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Dynamic behavior of nonlinear networks
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We study the global dynamics of nonlinear networks made up of synchronous threshold elements. By
writing a master equation for the system, we obtain an expression for the time dependence of its activity as
a function of parameter values. We show that with both excitatory and inhibitory couplings, a network can
display collective behavior which can be either multiple periodic or deterministic chaotic, a result that ap-
pears to be quite general.

Recent advances in large-scale integration have led to the
construction of large assemblies of computing elements
whose complex dynamic behavior is largely unknown. Ex-
amples can be found in information handling structures
which range from compact dynamic RAM (random access
memories) and logic circuits' to extended computer net-
works. ' In all these instances, one deals with large collec-
tions of synchronous threshold elements whose states (ac-
tive or passive) at a given time can in turn excite or inhibit
other elements of the network at a later time. Thus, as ei-
ther the connectivity or the coupling strength between non-
linear elements increases, a sustained activity of the net-
work can, in principle, be excited with suitable initial condi-
tions. If such collective modes do indeed exist, it is of in-
terest to study their nature (e.g. , periodic or erratic) and
their stability as a function of parameters such as threshold
behavior and connectivity. These questions are relevant to
cellular automata, neural networks, 3 5 and many-body sys-
tems as studied by finite-time step methods such as Monte
Carlo techniques.

This paper presents the results of a study of the global
dynamics of nonlinear networks made up of threshold ele-
ments. By writing a master equation for the system, we ob-
tain an analytic expression for the time dependence of its
activity as a function of parameter values. As we will show,
for wide ranges of nonlinearity and connectivity a nonlinear
network with both excitatory and inhibitory couplings can
display collective behavior which can be either multiple
periodic or deterministic chaotic. The latter type consists of
an intense and sustained erratic activity which results from
the relaxation of initial configurations of a system with
many degrees of freedom to a strange attractor. This effect,
besides providing a plausible explanation for the diffuse re-
verberations which have been reported in computer simula-
tions of neural networks4 5 might also be applicable to some
studies of magnetic spin systems as studied by Monte Carlo
techniques.

We start by describing the nonlinear elements which
make up the network. These are synchronous threshold de-
vices which, when active, send signal pulses to their con-
nected neighbors. The signal pulses (e.g. , voltage, magnetic
flux, or digital packets) can be either positive (excitatory) or
negative (inhibitory), and we will assume that each of the
identical elements has the same number of inputs (p excita-
tory connections plus r inhibitory ones) as outputs. Each
threshold device, analogous to the formal neurons of logic
networks, will fire with probability p if after a summing
period ~ the sum total of its inputs exceeds a threshold

value Vo. If to each neuron we assign a variable s; such
that it is +1 if it fires, and s;= —I if it does not fire, the
threshold behavior is described by specifying a probability
function which, following Little, we choose to be given by'

with V;, denoting the signal (e.g. , voltage) input to the ith
neuron coming from the jth neuron, and the sum j is over
the r +p incoming connections.

A network of N neurons is then described at each instant
of time t by an N vector n = (s;, . . . , S~) specifying which
neurons are active (s; = +1) and which ones are not
(s;= —1). If P(n, t) denotes the probability that at time t
the network is in state o., its value at t+7 is determined by
the master equation

P(n, t+r) —P(n, t) = — cp(n P)P(n, t)
Ip

+ $cp(p n)P(p, t)
I p)

where cp(n p) denotes the transition probability in time r
from a state o. to a state P. For the particular case of
single-neuron processes it is determined by Eq. (1).8 Intro-
ducing new variables

and

J„"—= ", H= —g Vp
—2Vp

j

E; =—g J(&s&+H, cp(n p)

can be written as

cpt. (st ) = exp( Et sL ) Xexp(ELsL )
I

$L

(4)

The quantity of interest is the activity of the network
which we will define as

A = ((sk) +I)/2

with the expectation value of the kth spin at time t given by

p(s ) = (exp[ —es ( V, —Vp) ] + I)
where s denotes the value of s at t+7, e determines the
width of the threshold region, and V; is the input potential,
which can be written as
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(sk) =—g l, l skP(s, . . . , s~, t) where ( ) implies a sum over
the 2~ possible values of the set (s~, . . . , s~), and (sk)
ranges from —I to +1. Using Eq. (3) the expectation
value can be written in terms of the following equation of
motion

(Sk) (+~ (Sk) g
= 2 (Sk&k(sk) ) g (6)

with tuk(sk) given by Eq. (4). It now remains to calculate
the right-hand side of this equation. In the limit of small
excess voltages ( V; —Vo small) or broad threshold regimes
(small e), it is possible to generate a series expansion in
powers of Ek for Eq. (4). To third order in Ek, we obtain

cuk(1 —EkSk+Ek Sk/3)/2 (7)

which can in turn be used to evaluate the sum in Eq. (6).
In the spirit of a mean-field theory, we shall assume that
(s;s, ) = (s;) (s, ) if i W j, (s, ) = (s), and write g, Jk, ——J,
X; Jk, = J', and g Jk, =J"with

J' =pJ +rJ
J" =pJ) —rJq

(gb)

(gc)

Equation (9), together with Eq. (5), describes the dynam-
ical behavior of the network to third order in k( V; —Vo).
Although a detailed study of the solutions of the equation
for different parameter values will be given elsewhere, we
will now describe several important regimes in the global
behavior of the activity. Consider first a network with only
purely excitatory (i.e. , ferromagneticlike) or inhibitory (i.e. ,
antiferromagneticlike) interactions. In such a limit, either
J~ or Jq are zero, and J' && J'~. It then follows that Eq. (9)
becomes (s),+, =H +(J((s),+

~ J('(s),'/3. The solutions
of this equation are such that for J & 1 all initial values of
the spin configuration relax to the fixed point (s) = H and
therefore A = (1+H)/2 This static limit is sim. ilar to the
dynamics of Ising-like models using a continuous approxi-
mation to the master equation, Eq. (3).9 If H is vanishingly
small (i.e. , the average input equals the threshold), we con-
clude that the long-time activity of a network with no com-
peting interactions consists of a simple time-independent
fixed point in which almost half of the neurons are firing at
a given time. Thus the network carries no information.
This result shows that all that is needed in order to have a
sustained activity in a network with no competing interac-
tions is a smooth nonlinear threshold. '

The second and most interesting case is the one in which
the network has the same amount of randomly distributed
excitatory and inhibitory connections (the neuron glass lim-
it). In this limit 1 is negligible compared to JJ' or J"3, and
Eq. (9) becomes (in the limit of H 0)

(10)

where R = (2J"/ —JJ'), and which for realistic values of
the parameters displays nontrivial dynamics, Consider a

where J~ and J~ are the strengths of the excitatory and inhi-
bitory potentials, respectively. A lengthy but straightfor-
ward calculation then gives the following equation of motion

(s), ~, = H(1 —J'~ —H3/3) +(J—JJ'+2J"/3 —H~J) (s),
—H(J' —J'~) (s),' —(J /3 —JJ'+2J" /3) (s),'

network with an initial activity A. For values of R in the
range —2 & R & 2 its long-time behavior corresponds to a
stable, time-independent fixed point whose magnitude in-
creases monotonically with R. At R =2 a pitchfork bifurca-
tion takes place whereby initial configurations now relax to a
periodic attractor with period 2~. Therefore, the activity will
not only be large and finite, but consist of collective modes
which oscillate periodically in time. As R is increased even
further, one encounters a full cascade of period doubling bi-
furcations at each of which the period of the asymptotic os-
cillations lengthens by a factor of 2. Thus, a computation of
a property of the network (such as its energy) at fixed R
would reveal an apparent finite set of configurations whose
number depends on the period of the activity. " For values
beyond R =2.3 a new regime is encountered. This regime
is characterized by an intense and erratic activity in which
initial configurations of the network relax towards a strange
attractor. Figure 1 shows an example of the time evolution
of the activity of the network for R =2.34, as generated by
Eqs. (5) and (10) after an initial transient of 1000 time
steps. As can be seen, the collective behavior of the system
is chaotic, with a peak-to-peak intensity which can be deter-
mined by the first and second iterates of Eq. (10) evaluated
at the maximum of its right-hand side. Furthermore, this
deterministic erratic behavior is characterized by a broad-
band component of its power spectrum which grows like
[R —(R),] with o-=1.525. '~ As the value of R is further
increased, the system may also exhibit laminar regimes
which in some cases will be preceded by intermittent
behavior, " followed by an even more chaotic activity at
larger val'ues of R.

The effects just described provide a plausible explanation
for the diffuse reverberations which have been observed in
simulations on neural networks, 4 and the reports of sus-
tained oscillations in similar systems. ' Also, since the ap-
pearance of such collective modes in our theory seems to be
a direct consequence of both finite-time steps and the non-
linearity of the threshold function, we expect them to be
pervasive in many other network systems with the same
characteristics, such as in Monte Carlo simulations of spin-
glasses. "

Finally, we would like to mention that up to this point we
have neglected explicit spontaneous fluctuations of the neu-
rons other than those provided by the initial conditions.
Such fluctuations (thermal, noise, or inputlike) can be of
relevance to more complicated networks' and to the
dynamics of many-body systems when studied using finite-
time step techniques. They can be straightforwardly includ-
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FIG. 1. Activity of a threshold network with competing interac-
tions as a function of time (in units of the summing period ~) after
a transient of 1000 iterations. R =2.34.
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ed by writing in place of Eqs. (1) and (4) the transition rate
that appears in, for example, studies of kinetic Ising
models, i.e.,

cuk(sk) =
2

(1 —sktanhPEk)1

with P=(ksT) ' and ks the Boltzmann constant. Using

this formula, we have computed the spin dynamics of such
systems and obtained results which are similar to those of
Eq. (9). This leads us to believe that these studies might
also throw some light on the spin-glass problem.
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