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Self-replicating attractor of a driven semiconductor oscillator
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The measured attractor of a driven R-L-varactor system is found to be self-replicating and inconsistent

with a simple logistic map. A calculation based on a standard model of a varactor diode is in qualitative

agreement with the data.

It is well established that a driven series RLC circuit in
which the capacitor is replaced by a varactor diode carl exhi-
bit period doubling, chaotic bands, and periodic windows at
subharmonics of the fundamental drive frequency. ' If the
system is highly dissipative —that is, for large resistance—the measured period-doubling routes to chaos are con-
sistent with the theory of Feigenbaum and the order of ap-
pearance of the periodic windows agrees with the predictions
of Metropolis, Stein, and Stein. This would suggest that
the underlying attractor of this system is quite similar to the
logistic equation x„+?=4ax„(1 —x„). However, for systems
with smaller values of series resistance the true attractor is
more complex although quite regular in its structure.

The system studied is a series combination of a sine wave
voltage source, a resistor, an inductor, and a varactor diode.
Circuit parameters are given in Table I and defined below.
The amplitude of the voltage source, Vd, is digitally con-
trolled: The digital range of 2750 to 3150 corresponds to a
drive amplitude range of 1 to 10 V. Figure 1 is a bifurca-
tion diagram of the current flowing through the circuit as a
function of Vd.'For each value of drive amplitude the
current is sampled once per cycle for many cycles at the
negative-slope zero crossing of the driving sine wave.

The structure is quite complex but exhibits the usual
features of period doubling, chaotic bands, and periodic
windows. A return map (Fig. 2) of the current measured in

the chaotic band at 2955 just below the period-4 window has
a great deal more structure than a simple parabola. This is
clarified by forming a phase-space portrait in three dimen-
sions' from the points 1(t), I(t + T), 1(t +2T), rotating it,
and then projecting it onto a plane [Fig. 3(a)]. This struc-
ture slowly evolves as the drive voltage is raised to bring the
system from the period-4 window to the period-5 window.
It becomes the attractor of Fig. 3(b) in the chaotic band at
3059, just below the period-5 window. The self-replicating
nature of the attractor is quite evident in a comparison of
these two figures. The attractor in the period-5 window lies
on the five exposed tips of this "plant. " The attractor mea-
sured in the chaotic band below the period-3 window has
similar structure but with appropriately fe~er roots, vertical
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TABLE I. Measured circuit parameters.
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Cd

y
fo

2.8 pA
82 pF

56 X10 pF
0.44

2.5 MHz

v,

R
L
Vd

34 mV
0.6 V
25 0

50 pH
0-10 V

2700

FIG. 1. Measured bifurcation diagram of the circuit with the
parameters of Table I. Approximately one million data points are
plotted. See text for explanation of Vd.
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FIG. 2. Return map of the system measured just below the
period-4 window, Vd =29SS. The driving period is T.
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stems, and leaves. If one decreases the resistance of the
circuit, more major periodic windows and their plantlike at-
tractors are brought within range of the available drive vol-
tage. This explains why the highly dissipative systems are
well described by a logistic equation: If the resistance is
large, only one root segment of the attractor is accessible to
a large range of drive voltages and thus the attractor is
essentially an inverted parabola.

Among the features of the bifurcation diagram (Fig. l)
are the discontinuities shown at the boundaries of many of
the periodic windows. Some windows contract inwards and
have a range of currents less than the neighboring chaotic
regions, such as the period-3 windows at 2870 and 2910,
and others expand outwards, especially the major period-3,
-4, and -5 windows at 2880, 2960, and 3060, respectively.
This behavior is well described by boundary and interior
crises of the attractor. 6 Such discontinuities are often indi-
cative of hysteresis in the system. In fact, a bifurcation dia-
gram made with the control voltage decreasing rather than
increasing looks nearly the same but shows the abrupt
chaotic to periodic transition boundaries shifted downward
in position causing some features to be lost entirely, These
shifted transitions show that the system has multiple basins
of attraction. The hysteresis seen in the bifurcation dia-
grams is also coupled to the slope discontinuities of the at-
tractor (Fig. 3). Three points of each major window always
occur in association with slope discontinuities of the attrac-
tor. Each inwardly contracting window that has been exam-
ined was found to have at least one point lying on a nondif-
ferentiable point of the attractor. The measured attractor
and the hysteresis of the data are incompatible with the
published model of Rollins and Hunt. 7

In order to model this system, we have used the standard
model of a varactor diode as a nonlinear capacitance in
parallel with a nonlinear conductance. The nonlinear dif-
ferential capacitance C( V„)= dg„/dV„was modeled as the
transition capacitance for V„) —@,
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FIG. 3. Projection of the three-dimensional attractor (a) just
below the period-4 window and (b) just below the period-5 window.
The open circles indicate the location of the stable period-S attrac-
tor.

and as the diffusion capacitance for Vv ( —@,

C( V„) = Cdexp( —V„/V, )

where V„and g„, the voltage across and the charge stored
by the varactor, are positive for reverse bias conditions.
Each capacitance is only significant in its range of definition
and makes a negligible contribution to the diode capacity
outside of it. These equations are integrated to find g„( V„)
and thus V„(g„). The thermal voltage V, is adjusted slight-
ly to ensure continuity of V, ( g„) at go = g„( —@). The
conductance is derived from the usual I- Vcharacteristic of a
pn junction,

I„„=I, ( l —exp[ —V„(g,)/ V, ] )

where the sign convention is as above. These equations can
be combined with the usual circuit equations for a resistor 8
and an inductor L to give a second-order differential equa-
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FIG. 4. Calculated potential function of the nonlinear circuit.

tion for the stored charge Q„,

d2 dl„„d
L 2" + L "" +R " + V„(Q„)+Rl,„(Q„)dt' dQ„dk

= Vd sin(2m fat) . (l)

This is the equation of a driven oscillator with nonlinear
friction and force terms. The friction term is well described
by a step function whose value is given by the resistor for
Q„& Qo and which steps up to a new value below Qo. The
force term, dominated by V,(Q„), can be integrated giving
the highly asymmetric potential well of Fig. 4. The potential
behaves as Q

2 s for large positive charge and as
hholQ~I+hhhlQ IlnlQ„I for large negative values. These two
components of the potential are due to the transition capaci-
tance and the diffusion capacitance, respectively. The calcu-
lated bifurcation diagram for the measured circuit parame-
ters of Table I is shown in Fig. 5. As can be seen, the
model has all the features of the data and the attractor (not
shown) has the same plantlike structure. Repeating the
computation with I,„set to zero, thus removing the varactor
conductance, produces similar results, showing that the
asymmetric potential is the cause of the periodic and chaotic
behavior.

In conclusion, we have shown that a driven R-L-varactor
system has a complicated, though regular, multidimensional
self-replicating attractor. We conjecture that this structure
repeats itself indefinitely as the control voltage is increased
to arbitrarily large values and that a new branch is added to
the attractor only when a period doubling transition to chaos
has occurred. This macroscopic repetition of the attractor is
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FIG. 5. Bifurcation diagram calculated by solving the nonlinear
differential equation (1). About 10000 points are plotted.

quite different from the well-known microscopic self-
similarity of a multidimensional map like the Henon attrac-
tor. This behavior is modeled by a driven second-order
differential equation that is derived from the physics of p-n
junctions.
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