p(E') =p(e) =1 .

To the best of our knowledge, the angular coincidence measurements for which the cross sections (4.13) are
descriptive have not yet been made. More closely related to current experimental studies are the two angle-
energy double-differential cross sections

d'o (2ir )'
(Ee)=g; 2 g (2L'+1) g YI„(e)Yi (a )

I I

aIld

2--I.
X g(2L+1)i e '

T&m (EoL M ~EL 0 eA co)
L

d cr (2ir)4
(E,e) =gI 2 g g YL I (Kf ) YIm (cx)(2L'+1)p $/2

de dKf 3Kl I,p' L'M' m'

2

X ( —1) g (2L + 1)I e ' f T~ (EOL'M', EL O, ei,;co)
L

(4.14)

(4.15)
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gotten by integrating (4.13a). Both of these have as their integrals the electron energy differential cross section

4 -L
(E,e)=gi 2 g (2L'+l)g g YI~ (a)g(2L+1)i e ' T~~ (EpL'M', ELQ, eA, ;pI)

L 'M' A.p' ' L
(4.16)

The three analogous cross-section forinulas that can be obtained from (4.13b) are trivially related to those given
by equations (4.14), (4.15), and (4.16). Thus as a consequence of energy conservation, the only differences be-
tween the formulas for d o/dE'de, d oldE'dKf, and do/dE' and their respective analogs d o/dade,
d cr/de dKf, and der/de is that in each case T& (E'L'M', EL O, epk, 'co) appears in place of
Tq (EpL'M', EL 0,ei, ;pI ).

The cross-section for-IIIulas (4.13)—(4.16) are the results we have been seeking. However, they are somewhat
too complex to be readily interpreted. To aid in this interpretation we introduce the approximation

.-L
Le ' T(E'L', EL,elm;co) =i e ' T(E'L', EL', elm;co), (4.17)

which should be of little numerical consequence provided that a large number of partial waves contribute to
the cross sections. Equation (4.17) is virtually identical to one of the approximations that Hickman and
Morgner" used to reduce a general forxiIula for the cross section for /aser free Pe-nning ionization to Miller's
much simpler expression. This approximation is particularly valid provided that T is appreciable only for
small values of A, , as usually will be the case.

The approximation to the T matrix that results from substituting (4.17) into (4.11) is

T(E', e
~

E)= g g YLp(Kf)Y~ ~ (e)YI~ (a)[(2L'+1)/3]'~ e ' f T (E'L', EL', eA, ;co) (4.18)
L' Am'

with

T (E'L', EL', eA, ;co)= gA (A,
~

m')T(E'L', EL', ek,m;co), (4.19)

and where

(4.20)

(4.14')

In the special case of (up ——0, A (A, ,m') =5, and T (E'L', EL', eA, ;co) =T(E'L', EL', eA, m', co). The—cor-
responding approximations to the cross-section formulas (4.14), (4.15), and (4.16) are

d o (2m. )(E,e)=g; 2 g(2L'+1)e ' g YI„~ (e)YI~ (a)T~ (EpL', EL', eA, ;co)
—2Im Fj;

d 6' d6' 3Ki A,m'

2 2m. 4

(E,e)=g; 2 g ~
YI (a)

~ g g YLp(Kf)(2L'+1)'~ e ' f T (EpL', EL', eA;, pI)
dEdKf 3Ki 'm '

i(, L'

= [BI'(Of )+B '
(IOf)] +[2B 'p( Of)

—BI (Of ) —B '1(8f )]cos 8~, (4.15')

and

4 —2Im-L'
(E,&)=g; 2 g ~

YI~ (a)
~

g(2L'+l)e ' g ~
T~ (EpL' EL' eA;co) ~2

3K,' L'

wherein

=(B +B 'I)+(2Bp' —B ' B' )cos8— (4.16')

2

By)'(Of
~

E e ) =gi 2 g g (2L '+ 1 )PL (cosOf )e ' "f T~ (EpL', EL ', eA, ;co )
AC)

(4.21a)



H. P. SAHA, JOHN S. DAHLER, AND SVEND ERIK NIELSEN

8 (E,E)= J dKfB tgf
~

E,e)

2 3 —2S
-~'

=gg- 2 g(2L'+1)e ' g ~

T (EDL',EL', eA, ;co)
~

z .
Kg A,

(4.21b)

The variables 8 and Of appearing in these formulas are the angles between the initial direction of relative
motion, K;, and the unit vectors a and X, , respectively.

B. Laser-induced associative ionization

In the case of associative ionization (E' & 0) the final state of the AB+ molecular ion can be labeled with the
three quantum numbers n' (vibrational), L', and M' and represented by the square-integrable wave function (cf.
Sec. II)

ep (E„,N'
~

R) = Yr M (8 )R 'Ff (E„,N'
~

R) .

Here Ff is the eigenfunction associated with the ordinary differential equation

(4.22)

2 2 2LI Lt
— + V, (R)—E„F (E„,N'

i
R) =0 . (4.23)

Corresponding to (4.11) is the formula
~ -L

T(E„,e
~

E)= g Yg„(e)Y)~ (cz)[(2L'+1)/3]'~ ( —1) g (2L +1)i e ' T„(E„L'M',EL 0, eA, ;m)
A,p'm' L

(4.24)

with T„»(E„L'M',ELM, e A,;co ) related to

T(E„L',EL,el,m;r0):=( —1) (Ff (E„,N —1) R)
~

V,g„+~(R,co)
~
Fg (E,N ) R)). (4.25)

by Eq. (4.8). T(E„,e
~

E) given by (4.24) is the T matrix specific to a laser-induced associative ionization
event which deposits the molecular ion in the state labeled n'L'M'. The energy of the electron p.":.oduced by
this event is

gt I

e~, =e(E,E„,co ) =E E„+%co——[E,( m)—) Ed( a& )] . —
Analogous to d o./de de of (4.14) is the angular differential cross section

(4.26)

Q 4 ~ -L 2
(E)=g; 2

(2L'+1) g Y~„(e)Y~ (a) g (2L+1)i e '
Tz ~ (E„L'M',ELO, eA&A, ;co)

dE 3'; A,p'm' L

for the electrons ejected in transitions to a particular vibronic state of the product diatomic ion. The corre-
sponding analog to do /de of (4.16) is the integral cross section

2

o'„r M(E)=g; 2
(2L'+1)g g Y& (a) g(2L+1)i e '

T& (E„L'M',ELO, eA&A, ;co)
(2m )

3K; Ap' m'
(4.28)

The approximation (4.17) reduces the T matrix of (4.24) to
~ —L'

T(E„,c
~
E)=5~0/ Yg m (E)Y$~ (a)[(2L'11)/3]' i e ' T (E„L',EL', eA, ;co)

A,m'
(4.29)

with T (E„L',EL', eA, ;co) defined analogously to T (E'L', EL,FA, ;co) of (4.19). The counterparts to the
cross-section formulas (4.27) and (4.28) are
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d~n'L'M' (2W), —2I«««g, . p p(E)=5M p g& 2 (2L + 1 )e g Yg «««(6 ) Y~«««(cx )Tm (E+ L «EL «p~tA, «rp)
de 3K; A.Nl

(4.30)

and

, (2L'+1)e ""' & ~
Y, (a) ~'g ~r (E„'.L',EL', ~~@.;~) ~'

3K). I
A,

=&~pf(&i +& i)+(2&p —&~' —& '~)cos'& ],

respectively. And finally, the coefficients

B ~ (E)=g; z (2L'+1)e'K
)& g ~

T (E„L',EL', eAtA, ;co)
~

A,

(4.32)

appearing in (4.31) are the AI analogs to the PI
functions defined by (4.21b).

It is not our intention to deal here with the com-
putational aspects of this theory. Nevertheless, it is
worth noting that these appear to be no more diffi-
cult nor, indeed, even much different from those en-
countered in the comparable theory of FF chemi-
ionization. The latter already have been treated in
considerable detail by Hickman and Morgner" and,
even more thoroughly, by Bieniek. The sole—but
not insignificant difference between the two is that
one involves amplitudes for FF autoionization while
the other requires a computation of the photoioniza-
tion transition amplitudes, as functions of internu-
clear separation and laser polarization.

It is natural to attempt to simplify the task of
solving the wave equations (2.38) and/or (4.2) by
neglecting the imaginary part of the complex poten-
tial which determines the initial-state wave function
Xd+ and the associated set of complex valued chan-
nel amplitudes F; . The solutions of the resulting
equations are real valued functions F~~. One obvious
and possibly significant consequence of this approxi-
mation is that it sets equal to unity all of the "sur-
vival factors" exp( —2lmr7; ). A clever way of
correcting for this deficiency has been proposed by
Bieniek, who constructed Born-type estimates of
the functions Imp; from the approximate channel
amplitude I'~. He then showed (for one special sys-
tem) that the cross sections obtained from this ap-
proximate theory differed by only a few percent
from those gotten by computing the complex valued
amplitudes F; .

V. CLOSING REMARKS

The photon polarization dependence of the cross-
section formulas derived in the preceding section is
a direct consequence of the familiar polarization
dependence of the photoabsorption (photoionization)
amplitude characteristic of electric dipole transi-
tions. The cross-section dependence is on the orien-
tation of the polarization vector a, relative to a
center-of-mass frame whose polar axis is parallel to
K;, the initial direction of relative motion of the col-
liding AB pair. The direction of this experimentally
controllable vector is essentially coincident with that
of the internuclear axis and so the theoretical predic-
tion is completely in accordance with what one
would expect intuitively. This dependence is not at
all unique to the LI chemi-ionization processes stud-
ied here. To the contrary, it is a behavior common
to all laser modified processes involving collisions
between atomic or ionic species. And indeed, simi-
lar but more subtle effects are to be expected in laser
modified molecular collisions as well, especially
those involving oriented molecules.

This polarization dependence of the cross sections
was not evident in our recent classical path theory'
because we inadvertently ignored the dependence of
the photoionization and photoexcitation rates on the
relative orientation of the internuclear axis and the
photon polarization. However, now that this depen-
dence has been recognized it easily can be incor-
porated into the classical path theory.

The semiclassical limit of the theory presented
here already has been constructed and will be
presented in subsequent communications. Explora-
tory numerical studies based on this and on the cor-
responding classical path theories are in progress.
Finally, a number of extensions of the theory are be-
ing developed.
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APPENDIX

28

The interaction between the charged particles and the electromagnetic field is given by the expression'
2 2

p; A(r )+ A(r ) A(r ) + g p .A(r )+ A(r ) A( )
fPl~c 2m c g g M~c

(A 1)

Here, r; and p; (r and p ) denote the position and momentum operators of electron i (nucleus a) whose
mass and charge are m, and —e(M and Z e), respectively. A(r) is the vector potential of the transverse (div
A=O) field. This potential is related by the formula'

' 1/2

A( )= (A2)
Qco

K,P

to the creation and annihilation operators a-„„and
a -„„ for photons with momenta %Pc, energy
fico =Puce, and polarization a& (LM= 1,2). The sums
over tt = ic/tc and p contract to a single term for the
plane polarized, single mode laser to which our
theory applies.

Since we only shall be concerned with electric di-
pole transitions, the factors of exp(+i tt r ) can be re-
placed with unity. Furthermore, we ignore the
terms of H;„, which depend quadratically on A be-
cause they are descriptive of two-photon events. Fi-
nally, the first term on the second line of (Al) will
be neglected because the nuclear velocities p /Ma
invariably are much smaller than the electron veloci-
ties p;/m, . The consequence of these restrictions
and approximations is to replace H;„, given by Eq.
(A 1) with the far simpler expression

1/2

g p; a„(a-„„+a-„„).
meC

ments of H;„, are

m, c

' 1/2
2trftNc

Qco

(A4)

=im, co(Pf (
r;

~ P, &,

where co =A (Ef E; ). Combinin—g this with (A4)
we obtain the desired result

The electronic matrix elements appearing in this ex-
pression can be rewritten in more conventional
forms by invoking the operator identities

p; = ( —2ih') '[p;, r;]= ( —2iA') '2m, [H,i, r;] .

Thus

&4f I p 14'&=i &4f I [H.i r ] IP &

(A3)

From this and the properties of the creation and an-
nihilation operators it follows that the relevant
electronic-photon (

~
PN & =

~ P &
~

N & ) matrix with d—:—g,.er;.

1/2

(A5)
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