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Radiative collision-induced electron continuum-continuum scattering
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The photoionization of an atom is examined in the presence of a foreign atom. We find
that a two-photon radiative collision process induces large cross sections for electron
continuum-continuum scattering. The enhancement is caused by an intensity-induced col-
lisional shift which, when used to cancel out the collisional dephasing between the initial
and final scattering states at wide range of internuclear separations, enhances the electron
continuum-continuum scattering process.

Recently, two-photon laser-induced radiative col-
lisions have been observed. ' During the radiative
collision between Ba and Tl ground-state atoms, two
photons are absorbed which are not in resonance
with any of the transitions in the atoms and which
result in the simultaneous excitation of both atoms.
We recently analyzed the theoretical aspect of this
process using a semiclassical approach. We treat-
ed the two-photon —one-collision and two-
photon —two-collision cases, and found in the latter
case a new intensity-induced collisional phase shift.
This shift is used to control the overall phase be-
tween the initial and final scattering states. When
the phase difference goes through zero (phase reso-
nance) the cross section is enhanced, and the two-
photon line shape becomes both symmetric and
highly sensitive to the intensity of the radiation.

In this paper we study the implications of the
above two-photon —two-collision laser-induced radi-
ative collision process when it involves the continu-
um states of one of the colliding atoms. We shall
examine the photoionization of this atom during its
collision with a foreign atom in the presence of an
applied radiation field which is nonresonant with ei-
ther of the atom's discrete transitions.

The transfer of excitation from an excited atom B
to an acceptor atom A accompanied by the simul-
taneous absorption of a single photon sufficient to
photoionize the initially excited state of atom B was
previously analyzed. The excited acceptor atom A
then ionizes atom B via a Penning ionization process
resulting in an increase in the photoionization effi-
ciency. In contrast to the one-photon —one-collision
process, we find here that a second-order radiative
process causes an intensity-induced collisional shift
which can be used to cancel out the collisional de-
phasing shift between the initial and final scattering
wave functions for all internuclear separations. As a

result of this cancellation we find that the collision
causes a large enhancement in the cross section for
electronic continuum-continuum scattering (i.e., the
process which results in the production of electrons
with different discrete energies) which is otherwise
negligible.

The nature of the present process is quite dif-
ferent from the process involving only discrete
states. In the discrete case, the frequency of radia-
tion is taken not to coincide with any transition fre-
quency in either atom. However, in the present case
where continuum states are involved, the frequency
of radiation coincides with some transitions to the
continuum. Moreover, owing to the nature of the
continuum states, the present process involves an
infinite-level system.

We consider the collision of atoms A and B in the
presence of a radiation field E=Eocos(tot) via the
process A +B'+2fico~A+B(v)+fun~A*+B
+~~A**+B~A*+B ++e(e), where e(e)
represents the distribution of electron energies pro-
duced for both of the continuum states involved in
the scattering process. In describing the process we
treat the motion of the nuclei classically. Moreover,
we assume that the dominant contribution to the
collisional cross section comes from large internu-
clear separations where electronic overlap is negligi-
ble. Hence we represent the system with a product
of atomic states and write

H =Hg+Hg+ Vgg —pg. E—p g.E,

where H~ and Htt are the electronic Hamiltonians
of isolated atoms A and B, V„~(t) is the atom-atom
interaction, and the other terixis are the laser-
field —atom interaction terms in the
dipole —classical-field approximation. We will treat
the magnetic number degeneracy by treating the
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atom-atom interaction in the rotating atom approxi-
mation, where V» matrix elements are evaluated by
assuming the dipole transition moments are always

I

aligned along the line joining the nuclei. The state
vector of the system is taken to be of the form (see
Fig. 1)

t(t= ae(t) (Oa & ()b &exp( —(teat)+ f a„(oa &
(

vb &exp[ i—(tee+tv )t]dv

+al(t)
I
la )

I

Ob )exp( i col—t)+a2(t)
I
2a )Ob )exp[ —i(co$+co2)t]

+ a,
I

a v exp —l M t+MI (2)

In the process the initial state
I
Oa )

I

lb ) ls excited
by the electromagnetic field to the continuum states
IOa)

I
vb). For continuum states nearly resonant

with the applied photon, the interaction results in
real excitations, and for those away from resonance
the interaction results in virtual excitations. A vir-
tual collision then transfers the excitation from

I
Oa )

I
vb ) to the state

I
la )

I
Ob ) which in turn

gets virtually excited by the electromagnetic field to
I
2a )

I
Ob ). Finally, a collisional transfer from

I
2a ) I

Ob ) to
I

la )
I

v' b ) takes place.
During the process two sets of continuum states

in atom 8 become excited, resulting in the emission
of electrons with kinetic energies centered at two
discrete values. One set of the continuum states be-
comes involved only as intermediate states in the
overall process, while the other set helps comprise
the final state of our system. The cross section for
this process will be obtained by substituting the
above wave function and Hamiltonian into the
time-dependent Schrodinger equation and solving
for a„ the probability amplitude of the final state

I
1a ) I

v' b ). Later in the paper we will estimate the
cross section for the process using a high-lying ex-
cited state of atom 8 for our initial state. The
derivation which follows, however, is also applicable
to the low-lying excited states of atom B.

In this model we have neglected the direct elec-
tron scattering process A +8++e (e)+%co
~A +8++e(e') since this interaction is expected
to be negligible in comparison to the radiative col-

—i Vl exp(iE+)a l,
dat /dt= —i f p"texp( —item)a„dv

+lpga Ep ex p(l 62t)a2

da2ldt= iPz&EpexP( ihzt)al-
—i 2exp i, t a, v',

(4)

(5)

da, jdt = l Vz exp( l 5 t t)a 2,—

I

lision process when using low-field intensities. The
direct scattering process may become important,
however, when using very intense fields. In this
case, a new set of high-lying continuum states be-
comes available to interact with the original contin-
uum states. The interaction between these two over-
lapping electronic continua is predicted to become
an important factor in the treatment of the collision
dynamics. Furthei irlore, the participation of the
high-lying continua due to the intense field is
predicted to lead to interesting effects which include
the emission of electrons having distributions in ki-
netic energies which are roughly shifted by fun on ei-
ther side of the laser field-free emitted electrons.

Substituting Eqs. (1) and (2) in the time-dependent
Schrodinger equation gives

dae/dt if tt„tEeexp(=(be)a„dv, (3)

da Idt = l'Pl EpexP( —i b, P)ap

6&=CO —CO~ 52=CO —CO2t 6&= C+Op& C—OCO], 6 t =COl+CO2 —(CO t +COl)=CO2 —CO

1 1 1
Pld =—

& la IP~, I
Oa & P~ = &2a IP ~, I

la & Hp = (vb
I Pa, I

Ob &

=1 1
vp„, = &v'b IP a, Iob& —

s „l= &vb IP—, I
lb&,

1 1
V, =—(ObI(la

I V» Ioa) Ivb&, and V, =—(v'bI(la
I
V» I2a) Iob&.
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FIG. 1. Restricted energy-level diagram for the two-
photon radiative collision involving continuum states.

We now proceed to reduce this system of infinite
coupled levels to an effective two-level system in-
volving only the initial and final states by sequen-
tially eliminating a„, ai, and a2. This approach is
justified if these intermediate states are chosen not
to interact strongly with the electromagnetic field
nor with the collisional field. In the elimination of
the continuum states, however, the electromagnetic
field will necessarily resonate with a portion of the
continuum. We will show later that this radiatively
resonant set of continuum states is responsible for a
portion of the ionization current while the non-
resonant states contribute primarily to the efficient
transfer of excitation.

The first step we carry out is the elimination of
the amplitudes of the continuum states a„by con-
sidering them as intermediates to the transition be-
tween ap and ai. We integrate Eq. (4) in order to
solve for a„and hence eliminate it from the rest of
the equations. Note that if

I
b,„l =

l
co —pE„I were

always large, we could integrate the first term of Eq.

(4) by parts and keep only the zeroth-order term.
However,

l
b „l

can be small, and therefore this pro-
cedure is not accurate in evaluating the integral.
The same argument holds in the contribution from
the second integral of Eq. (4). Both cases must be
considered in order to treat the problem accurately.
In order to do this, we will use the following pro-
cedllf e.

Since transitions from
l

Oa )
l

lb ) to the continu-
um obey the Frank-Condon principle, we separate
the continuum states into two sets; the first set is
close to the resonance condition (

I
6„

I
&

I
5„I )

where
I

dP„
I

is a small quantity, and the second set
is that which is sufficiently far away from resonance

When b,„ is large, the exponential in the first in-
tegral of Eq. (4) oscillates swiftly. If, in addition,
the field amplitude Ep is a slowly varying function
of time, we may approximate the integral by keeping
the first-order term in an integration by parts, i.e.,

(1EEviEo/~v)exP( E~&)ao However, when near-
resonant states are considered in the integral, 6„ is
small, and this part of the contribution to a„can
only be represented by a full integral
as & p„)Eoexp —~

' ao t'. imi ar y, we
can write expressions for the second integral of Eq.
(4) corresponding to the cases where 6„ is large and
Z„ is small.

Thus substituting these expressions for a in Eqs.
(3) and (5) gives

dao
+yoao —iG, exp(ib. , t)a, ,

i V", /—gapa, = EG2exp( —E~it)ao
dt

+ E p2g Epexp( E 62t )a 2

where

2 2 2 2
.P IBEp dV P18 Pvl'Yo= ErPEE Eo'Ei+ E '9 =

dE

Gi ——ai+ Epi, G2 =Ex2+E p2, pi =7TEpp„V, rt, p2= pi

iM. i Vi
Exi = —Eo dv, Ex2 =Eo dv,

2 V2
', = f ='dv.

b,p

2He«pEE = pi~dv and p„&,= pi„Vidv represent integrals over the radiatively resonant continuum
states, Vz ——

&
v represents an integra over t e co isiona y resonant states, I

——~~ —~, an q= v
is the density of the continuum states. We also note that we used the quantities piBEplh'1 and V'1 /b, p as a
compact way of describing, respectively, the Stark and collisional frequency shifts covered by all the non-
resonant interiEiediate continuum states. Later in the paper we will, for some cases, show that the resonant
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states contribution to Gl and Gz, mEop„V„21, is much smaller than the contribution of the nonresonant states.
We now discuss the nature of the couplings G 1 and Gz. For this purpose we concentrate on the system

comprised of ao, a 1, and a„by dropping the coupling to az in Eq. (9). In this case one can easily show that

(
I
ao

I

'+
I
ai

I
')+2(«)'0)

~
ao

~

'+4«(Piaiao&

This result shows that the total population
~
ao

~
+

~
al

~

of the closely coupled system of ao and al has, as
expected, the decay rate 2(«yo)

~
ao

~

as a result of the direct photoionization losses from
~

Oa }
~

lb }. In ad-
dition to this rate, the system has an oscillatory coherent rate which does not depend on either population

~
ao

~

or
~
al

~

but upon the coherent product of ao and al. This rate is a result of the participation of the
resonant continuum states.

We now derive an effective system coupling the initial and final amplitudes ao and a„, respectively. We
take b. l &

~
Gl ~, b,z&p~E0 and eliminate a, and az sequentially from Eqs. (8) and (9) and (6) and (7). We

then integrate their equations by parts and keep the lowest terngs. The resulting equations are

dac/dt+I'ac=igt f gtexp(ig+)a, dv

da, d/t+(V tpex( Z(, t—) f gtexp((Z „t)a dv =ig„sexp"( —(gal)ac,

where

I = mpiiEori+iplaE0/bI +iG1G2(hi+ Vi /Ao)

—pzaEoG162(62 —Vi /Ao) '(hi+ Vi /~o) [~1+~2 pwEo(—52 Vl /Ao—) ']

gl pzgE06——1(42 Vl /bo—), gz ——Vz[4~, —pz„E0(42—Vl /bo) ']

g3 ——Vzpz/iE062(61+ Vl /50) [~1+~2 p2AEO(62 —Vl /60) ']

5„=5,+62+5, .
I

+i Vzgza, =ig3exp( i5&)ao—.
V

(13)

We now make the following comments about Eqs.
(10) and (11). This system of equations describes the
close coupling of the ground state with the final
scattering continuum state

~

v'b };it is an effective
two-photon —two-collision radiative coupling. The
couplings gl and gz are complex. The real parts of
the couplings are responsible for the actual excita-
tion to the final state via the coupling to the non-
resonant intermediate continuum states. The ima-
ginary parts of these couplings, however, describe a
coherent rate similar to the rate discussed after Eq.
(9). It results from the participation of the inter-
mediate resonant continuum states.

For a given radiation frequency, only the state

~

v'b } which satisfies the overall energy conserva-
tion of the process can be appreciably populated.
Consequently, only a few states which are in the
neighborhood of the resonating state need to be kept
in the integrals of the right- and left-hand sides of
Eqs. (10) and (11), respectively. Hence Eqs. (10) and
(11) become

Qo + I ao ——iglgzexp(imp)a, ,V

The function I is complex. Its «» part gives a»n-
duced decay rate of the ground-state population.
The decay rate includes a number of te~s One of

terms is due to direct photoionization

(capri Eod v/d b ). The other terms are collision-

induced photoionization rates. They depend on the
product of the field intensity and the square of the
collisional coupling. For example, the tei in

p~l Vl 2 dv—mp„V, dv Eo
db,

is a new collision-induced ionization which depends
simultaneously on the intensity and the collisional
coupling. We note that this rate enhances or weak-
ens the direct photoionization rate when the sign of
6„ is negative and positive, respectively. The real
part of the last term of I" gives a higher-order effect
of this collision-induced photoionization.

The imaginary part of I gives a shift in the ener-

gy of the ground state. The shift consists of three
types. One type is the ordinary Stark shift caused
by the electromagnetic field interaction with the
nonreson ant continuum states,
tstagoltt't gtt f itt„/ttQv. The second type of
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shift is an intensity-induced collisional shift
1'b 1EpV1 +ib2EpV, V'1, where b 1 and b2 are func-
tions of the detunings and the effective dipole ma-
trix elements of the discrete-discrete transition and
discrete-nonresonant continuum transitions. The
third type of shift is an intensity-induced collisional
shift with only the resonant continuum state partici-
pating. The sign of this shift, as well as the other
two types, will depend on the sign of the various de-
tunings.

The intensity-induced collisional shifts are in-
teresting since their magnitude can be controlled by
the intensity of the electromagnetic field. Hence the
overall shift of the final state with respect to the
ground state can be controlled by the intensity. In
fact, it is possible to achieve complete cancellation
of the relative phase shift between the initial and fi-
nal transition probability amplitudes. In this paper
we analyze the process in the weak-field limit, leav-
ing the strong-field effects for a later work. In the
weak-field limit, Eqs. (10) and (11) reduce to

2 2 2
f1 V t 1142'

2
P IaEo P iso~+ CSV

1

2
n'&'ptsEs f pt.pM"

OO 2

~

a, t-h eo )
~

=4FtEs f R oSosdt

where

g4 4 2 2
92wgo 21:

g2( g g )2 Pt 1PvA

2
P~1P~f+ V

(20)

(21)

dap G1G2+i Re
t 1

ao ——0, (14)

tv2~ V2EpG2
+i a, = exp( i P—)ap,

(15)

where we kept the lowest order of the intensity-
induced collisional shift since even in the weak-field
limit, this shift may be of the same order as the col-
lisional shift of the final state. When Ep changes
very little during the time of collision, Eq. (14) gives

G1G2
ao —exp —I R.e dt

QO
1

and hence

4V2~Eo
2 2

OO iS
2

i
a, (~ ) i

2= V2G2e' dt
g( 51+A2)

r

2 2
V2 ~1~2 P1S= +E,

We now calculate the cross section for the
continuum-continuum scattering process. Taking
5„=0& in the dipole-dipole interaction we find S

6

The ionization cross section o is calculated from the
integration of

~

a, (oo)
~

over the impact parame-

ters. A thermal average of the cross section o then
yields an ionization rate. For large C, all impact
parameters can be integrated over because the fre-
quency shift becomes large for R values less than or
approximately equal to 15 A, and there is no change
in a, at R values where overlap is important and

deviations from straight-line trajectory occur.
At some intensities, however, C can become very

small even in the weak-field limit. The situation
where C is very small suggests a large coupling coef-
ficient in the absence of any dephasing effect for all
internuclear separations R &4 A. This could lead
to extremely large cross sections for the process.
However, because of the detuning at small R, orbit-
ing phenomena play a significant role. An estimate
of the magnitude of the cross section at the peak of
the resonance can be determined from Eq. (9) by
taking C =0. In this case

~

a, ( m )
~

=1.5mF1Ep/(p' u ). A lower limit on the estimate
can be found by calculating the contribution from
impact parameters where orbiting is not
important; that is, o& f "2rrpdp

~

a, (tn)
~

=3&F1Ep(up, ), where Fi is given by Eq. (21)
along with the condition C =0.

We now examine the cross section for a realistic
case. The degree of contribution to the phase from
the resonant and nonresonant continuum states de-
pends on the atom in question (structure of the con-
tinuum) and the position of the resonant state with
respect to the ionization limit as well as to the states
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2Ay

where Rz is the Rydberg energy, ap is the Bohr ra-
dius, and e is the electronic charge. The couplings
Gi and G2 can now be estimated by taking the ef-
fective nonresonant continuum state to be a high
Rydberg state. Thus

P.i Vi
G2 ———Eo dv+iirPi+p Vi il

BiEo i 82
1——

with

BiEo i 82
1 ——

R 28i

82
Bi A'(pimp——,p, , )/~p and

828 i A(pimp, p——,, )/co' and
1

2
NpPl

7

pn

(24)

where P, and P, are the matrix elements of theOn' nn'
/ ' 2 2transition Q~n' and n~n'. Taking P&z-e ao,p, -e ap/n, and p, -e ap/n gives

2 2 2 3 2 2 2 4
On' nn

Bi cap!(ron )——and Bi ——e a o(/co'n ) The fact.
that 82/Bi «1 and 82/8'i «1 for n ~ 5 allows us
to neglect the imaginary part of Gi and G2, hence

of the atoms. Here we are interested in arriving at
an order-of-magnitude estimate of the cross section.
We take the case where the initial excited state of
atom 8 is regarded as high lying and hydrogenlike
with a principle quantum number n. In this case the
Kramers formulas, when applied to the absorption
from bound states to free states, give the following
expression for pi„il (Ref. 6):

4
ape

(22)
i)1Ry

and consequently

2 2 2& Po„Pza 2 4 2 28)8iEp 2
& PzxPp

and F, =
b, i b, i(b, i+Az)~

(26)

These estimates show, in the case of a high-lying
initial state, that the contribution of the resonant
continuum states to the intensity-induced shift and
to the amplitude of a, is negligible compared to
that of the nonresonant states. However, these con-
tributions are expected to become more important
when the initial scattering states are low lying. We
will examine the effect of these contributions in a
later work.

We now numerically estimate the cross section
using typical values for a general system. Taking
Ep ——(2.5 X 10 V/cm) (corresponding to a power
density of 8.3 X 10 W/cm ) gives
Pi~Ep/~ =2X lQ, P, =0.25 a.u. ,P, =6.25 X 10 a.u. with n =4. Choosing

pzz ——9X10 a.u. , P, =1.4X10 a.u. , and
Z, /hi ——4.05 then gives C =0. We choose
ni = 1.5 X 10 cm ', b, i

——100Q cm ', 62 ——1000
cm ', V = 5 X 10 cm/s, and p, =3 A yielding
o.)2.8X10 A.

We note that when other discrete states of atom 8
are involved, other electrons will be ejected with ap-
propriate energy to conserve the overall energy of
the process. Hence owing to this effect, a discrete
spectrum of electrons is produced.

In conclusion, we have shown that the phase of
the wave functions of the initial and final collisional
states can be externally controlled, thereby allowing
a large continuum-continuum scattering cross sec-
tion. Owing to the change in the energy of the elec-
trons, this effect should be amenable to experimental
investigations using energy analysis techniques.

—B)EO
3

8 iEp-
R
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