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Angular distributions in multiple scattering

Mark A. Peterson
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The theory of the random walk on a sphere is derived by elementary methods and by specializing
the general theory of random walks on group {6)spaces. The result is applied to find the angular
distribution in multiple elastic scattering after N steps. The case of electron scattering from a
screened Coulomb potential is done in detail. Formulas which are exact in principle and asymptotic
in practice are found, giving the distribution with many-place accuracy at aH angles for N &20.
Methods for generating a random variable with this distribution are also given.

I. INTRODUCTION

Rutherford's famous analysis of a-particle scattering in
gold foils distinguished two angular regimes': a forward
regime with a Gaussian distribution, dominated by many
small-angle scatters, and a large-angle regime, dominated
by single scattering. This approach to the angular distri-
bution in multiple scattering of charged particles is widely
used even now. It is described in textbooks. It is difficult
to avoid the impression that it is essentially correct.

Despite its intuitive plausibility, it is fair to ask how ac-
curate this representation really is. Has it been thoroughly
checked in physically interesting cases? The answer seems
to be no. That check, for a realistic differential cross sec-
tion, considered at all angles, is made in this paper for the
first time. Previous partial results showing that the model
of Fig. 1 is, in fact, not quantitatively accurate, are con-
firmed and the comparison is extended to the entire angu-
lar range.

The method employed is not entirely new. It was given
by Cioudsmit and Saunderson (GS), who were, however,
unable to evaluate certain coefficients in their formulas
[the Ai's of Eq. (7)]. Their results are rederived here in a
more physical and transparent manner in Sec. II, and the
calculation is completed in Sec. III. The result is that the
usual model (Fig. l) is significantly in error (see Fig. 2): A
naive application of the central-limit theorem to the for-
ward distribution is typically low by about 40% in the for-
ward direction and may be high by a factor of 2 at some-
what larger angles where one might expect it still to apply.
In addition, multiple-scattering corrections to the single-
scattering distribution are typically significant even at the
largest angles.

Curiously enough, the GS paper, which contains exact
results of beautiful simplicity, has been ignored in favor of
approaches which make small-angle approximations. If
one makes too drastic an approximation one finds that the
forward distribution is given by the central-limit theorem. "
This is unequivocally wrong. In the late 1940s, more care-
ful use of the small-angle approximation began to reveal
the true shape of the forward distribution, ' but the re-
sults were initially often described as if they approached
the naive Gaussian, even when they clearly did not. ' By
I963 it was appreciated that the forward distribution is
non-Gaussian, but the small-angle theories which re-
vealed this fact are complicated and approximate, and

have never fully displaced the model of Fig. 1 in actual
use.

By contrast, the methods of this paper are so simple
that exact angular distributions in multiple scattering can
be routinely generated for use in accurate modeling of
physical processes in detectors, biological materials, etc.
Until now there has been no recognized good way to do
this. The persistence of Rutherford s original model (Fig.
l), despite its (more or less known) shortcomings, was
perhaps due to the absence of a simple, clear alternative
free of dubious approximations.

In Sec. IV the method of Sec. II is related to the more
general problem of a random walk on a group. The diffi-
culty of extending this method from the angular distribu-
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FIG. 1. Rutherford model for the angular distribution in
multiple scattering, showing two angular regimes, with a Gauss-
ian distribution forward and single scattering backward. Cross-
over region, where some kind of interpolation appears to be
called for, is sometimes called "plural scattering. "
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of the preceding one implies

WN(p q) IWl(p k) Wx —I(k q)dk (3)
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FIG. 2. Comparison of the Rutherford model with the exact
angular distribution, found as described in the text, for a 1.9-
MeV electron in germanium after 150 scatters. There is a signi-
ficant discrepancy, of the order of 10—50%, at almost all an-

gles.

where W~(p, q) is the conditional probability density that
a particle initially at q arrives at p after exactly X steps.

The problem posed is to find a simple expression for
W~(p, q) given W~(p, q). Expand W~(p, q) in Legendre
polynomials and thence in spherical harmonics,

Wi(p, q)=f(p q)= g %Pi(P q)
4m.

where

l=o m= —I

W~(p, z)= g A, ~ P~(cos8&) .2l +1
4m.

(7)

In interpreting Eq. (7) it is useful to realize that, according
to Eq. (5), the coefficient A, I is

1

A I =2m.I f (z)Pi(z)dz .

Then by induction in Eq. (3),
oo 1

WN(p, q ) = g g ~l +lm (P) ~~~ (q )
1=0 m= —I

Equation (6) is the solution. In particular, taking q=z
(which only amounts to choosing the coordinate system in
the most convenient way), one has

tion to the spatial distribution of particles undergoing
multiple scattering is pointed out.

Section V contains practical suggestions for modeling
the exact distribution.

i.e., just the average value of the Legendre polynomial PI
with respect to the distribution 8'&. In particular,

II. RANDOM WALK ON THE SPHERE

Consider the distribution of a particle on the sphere
which makes random jumps. It is assumed that the law
governing the jumps is isotropic, homogeneous, and Mar-
kovian, i.e., that there are no preferred directions or posi-
tions, and that each jump is independent of the others. (In
applying this idea to multiple scattering, the direction of
travel of a particle or wave will be assumed to make such
a random walk. The distribution of this random direction
will be found. )

Take coordinates (8,$) on the sphere in the usual way,
fixed once and for all, and use unit vectors p, q, etc., as a
shorthand for locations (8~,$~ ), (8v, p~), etc. At each step
of the random walk one must use the conditional probabil-
ity density 8'~(p, q) that a particle at q moves in the next
step to p. Clearly 8'& is positive with

f Wi (p, q )dp = l . (&)

Since it is assumed that the law which governs the single
step depends only on the relative direction of p with
respect to q, and not on any third direction, one has

(2)

The Markovian assumption that each step is independent

(except in uninteresting degenerate cases). Thus in the
limit as N~co, only the 1=0 term survives in Eq. (7),
and one has

lim W~(p, q) =
N~ ce 4~ '

the uniform distribution on the sphere, as intuition would
suggest.

If 8') is sharply peaked forward, approximating a 5
function, A.I=1 for a large number of terms. Finding
these A,~'s accurately is the main computational difficulty
in applying this method, but it is not particularly impos-
ing. Scattering from a Thomas-Fermi atom, a problem
considered by many previous investigators, yields to a sim-
ple trick (see Sec. III). A cross section parametrized by
partial waves would also yield XI's in an obvious way.

III. MULTIPLE SCATTERING
FROM THOMAS-FERMI ATOMS

To apply the ideas of Sec. II to multiple scattering, note
that
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1 do.
Wi ———

o cjQ

i.e., W1 is just the differential cross section normalized to
be a probability distribution. In particular, consider po-
tential scattering of a Dirac electron from a screened
Coulomb potential

Z8
V(r) = — e

It is easy to see that

k„=ps
m=0

P k„+(1+@A )
dA

—1

dkO
X P'k, +(1+P'A)

(20)

The result, in Born approximation, is the Mott cross sec-
tion modified by screening

1 —PxWi(x}~
(x +A)

where

so that it is enough to find the s„. Expand the first factor
of the integrand in Eq. (19) by the binomial theorem and
integrate. One has

r

1

2

Z 1/3
x =sin (0/2) and A =

2Py
(15)

F{h)= g
n=0

z" ( —A) ln 1+—
n A

(16)

the latter quantity corresponding to the screening length
2

Z —1/3
cx2mc2

"~' ( —A)

0 n —m
(22)

suggested by Thomas-Fermi theory' (here a is the fine-
structure constant, P and y are the relativistic parameters
of the electron, and Z is the atomic number of the target
nucleus).

The average value of the Legendre function P~, called A,g

in Eq. (7), can be found by a generating-function tech-
nique. The generating function for the average Legendre
functions is just the average of their generating function,
by linearity,

F(h)= g ( —A)
m=0

2

m
1

z ln 1+—
A

+F (h) (23)

where

where z(h) =4h /(1 —h)z. Now collect like powers of A,

([{1—h) +4xh] '~ )ii, ——g h "A,„.
n=0 F {h)=z lim f [(I+/) '~ ] g 'dg (24)

(18}

4xh
' —1/2

(x+A) 'dx= g h "s„=F(h) .
n=0

(19)
I

Define quantities k„(A) and s„(A) by

1 00

J [(1 h) +4x—h] '~ (x+A) 'dx= g h "k„,
n=0

and the square brackets with subscript m mean the first m
terms of the Maclaurin expansion are subtracted.

It is now straightforward, though tedious, to find F(h)
as a power series in h (and hence to find s„) through any
finite power of A in the expansion of Eq. (23). The result
for s„ through terms involving A is

s„=a„1 (In+I/A)+b„+c„A ln(1+1/A)+d„A+e„A In(1+I/A)+f„A +g„A3ln(1+1/A}+h„A +O(n A lnA),

where

a„=6nO ~n =(—2/n)8n1 Cn =2n8n1

d„=—[2(n —1)+4n( —,
' + —,

' + + I/n)]8„z, e„=(n + l}n(n —1)8„q,

f„=—[4n (n —1)(n —2)/3 —(n —1)(n —2)(n —3)/6+2(n +1)n (n —1)[—,
' + —, + . +1/{n +1)]]8„3,

(26)

g„=[(n +2)(n + 1)n (n —1)(n —2)/6]8„3,

h„=—[ —,(n + 1)n (n —1)(n —2)(n —3)——„n {n —1)(n —2)(n —3)(n —4)+ «0 (n —1}(n—2)(n —3)(n 4)(n —5)—

+ —,
'

(n +2)(n +1)n (n —1}(n—2)[—,
' + —,

' + +1/(n +2)]]8„4,

1 if n =m
5 0 if n~m

1 if n&m
0 if n&m.
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A similar expression for A.„ follows from Eqs. (20) and
(21). Using this expression for A,„ in Eq. (7) gives a for-
mula for 8'~ which for many purposes is essentially ex-
act, a remark we now justify.

The series obtained for A,„ from Eqs. (23) and (19)—(21)
converges (in fact it is exact after 2n + 1 terms). More im-
portant for practical purposes, only the first few terms,
typically just those given in Eq. (25), are necessary in ap-
plications, by the following argument.

The terms in Eq. (25) decrease rapidly if n «A '~2, so
that one may expect Eq. (25) to be accurate up to some
n, „which depends on A. An estimate of n,„ is given by
looking at the next term in the expansion for s„ in Eq.
(25), namely,

s„=.. . +j„A In(1+I/2),
where

(27)

j„=(n +3)(n +2)(n +1)n (n —1){n—2)(n —3)/72 .

Requiring this term to be less than, say, 0.001 gives

n,„=[0.0723 /ln(1+ I/3)]'i
Now take X, the number of steps, to be so large that the
contribution of the term containing A,„ is negligible,

even at 0=m, where the cancellation of terms is especially
delicate. Using the estimate W~(m. ) =NW~(m) and asking
for three-figure accuracy there, one finds

4mB ] ~10
N ) ln [in(A,„)]2n, „+1 max

(29)

X&20 (30)

showing little explicit dependence on electron energy up to
3 MeV, which covers the range of most natural P emitters.
Gf course, for higher energy W~ is sharper (A is smaller)
so that more terms in Eq. (7) are needed to represent W~
But just because 3 is smaller, the expansion of Eq. (2S)
does provide those terms. {8'2O for a 3-MeV electron in
germanium requires nearly S00 terms. For larger E, far
fewer are needed. )

The procedure outlined above could be extended to
N &20 by going farther in the expansion of Eq. (25). For
example, with the next term [Eq. (27)] included, W~5 ap-
pears to be accurate.

The above discussion does not give rigorous estimates of
error, but experience has shown it to be an accurate rule of
thumb. The formula for 8'& is asymptotic in %. The er-
ror in W& appears to be 0 (e ) where

l

So long as N satisfies this inequality (which is quite in-
sensitive to the detailed assumptions in its derivation), 8'~
is accurate at all angles. In fact, the inequality turns out
to be

e & 0.02 Wi (m ) « 1.
A typical result for 8'~ is shown in Fig. 2 with the

Gaussian distribution of the central-limit theorem and the
single-scattering tail NR'& for comparison. The results of
work using small-angle approximations is confirmed in
the forward direction, and comparisons at large angles are
possible for the first time. Multiple-scattering corrections
to the single-scattering distribution are quite noticeable.

In summary, Eq. (7) with A,
&

given by Eqs. (20), (21),
and (2S) is an explicit solution to the multiple-scattering
problem for X&20 with many-place accuracy at all an-
gles.

IV. RANDOM WALKS ON GROUPS

p(g)f(h)=f(hg ') . (31)

In what follows, the notation will imply that G is a finite
group, but nothing is changed if G is a compact Lie group
and summation over G is interpreted as integration with
respect to Haar measure. '

Let p, be a probability measure on G such that p, (g) is
the probability of a translation in a single step by the ac-
tion of g on G. (We assume that the random walk can be
characterized in this way, i.e., that the probability of the
step h~hg is independent of h. ) Similarly, let p~(g) be
the probability that in X steps one has translated by the
action of g. Then

px(g)= g p~(gh ')px i(h) .
heG

(32)

Define an operator' on functions using the representation
p~

W[pi]= g pi(g)p(g) .
gEG

Then it is easy to prove by induction that

( W[pi])"= W[pxl .

For suppose (W[p~]) = g&~GP~(h)p(h). Then

(33)

(34)

Qne gets a deeper insight into the formulas of Sec. II by
considering them in a more general setting, that of a ran-
dom walk on a group. " In particular one sees that the
reason the forward distribution in multiple scattering is
non-Gaussian is that it arises as a random walk in a non-
Euclidean space, whereas the central-limit theorem is asso-
ciated in an essential way with random walks in Euclidean
spaces and more particularly with the Euclidean transla-
tion group.

A random walk on a group 6 can be identified with a
random sequence of group operations in which G operates
on itself by right multiplication. The group operations
have a linear representation p on the space W of real-
valued functions on the group in the usual way'

(W[p~]) +'= g g p~(g)p(g)p~(h)p(h)= g g p&(g)p~(h)p(gh)
geG heG gGG h&G

)px(h)pV) = g px+i V)pV) = W[PN+1]. (3S)
jEG hEG j&G

W[p ~ ] is essentially the stochastic matrix for the random walk.
An important simplification occurs if p& {g) is a class function, i.e., if
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p1(g) =p1(hgh '), Vh E G .

In this case, W[pi] commutes with p(g) for any g~G, as one sees from

W[pi]p(g)= g pi(h)p(h)p(g)= g pi(h)p(hg)= g pi(gjg )p(gj)
heG heG jE.G

= X S'i(j) (gj)=p(g)Wb i].
j&G

Thus, by Schur's lemma, W[p, ] is just a multiple of the
identity operator I on each irreducible representation con-
tained in p. If we take as a basis in P a basis for the ir-
reducible representations contained in p, then W[pi] is di-
agonal, so that raising it to the ¹hpower (i.e., computing
the effect of a random walk of X steps) is trivial.

A space M on which G acts transitively can be identi-
fied with G/H„where H is the isotropy group of a point
of M. ' If H is a symmetry of p], the random walk
analysis on G passes to the quotient M. Thus the random
walk on the sphere can be regarded as arising from a ran-
dom walk on SO(3) with p1 a class function. It passes to
the quotient SO(3)/SO(2), which is just the two-sphere.
Equation (6) displays W' in diagonal form, as it was
guaranteed to be, because the spherical harmonics are a
basis for the irreducible representations of SO(3) on S .
[The spherical harmonics themselves arise by the quotient
procedure; they are just the symmetric-top wave functions
which are invariant under the action of the SO(2) in the
quotient. ]

It is disappointing that the same observation cannot be
used to solve the multiple-scattering problem in its entire-
ty, i.e., to find the spatial distribution of particles together
with their angular distribution. This amounts to solving
the random walk on the affine group of translations and
rotations in three-space. Curiously enough, the probabili-
ty measure that corresponds to physical scattering process-
es is not a class function on this group. Thus the stochas-
tic matrix W1 cannot be diagonalized using group theory
alone: The correct basis functions depend on the details of
p1 and cannot be found once and for all, as in the simpler
angular problem.

—4ax
F(a;x)= —4a

(40)

For any a, F is a probability distribution in x on [0,1] with
respect to the measure 4~dx, and it is RG. [We are really
thinking of x =sin (0/2) and F as a distribution on the
sphere. The form is chosen so that E looks as nearly as
possible like a Gaussian in 8 with width a '. ] It turns
out that linear combinations of such functions can approx-
imate W~ well in the forward direction.

For large angles (x )xT-sin 0,), the form

G(A, B,C,xT,'x) =
~

B(x —xT),B+Cx
(A+x)

(41)

then the random variable x =g '(y), where y is uniformly
distributed on [0,1], has distribution f. Thus f is RG if
g ' is rapidly computable.

If f, , . . . , f„are RG, and non-negative numbers
a1, . . . , a„satisfy a1+ . . +a„=1, then
f=a'fi+ +a„f„ is RG, that is, appropriate linear
combinations of RG functions are RG.

In this language, the problem is to approximate 8'& by
an RG function. In general, it is not clear that a solution
exists at all, since the RG functions may not be dense in
the space of the W~'s in the appropriate norm.

The following observations constitute a rough-and-
ready solution to the problem of finding an RG approxi-
mation to W~ on the sphere. This is not a solution in the
sense of giving an RG sequence [f„] which converges to

Rather we find functions which are within a few
percent at all angles.

Define a family of functions

V. MODELING %'ITH 8'~

In modeling multiple scattering one wishes to generate a
random variable 0 with the distribution W~. This is not
immediately easy, even though W~ is a known func-

15, 16

Call f a rapidly generable (RG) function on a domain D
if it is a probability distribution, i.e., f&0 on D,

and if there is a rapid procedure for generating a random
variable with distributiori f. (This definition is flexible:
What it means depends on context, but it seems to be a
useful notion. )

To be concrete, let D be the interval [0,1]. Then by
most standards the uniform distribution f=1 is RG.
Also, if for any probability distribution fwe define

g(x)= I f(x')dx', (39)

&&B(xT—x),

TABLE I. Form of the RG distribution approximating 8'~
in germanium for IOO&%(200. Functional forms F, F, and 6
are defined in the text.

Electron energy
(MeV)

E &0.52
0.52 &E &0.6
0.6&E &0.9
0.9 &E &4.5

Distribution

Uniform
F(a)
aF(a)+(1—a)G
a ~F(a~)+aqF(aq)+a36

suggested by the single-scattering distribution, works well.
In order that the two forms join well at xT, it is advan-

tageous to define "folded F 's" on [O,xT],

F(a,xT,x)=[F(a;x)+(1 xT)F(a—,x') IxT]
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4i— The function G(A, B,C,xT,'x) is RG because if y is uni-
formly distributed on [0,1], the iterative procedure

xo =xT,
A +x„x„=g, + (A +x„,)(A +xT )C ln
A+xT

where

-ao

$2=y (A +xT) —(B —AC),

g, = [(AC B)xT—yA (A—+xT)]/$2

converges to a random variable x whose distribution is G.
It is straightforward to find positive constants a ],

a2, . . . , a„+&, and a&, . . . , a„such that a
& + - . +a„+&

=1 and

8'& —a]F]+ ' . . +a„F„+a„+]G.

l t i l t t l t t l i t l t t 1-14~ Rl Kl M 120 150 iM

FIG. 3. Exact distribution of Fig. 2 is well approximated by
the form given in Table I with parameters a~ ——0.572, a2 ——0.393,
a3 ——0.034, a& ——18.1, a2 ——40.0, A = —0.0190, B =0.003 81,
C = —0.00349, and xz. ——0.005 86.

It does not seem to be possible to use the same form for
all parameter values, however. Modeling electrons in ger-
manium, with 100&N &200 required the rather inelegant
choices of Table I at various energies.

A typical W„, with its RG approximant (nearly indis-
tinguishable from it) is shown in Fig. 3.

In summary, the observations of this section facilitate
fast, accurate modeling of angular distributions in multi-
ple scattering.

where x'(x)=1 —x(xT' —1). F is RG because it corre-
sponds to the following procedures: (1) generate a variable

f with distribution F, (2) if g'(xz set g=g', and (3) if
f &xT, set g=xT(1 —g')/(1 —xz ). g is a random variable

with distribution F.
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