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An approximation scheme for dynamic response functions within the coupled cluster or exp(T)
method of Coester and Kummel is described in this paper. Particular attention is given to the rela-
tionship between the "vacuum amplitude" (0

~

U{t,—oo ) 0) for the time development of an exact
eigenstate of a many-electron Hamiltonian in the presence of an adiabatically switched-on perturba-
tion, and the amplitude (4o~ U(t, —m) ~0) for the time evolution into an independent-particle
reference state

~
No), which is not orthogonal to 0). The latter amplitude plays a prominent role

in the time-dependent coupled-cluster calculation of response functions.

I. INTRODUCTION

The coupled-cluster or exp(T) approach to the many-
fermion correlation problem' has by now become recog-
nized as a viable alternative to current methods in elec-
tronic structure theory. A number of encouraging results
have been obtained in molecular physics, the theory of
Fermi liquids, and the electron gas. We refer the reader to
a comprehensive review of Kummel et al. for an account
on these developments.

Atomic and molecular applications were initiated by
Cizek, Paldus, and Shavitt. The algebraic structure of
the highly nonlinear coupled-cluster equations, originated
by Coester, ' was examined in a series of papers by Harris
and Zivkovic and Monkhorst. ' Recently accurate
potential-energy —surface calculations for small molecules
have been published.

Most coupled-cluster calculations made so far have
I

dealt with the ground-state correlation problem, but
methods for excited states have been suggested. Harris
discussed the calculation of a manifold of states which are
not orthogonal to a common independent-particle refer-
ence state. A formalism suggested by Emrich' can be ap-
plied to arbitrary excited states. However, both of these
procedures suffer from the drawback that transition mo-
ments between excited states and the ground state are dif-
ficult to obtain.

One of the main advantages of a response function ap-
proach is that transition moments and energies are ob-
tained simultaneously. The physical significance of the
linear response functions, which we shall consider in this
paper, is that the expectation value (g

~

0
~
P) in the pres-

ence of an adiabatically switched-on perturbation

W(t)=(Ve'"'+V e '"')e ' (a)0)
can be expressed in terms of them as"'

(/~ 0
~
P) =(0~0 ~0)+((0;V )) +; exp[ i(co+ia—)t]+((0;V)) +; exp[ i( co+ia)t—]+— (2)

A derivation of the response function ( (0;V) ) using Eq.
(2) requires an evaluation of the time-dependent density
matrices, a notoriously difficult task within the coupled-
cluster method, unless one is satisfied with a perturbation
expansion up to certain order in the electron-electron in-
teraction. Mukherjee and his collaborators circumvented
this problem by adding terms to the time-independent
Hamiltonian Ho which describe the coupling between pho-

tons and matter. ' A calculation of the second-order ener-
gy corrections as a function of photon energy then pro-
vides information on the response functions.

A time-dependent coupled-cluster formalism aiming
directly at the calculation of response functions has been
suggested by one of us. Similar methods have been intro-
duced by other authors in nuclear and solid-state physics
for various dynamical problems. ' ' The purpose of this
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paper is to examine the formal aspects of time-dependent
coupled-cluster theory and its connection with adiabatic
perturbation theory' and Green's-function methods. '

The basic idea is to exploit a frequency-dependent level-
shift function, which emerges naturally when the Coester-
Kummel projection technique is employed to solve the
time-dependent coupled-cluster equations. This level-shift
function contains information about dynamic response
functions but the identification of these requires some re-
sults from adiabatic perturbation theory. These are briefly
reviewed in Sec. II. The coupled-cluster response theory is
then described in Sec. III and the response functions are
analyzed with regard to poles and residues, i.e., transition
energies and transition moments. Concluding remarks are
stated in Sec. IV.

II. ADIABATIC PERTURBATION THEORY

A few results from adiabatic perturbation theory wi11 be
summarized here in a form which is suitable for the appli-
cation to time-dependent coupled-cluster theory. For de-
tails the reader is referred to, e.g., the text by Fetter and
Walecka. '

We start by considering the time evolution of the exact
ground state,

l
0 &, which we assume to be nondegenerate:

Ho l0&= l0&EO, (0l0&=1 .

A formal solution to the time-dependent Schrodinger
equation

H, +w —i ly&=o. d
dt

corresponding to the initial condition

lim
l 1P(t) &exp(iEot) =

l
0&f~ —00

0&+ g lm&a '(01U10&.
m+0

(8)

The matrix element (0
l

U
l
0& is often called the vacu-

um amplitude. It is related to the complex level-shift
function, P, through the definition

(0
l
U(t, —oo )

l
0& =exp iEot i—f—P(s)ds . (9)

It is well known that so-called secular divergencies occur
in connection with integrations over infinite time intervals
in the limit a —+O. The advantage of introducing the
forms (8) and (9) is that the coefficients a and the func-
tion P are regular and the limit a~0 can be determined
provided that +pco&co 0 for all m and all integers p. ' '

In perturbation theory one assumes that an expansion in
powers of 8'can be made such that

P(s) =P,(s)+$2(s)+$3(s)+ . (10)

Qy introducing Eqs. ('7) and (10) on the left- and right-
hand side of Eq. (9), respectively, explicit expressions are
obtained for the low order fun-ction p:

can be expressed as

l
q&=U(t, — )

l
0&

=g lm&exp( iE—t)t, m
l

Ul(t, —oo) l0&, (6)

where we have introduced the spectral representation for
the unperturbed evolution operator exp( iHo—t). UI
denotes the evolution operator in the interaction represen-
tation

Ui(t, —oo ) =1 i f— Wl(s)UI(s, —oo )ds .

Following a suggestion by Langhoff et al. ' we write
Eq. (6) as

P&(s) =g(0
l Vj l

0&exp[i (co~ ia)s],—

(0
$2(s) = —g

'I
J)J ~

$3(s)= g (ol

l V& l
m & (m

l
Vj'

l
0&

co' —ia+mJ m
exp[i (coj+coj 2ia)s], —

VJ l
m &(m

l Vj l

m'&(m'
l

VJ'
l 0&exp[i (coj+coj +coj ~ 3ia)s]—

(coj +conj
—2ta+co~o)(coj- ra+co~ 0)—

An extra label j =1 or 2, has been introduced to distinguish between Vand V, and ~ and —~ as follows:

V) ——V, co) ——co,

V2 ——V, co2 ———e) .

Furthermore, we have defined VJ as

Vj
——Vj —(0

l Vj l
0&

so that the sums (11)—(13) do not contain any term with m or m'=0.
Our interest in the level-shift function P arises from its connection with response functions. For frequencies co away

from resonance the most important identity is
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277/CO

lim(co/2m. )f $2(s)ds=(( V; V ) )„a~0 0

&o
I

v lm)(m
I

v'I o& &ol v'lm &(m
I
v

I
o)

m&0
(16)

where co o E ——Eo.—Equation (12) shows that for Her-
mitian operators V = V, we also have the identity

$2(0) =gl(ol vlm) I'

(m
I
U(t, — )

I
0)

(o
I
U(t, —~)

I
o)

(m IUtlo)=exp(icoo~ t)

=b (t)exp(icoo t) . (20)

co+ cu p
—io.'

db (t)
i = (m

I
Wt(t)

I
0)

dtwhere the singularities are shifted below and above the
real axis, as in the Fourier transform of the causal two-
time Careen's function.

More generally, nonlinear response functions of even or-
der in V and Vf can be derived from integrals of the type

+ g [(m
I

W, (t)
I

m') —5 P(t)]b (t)
m'&0

with the initial condition

lim b (t) =0 .
t

2s'/co

2k s ds, k=2, 3, . . . . (18)

(17) The amplitudes b (t) satisfy the differential equations

(21)

(22)

27T/CO

exp(ipcos)/2k+ )(s)ds (19)

The odd order terms of the perturbation expansion for
the level-shift function vanish in the average over one
period. Odd order response functions can be deduced
from Pzk+ ~(0) and from integrals of the type 1 2

am =am+am+

lim a~ (t) =0 .
(23)

Equations (21) and (22) are direct consequences of Eq. (7).
In order to solve Eq. (21) we again introduce a perturba-
tion expansion for bm or equivalently for am as

but these response functions will not be discussed here.
Instead, we proceed to analyze the amplitudes

Explicit expressions for the first- and second-order ampli-
tudes are (for m &0)

a (t)=
~ IJ)J )

m'

a' (t)=— (m
I VJ I

0)exp[i (coj —ia)t]
7

COJ
—l A+60m 0

(m
I VJ I

m')(m'
I VJ I

0)exp[i(coj. +co~ 2ia)t]—
(co& +.coJ 2i a+—co o)(coj i a+ co o)—

(25)

+pcoWco~ o

for all m ' and p H I 1,2, . . . , k I. Second, the limit

lima" (t)
a—+0

is periodic as a function of t with the period 2m. /co.

(26)

(27)

III. TIME-DEPENDENT COUPLED-CLUSTER
METHOD

There are two basic properties of the coefficents am which
we shall need in the following. First, the function a is
regular in the limit a~O provided that

coupled-cluster approach to dynamic response functions
suggested previously by one of us. We start by a brief re-
view of the static Coester-Kummel equation in order to
introduce the necessary notations.

Let
I Po) denote an independent particle reference state,

which is not orthogonal to the exact ground state, for an
X-electron system. The set of all particle-hole and
multiple-hole excitations will be denoted by

[qt vI=1, 2, . . . , D I (28)

where D=(~)—1 for a finite —basis-set approximation
with M spin orbitals. Some of the basic properties of
these operators are

In this section we shall describe the connection between
the adiabatic perturbation theory and the time-dependent

q. I Po) =0, & 4o I e.e. I ko & = ti~

[e.q~]=o
(29)
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and the fact that the manifold of states

I I 4'o& q I
4'o&I

form an orthogonal basis for the linear space in which an
approximate solution to the Schrodinger equation is
sought.

The coupled-cluster ansatz for the ground state is

0
I
o& = xp(To)

I Po&No To= P q T (d (D)

where No is a normalization constant and To is the cluster
generator, which is a linear combination of a subset of ex-
citation operators. Introducing (31) into the Schrodinger
equation, multiplying by exp( —Tp) and projecting onto
the subspace spanned by

(32)

we obtain a set of nonlinear equations for the amplitudes
T„and an expression for the total energy:

(Pp I q„exp( —Tp )Hpexp( Tp ) Pp & =0

Eo =
& 4o I

e"p( —To)Hoexp( To)
I

4'o & .

Currently, we assume that Eqs. (33) and (34) have been
solved.

For a system in the presence of an external perturbation
given by Eq. (1) Monkhorst suggested the form

m~o
t

Q exp iE—pt —i f P(s)ds

—:exp( iEp
—t i e—+ lnNp ) (40)

e —e(0) = f P(s)ds+ lnx,
CO

' 2' 2'lT' 2'
(42)

where

g (Pp I

m &[a (2m/to) —a~(0)]
x =1+ (43)

Np+ g (Pp I

m &a (0)
m&0

It follows from the results of the preceding section that

Thus we find that
te= f P(s)ds +i ln 1+ g (Pp I

m &(a /Np) (41)
m+0

since Np ——(Pp I
0&, as can be seen from Eq. (31). The log-

arithm on the right-hand side of this equation is spurious
and not simply related to response functions. To remove
this part we consider the average level shift

I g& =exp(T)
I
0&exp( iEpt ie—)— limx =1

a~o
(44)

where

=exp( T + Tp )
I Pp & No exp( iEp t —ie), — (35)

d
T= g T„q„.

v=1
(36)

These equations should be solved with the initial condi-
tions

The amplitudes T and the parameter e are now time
dependent. They are to be determined from the time-
dependent Schrodinger equation, which after multiplica-
tion by exp( —T Tp) and a pro—jection onto the subspace
spanned by the set (32) takes the form

dE'

dt
= (Po I

exp( —To T)(Ho+ W —E—o)exp( Tp+ T)
I
Pp&,

(37)

. dT
i = (Pp I

q„exp( —To —T)(Ho+ ~)exp(To+ T)
I 4o& .

dt

(38)

because the coefficients a become regular, periodic func-
tions with period 2'/co in the limit a~0, when
+pco&co o for all integers p and m. For each term in the
perturbation expansion

6' =6') +E'2+ '

we then have the identity

(45)

277
lim ek
a~O CO

2~/a& dEk(s)'—ek(0) =lim f dS
a~o ds

27T/CO

=lim f Pk(s)ds .
a~o

(46)

Linear response functions, in particular, can be calculated
as

(47)

T —T]+T2+ (48)

In the remaining part of this section we shall discuss the
calculation de2/ds by matrix methods. First, we intro-
duce a perturbation expansion for the operator T in (36) as

lim e'(t)= lim T (t)=0 . (39)

Before describing the perturbative solution to Eqs. (37)
and (38), let us examine the relationship between the vacu-
um amplitude and e. It follows from Eqs. (8), (9), and (35)
that

(49)

Differential equations for the first- and second-order coef-
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ficients X„and Y„, and for the level shifts deildt and
de2/dt are obtained from Eqs. (37}and (38}as

dX„
i =gA~Xp+B„, (50)

dt

now show that Y„can be written

Y„= Y+exp[2i (co —ia)t]+ Y„exp(2at)

+ Y„exp[2i( to—i —a)t], (64)

dt
"'

=& ~&+&[H., T, ) &,

dY„
i =+A~ Y~+C„,

dt

(51)

(52)

Y„—=Q I [2(+to+ia)l A]—') ~Cp,
v'

Y„=+I[2iaI A—] ')~C~ .
v'

(65)

= ([Ho, T2])+([IV Ti])+ z ([[Ho Ti],Ti]) .
We are now prepared to set up a closed expression for the
coupled-cluster response function as

(53)

Several definitions have been introduced here in order to
siinplify the notation. Average values are with regard to
the independent particle state

~ Po ), i.e., (0 ):(Po ~

0
~
Po). Transformed operators 0 are defined as

lim f ds = g((Vqt &X„+(V+qt &X+)
a~o 2m' d$

+g(H, q„') Y'„

+g (Hoq„qp)X„+Xp . (66)
v, v'

0 =exp( —To)0 exp(To)

and the matrices A, B, and C are given by

A =(q [H,q„])=(q„H q„) DE-
B,.= (q„IV),

C„=(q„[W,T, ])+-,' (q„[[H„T,],T, ]) .

It follows from Eq. (1) that

B„=B„exp[i(co—ia)t]+B „exp[i ( —to —ia) t],

(54)

(55}

(56)

(57)

The limit a~0 can here be taken without difficulty pro-
vided that the ground state is nondegenerate and provided
that neither +co nor +2' equal any of the resonance fre-
quencies. Using Eq. (63) to eliminate Y we finally get
the result that

( ( V; V ) )„=g(D „X„++D„+X„)+g F~X+Xp, (67)
V, V

where

F~= &Hoq. q~ &

(58)

where

B+=(q„V), B„=(q„V+). (59)

It should be noted that V+ =exp( —To) V exp(To) is not
the adjoint of V. Then we see from Eq. (50) that X„can
be expressed as

—g(H q„)(A ')„„(q„[[H,q ]q ]), (68)
P~P

D„+ = ( Vq„) —g (Hoq„)(A —')„„(q„[V,q„]) . (69)
P~P

A similar expression for D„ is obtained by replacing V by

The transition frequencies are given by the roots of the
determinant

X„=X„exp[i(co ia)t]+—X, exp[i ( to ia)t], — — /EI —A
/

=0. (70)

where

X„+—=g[(+cu+ia)1 —A ]~'B„
v'

(60)

(61) ~=sns-'. (71)

The matrix A is not Hermitian and we cannot, in general,
be sure that A can be diagonalized. All matrices can, how-
ever, be brought to Jordan's normal form by a similarity
transformation

In order to calculate the second-order coefficients Y„ from
Eq. (52) we first write the matrix elements C„as

C„=C+ exp[2i (co ia)t]+ C„exp(2—at)

+C„exp[2i ( to ia)t), — —
where

(62)

C„=g((q„[V,q„])X„+(q, [ V+,q„])X~+ )

+ X &q.[[Ho q'), q') )X~+X. . (63)
V', V"

Similar expressions hold for C„—.Equations (52) and (62)

We assume here that all Segre characteristics of A are
equal to one, since it would otherwise be impossible to ex-
press the spectral representation for ( ( V; V ) )„ in the
correct form, where all poles are of first order. An oc-
currence of Segre characteristics of higher order is a
pathological case, which should be cured by changing (ex-
tending) the subset of operators, which are employed in
the coupled-cluster calculation. Thus we assume that Q is
a diagonal matrix with elements [co

We close this section by giving the formal spectral rep-
resentation for (( V; V ) )„,which is obtained from Eqs.
(61) and (67)—(71) as



1222 ESPER DAI.GAARD AND HENDRIK J. MONKHORST 28

(«;V'».=g
+

am a

CO+ COm
(72)

where a —can be calculated from the definitions

d~ =gD„S„~—,

(73)

(74)

b =g—(S ') „B„+ (75)

h —+= g (b S„F~S„b ~ )l(to +to ) . (76)

The summation in Eq. (76) is over m', v', and v. It fol-
lows now from the general spectral representation (16)

. that co should be interpreted as a transition energy and
a+as(0~ V~rn)(m

~

V ~0).

IV. DISCUSSION

A time-dependent coupled-cluster approximation
scheme has been outlined in this paper. We have em-
phasized the connection between ordinary adiabatic per-
turbation theory for the "vacuum amplitude" and the
level-shift function deldt of the coupled-cluster method.
A result of this analysis is a procedure for the calculation
of linear response functions (( V; V ) )„and thereby also
transition moments and excitation energies. The excita-
tion energies which are obtained by the present approach
are identical to those obtained by the "equation-of-
motion" formulation of Emrich and Zaboltizky. ' Their
numerical results have been very encouraging.

We have concentrated on the formal aspects of a
coupled-cluster response theory, because the structure of
the theory has to be described before the development of
computer programs. But of course, as always in quantum
chemistry, the fate of the proposed method will be decided
by its numerical performance.
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