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The functional renormalization group is used to show that a wide class of dynamical systems displays
spectra with a 1/f~ divergence. Cutoffs introduced by stochastic or deterministic perturbations have
universal features as well. Numerical support is presented.

The wide occurrence of 1/f noise in a large variety of
physical systems' poses one of the most intriguing problems
of statistica. physics. In spite of considerable theoretical ef-
forts, '3 a general theory that could encompass 1/f~ diver-
gencies in a number of realizations is still lacking. In this
Rapid Communication we show that a class of maps of the
interval display 1/f noise down to zero frequencies, and we
tie the exponent 5 to. the properties of the map in a univer-
sal fashion via the renormalization-group approach. Furth-
ermore, we show that the occurrence of random noise and
other relevant perturbations of the map results in a cutoff
of the 1/f divergence, and that the cutoff has also univer-
sal features.

Our starting point is the observation of Manneville that a
particular map which displays intermittency displays also 1/f'
noise. Intermittency means the occurrence of a signal
which alternates randomly between long regular (laminar)
phases (so-called intermissions) and relatively short irregu-
lar bursts. A rapid progress in the understanding of inter-
mittency has been achieved recently. ' To our purposes,
it is most important that the phenomenon of intermittency
has been shown to be universal, with universality classes
which depend only on the properties of the one-dimensional
Poincare map, close to a particular point. ' The same
functional renormalization-group equations employed by
Feigenbaum for studying the period doubling cascade per-
tain to this phenomenon as well (with a mere change of
boundary conditions). '' Here we use this fact to construct
a universal theory of 1/f noise.

Consider then the class of maps of the interval which for
0 & L„((1 reads

Consider then the correlation function R (m),
1 1

R (m) = g g W(X(m), X(0))X(m)X(0), (2)
x(o) -ox(m) -o

where W(X(m), X(0)) is the joint probability to see a sig-
nal X(0) (zero or one) at the 0th iteration and a signal
X(m) at the mth iteration. Writing the joint probability as
the conditional times the marginal we find

where C (1~1) is the conditional probability to see a

X„+)=f (X„)= X„+u ~X„~',

where z„ is the observed variable at time t = n. For con-
creteness see the map of Fig. 1. We stress however that it
will be shown below that Eq. (1) should pertain only to the
vicinity of X =0 and should be in fact interpreted as an ex-
pansion of f there. u is thus the coefficient of expansion
and the exponent z determines the universality class.

The signal generated by this class of maps is shown in
Fig. 1(b).' Motions on the interval X ( a in Fig. 1(a) are
responsible to the laminar phases and motions on the inter-
val X & a are responsible for the bursts. Following Manne-
ville we simplify the mathematical analysis of the signal by
idealizing it as the signal in Fig. 1(c). Here we consider a
train of signals of zero duration and of size unity. Since we
are interested in the long-time properties of the correlation
function this idealization is reasonable.

(c) time

FIG. 1. (a) A map of the interval which for X & a « 1 con-
forms with Eq. (1). For L & a the map is arbitrary except that it
should lead to chaotic motion such that the trajectory is reinjected
to the interval X & a. (b) A typical (Ref. 5) signal obtained from
iterating the map of Fig. 1. The intermissions are associated with
motions on the interval L & a, and the bursts come from
motions on the interval X & a. (c) The idealization of the signal
(a).
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nonzero signal at the mth iteration if there were such a sig-
nal at the zeroth iteration. %e thus see that the issue of the
existance of 1/f noise will be determined by the long-time
(large m) properties of C . We derive now an equation for
C in terms of P(k) where P(k) is the probability for the
occurrence of an intermission of length k. This equation
would read

we then solve

or

X(2",X()) = a "f'(a "X())= 1

X,(i = 2",a ) =
[1+(z 1)a n(x —1)]1/(z —() (12)

C = g C kP(k)-
k-0

(4)
which for large n leads to Xp —a ". Using Eq. (12) and the
form of a we find in Eq. (7)

P(/) =P(consti ' ' ' )I
with the initial conditions Cp= 1, and P (0) = 0. The reason
for Eq. (4) is that we can have a signal at the mth iteration
only by having a signal at the (m —k) th iteration plus an in-
termission of length k. For large m we can pass to continu-
ous time and Eq. (4) together with its initial conditions
transforms to

= P(0)I

where

1 log n z
v log2 z —1

(13)

C(t) = dr C(t —r)P(r)+5(t)
0

Upon Laplace transformation we find

1

1 —P,

where f, = e "f(t) dt. To calculate the spectrum
0

Sf = C t cos(2n ft dt

(6)

We thus see that P(l) is universal and that in order to ob-
tain intermissions of arbitrary long duration it is sufficient
to have a finite probability of reinjection close to X0=0.

To calculate the spectrum S~ we have to evaluate P, . Us-
ing the fact that P(0) =0 we evaluate then

P, = e "P l dl

1

P (Xp) dXp= P (Xp(i a) ) di —= P (I) di
dl

(7)

we shall evaluate C, — 2,f+ C, —2„,f at the end.
The probability for an intermission P(i) is now found as

follows: the size l at an intermission is determined by the
starting point X0 on the laminar side of the map, and the
point a, I = i(Xp, a). Conversely, Xp is a function of I,

Xp= Xp(i, a). The probability that the trajectory is reinjected
between Xp and Xp+ dXp is denoted by P(Xp) dXp and can
therefore be written as

and substitute the result in Eq. (6). The integrals are avail-
able" and lead to the final result

1

f Ilogf I'

f J ~ Zf~ 0 2

Ilogf I, z = —,
'

3const, z (
2

The function Xp(i, a) can be now found via the
renormalization-group method. According to this approach
the intermittent behavior is determined by the eigenfunc-
tions and eigenvalues of the doubling operator

r

Tf (X) = af' f X (8)

where a is a rescaling factor and f (x) is a function which

for X 0 behaves like the function of Eq. (1) [i.e. , corre-
sponding to the boundary conditions f (0) = 0 and
f'(0) =1]. In the absence of relevant perturbations (to be
discussed below), a repeated application of T leads to a
fixed point f'(X):

(I) —e "g(o-/e") (16)

where e is the shift of the map from tangency at X = 0, and
o- is the amplitude of random noise present. g is a universal
scaling function and )M,

= (z+1)/z. For our purposes it is
sufficient to know that for s (I) « 1

Equation (15) is the central result of this paper.
The final issue is the effect of perturbations of the map

on the spectrum. The effects of both deterministic and sto-
chastic perturbations on the intermittency problem have al-
ready been studied, ' with the net result that the average
intermission length, as well as all the other moments of
P(i), become finite. The average intermission length, (I),
has been shown ' to scale like

T"f(X) = a "f' (X/a") —f'(X) .

Here both
21/(s —1)

and

(9)
P, = e "P l dl=1 —s l + 2s l

Upon substitution in Eq. (6) we find for f 0

(17)

(18)
f'(X) = X [1—(z —1)uX' ']

depend only on z which determines the universality class.
The duration of an intermission can be obtained from the

equation X(I,Xp) = a. Focusing on intermissions of length

The 5 function contribution can be eliminated by consider-
ing C =C —C and we thus conclude that the spectrum
becomes now constant for small frequencies. The above
analysis breaks down for frequencies f, —(I) ' or for

1=2"» 1 f, —e"g '(o/e") (19)
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FIG. 3. The cutoff in the 1/f divergence due to shift from

tangency. z =
2

with a=10 is shown. In the inset logf, vs logE
5

5
is drawn for z = —.Agreement with Eq. (19) is obtained.

Above f, the power law Eq. (15) will be regained.
In Fig. 2 we present numerical support to Eq. (15). In

Fig. 3 we show the cutoff frequencies introduced by a shift
from tangency. Equation (19) is verified.

Finally we comment on the observability of these spectra
in other nonlinear systems. The intermittent signals found
near tangent bifurcations give rise to spectra which differ
from those analyzed here. The reason for the difference is
that in those cases the limit a- 0, e 0 provides a mar-
ginally stable fixed point which is attractive from one side
("type I intermittency, " cf. Ref. 6). The analysis of spectra
in these cases will be published in a forthcoming paper. The
intermittency mechanism discussed above is of type II or
III according to the classification of Ref. 6. In the limit
a- 0, e 0 the system has a purely repellent marginally
fixed point. This type of intermittency has been observed
and analyzed in a mathematical model for chemical reac-
tions. ' Since the mechanisms of intermittency of types II
and III are generic, it is to be expected that the I/f noise
spectra calculated above will be observed in nonlinear
dynamical systems.

LOG F

I

-2

FIG. 2. Power spectra obtained by averaging ten runs of 500 000
5

iterations each for three values of z. (a) z = 2, (b) z =2.0, (c)
3

z = —.Agreement with Eq. (15) is obtained.
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