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Observation of multiple-valued attractors and crises in a driven nonlinear circuit
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The attractor of the chaos in a driven nonlinear dissipative circuit is observed. The attractor is made of
a curve imperfectly folded many times. The crisis effect, the sudden onset of chaos caused by the collision
of the subband attractor with the unstable periodic orbit, is verified experimentally.

The work described in this paper concerns analysis of
measurements from a simple experiment. ' 4 The voltage
from an oscillator, V(t) = Vocos2mfot, is applied to the
series combination of an inductor and a junction diode. The
voltage appearing across the diode is a series of rectified
pulses. For a low value of Vo, all pulse heights are identi-
cal. As the oscillator amplitude is increased, repeated period
doubling or bifurcation of the pulse-height pattern occurs.
Further increase of Vo results in appearance of bands of
pulse heights and occasional appearance of periodic signals.
This feature of the signal has been compared with the prop-
erties of one-dimensional maps. ' The "memory" of the
diode associated with the finite lifetime of the carriers is a
source of the observed behavior of the signal.

The analysis of the pulse heights in terms of their se-
quence is described in this paper. By means of simple la-
boratory equipment, a direct display of the "attractors" is
made. It is found that the attractor consists of a curve fold-
ed many times which is the characteristic of the two- or
higher-dimensional maps. The display of the attractor also
enables us to verify an effect called crisis. "

The voltage across the diode consists of a sequence of
pulses of height (a„}(n stands for the nth pulse). Two
sample and hold circuits are used to capture the pulse
heights in such a manner that the sequence (a„)can be
displayed as points on an x-y oscilloscope at (a„,a„+)
with m a parameter. Also the horizontal or vertical projec-
tions of these points on the diagonal line y =x are displayed.
This is accomplished by sampling every mth pulse and also
introducing a time delay into the x-axis channel of approxi-
mately one-half the time between the pulses to be analyzed.
The oscillator frequency applied to the circuit, typically 30
kHz, is about twice the resonance frequency of the circuit.
But the choice of f'o is not critical because the circuit is very
dissipative in a range of Vo where the nonlinear features are
observed. The junction diodes we have employed have the
carrier lifetime of 50—200 p,s. No bifurcations were found if
the carrier lifetime was shorter than 1/fo

%hen the oscillator voltage Vo is small so that all pulses
are identical, a single dot located on the diagonal is seen. In
the language of maps, only one fixed point is present.
When Vo is increased, .the number of dots observed is dou-
bled at each bifurcation. Figure 1(a) is a relation between
a„and a„+]for a case of eight dots off the diagonal, show-
ing that three bifurcations have taken place. In the
language of maps this is the period-8 orbit. Since a„+8=a„,
all of the 8 points are on the diagonal line if they were
displayed on the a„+8-a„plane. Figure 1(b) is a picture for
Vo so large that bands of pulse heights appear and the dots
degenerate to curve segments. For an even larger Vo, the
curve segments merge and form a continuous curve [Fig.
1(c)]; the pulse-height distribution is continuous. At some
values of Vp, periodic orbits such as the one shown in Fig.

1 (d) appear. At larger values of Vo, a„+t becomes a
double- or triple-valued function of a„[Figs.1(e) and 1(f)]
which cannot be explained by the one-dimensional maps.
An indication of a double-valued curve is also seen in the
experiment reported in Ref. 3.

Although the frequency spectrum of the signal across the
diode is continuous when the pulse-height distribution is
continuous, the pulse heights are not random. Their se-
quence follows the rule which is the curve shown in Fig. 1.
If the pulse heights were random, the dots would distribute
on the oscilloscope screen uniformly for all choices of m.

The relationship between a„+~ and a„, a„+~=ft(a„),
consists of curves imperfectly folded many times. The split-
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FIG. 1. Relation between the consecutive pulse heights a„and
a„+[.The parameter Vo, the oscillator amplitude, is smallest in (a)
and is increased successively in the order (b), (c), . . . . (a) Period-8
orbit, (b) aperiodic subbands, {c) merged band, (d) period-5 orbit,
(e) double-, and (f) triple-valued attractors.
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ting associated with the imperfect folding is not resolved in
the pictures shown in Fig. 1. The splitting is, however,
clearly visible in displays of a„+ =f (a„)for m greater
than unity. Examples of this are shown in Fig. 2. As m is
increased, the folds spread apart into many connected
curves. For very large values of m( ) 10), the dots nearly
uniformly distribute over the oscilloscope screen, but they
still form many lines.

The description of the observed pulse-height sequence re-
quires the higher-dimensional map. The physical reason for
this is undoubtedly that the memory of the diode stays
longer than one oscillator period. If the memory were limit-
ed to one period, the height of the (n +1)th pulse a„+~
would depend only on the height of the nth pulse a„or

a„+i——F(a„)
If the memory is extended to two periods, one may have

&n+i = G(&n &n —5)

At the particular values of Vo, sudden transitions between
the periodic and the aperiodic orbits appear. '3 Figure 1(d)
shows one such case; the appearance of the period-5 orbit.
The same type of transitions was found in the numerical
works. Grebogi, Ott, and Yorke have pointed out that a
sudden transition from a periodic to an aperiodic state oc-
curs when an unstable periodic orbit collides with the attrac-
tor and they called this transition crisis. Following is the ex-
perimental verification of this process.

Let us consider the attractor in the a„-a„+5plane. The
period-5 orbit appears to be five dots on, the diagonal line.
At a value of Vo slightly smaller than the value, say V~,
where the transition to the period-5 orbit appears, five
bunches of extrema of the attractor curves appear near the
diagonal line. These extrema are created by the unfolding
effect described previously in this paper. None of the extre-
ma of the attractors crosses the diagonal line when
Vo ( Vi. Figure 3 (a), which is the expanded picture of

which may be expressed as a two-dimensional map letting

(3)
(a) (b)

Instead of deriving the functional form of 6 from the non-
linear circuit analysis, which is complicated, we have looked
at a simple model function studied by Henon':

a„+,= H(a„&+yb„
where 0 is a peaked function and y is a small constant.
The computational iteration of (3) and (4) produces an im-
perfectly folded attractor on the a„-a„+~or the' a„-h„plane.
The Housdorf dimension of the attractor has been con-
firmed to be larger than one", the attractor is strange. The
attractor folds spread apart in the plot of a„vsa„+ with
large m. All of these features are seen in Figs. 1 and 2; the
curves in these figures are attractors. Although the dimen-
sion of the observed attractor has not been measured, the
close resemblance of the observed attractors with the one
produced by the Henon map suggests that the observed at-
tractor is strange with dimension between one and two.
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FIG. 2. a„+~as a function of a„.(a) m =1, (b) m =3, (c)
m = 5, and (d) m = 7. Vo is kept constant.
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FIG. 3. Part of the plot of a„+~as a function of a„showing the
feature of the crisis on the period-5 orbit. Vo is increased in the or-
der (a), {b), . . . . (a) Aperiodic orbit before period-5 orbit appears,
{b) period-5 orbit, (c) period-10 orbit, (d) period-5 subband, (e)
the unstable orbit, and (f) recovery of aperiodic orbit.
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one of five regions, shows this. At this particular region the
extrema are maxima. As Vo increases, the maxima move
upward, and one of the several maxima touches the diago-
nal line. This occurs at the five different regions at the
same value of Vo. Each of the five tangential points is the
marginally stable double orbit. If Vo is slightly larger than
V~, then the double orbit splits into two orbits; one is un-
stable (derivative of the attractor curve at the tangential
point, da„~q/da„)1) and the other one is stable
(Id~, +s/da„~ & 1). This stable orbit appears as a dot on
the diagonal line as shown in Fig. 3(b). The unstable orbit
is not observable. The increase of Vo makes the stable
period-5 orbit unstable, i.e., da„+5/da„&—1. But this is
nonlinearly stable, so that the dot in Fig. 3(b) bifurcates
into two off-diagonal dots as shown in Fig. 3(c). As V6 in-
creases further, these two dots eventually become a seg-
ment of a curve which is one of five minisubbands shown
in Fig. 3(d). The subband expands until the left-hand-side

end of it hits the unstable orbit. The unstable orbit is the
left-hand-side crossing point of the attractor and the diago-
nal line shown in Fig. 3(e). Thus the band hits the unstable
orbit when it hits the diagonal line. This collision of the at-
tractor with the unstable orbit occurs at the five different re-
gions on the diagonal line at the same value of Vo. The
full-band aperiodic orbit then suddenly appears [Fig. 3(f)j.
%e have seen the same process occurring in the case of the
period-3 orbit. The attractor of the subband in this case is a
double-valued function consisting of one continuous curve.
The expansion of the band occurs when one of the ends of
the curve collides with the unstable orbit.
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