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External noise and the dynamics of Ginzburg-Landau systems far from equilibrium
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The dynamics of Ginzburg-Landau (or "potential" ) systems driven away from equilibrium and subjected
to noise is simulated numerically. It is found that the Fourier spectrum does not always have its peak at
the wave number corresponding to the absolute minimum of the potential. This is explained heuristically
on the basis of an entropy type of argument.

A great deal of interest has centered in the past few years
around the question of long-time evolution in systems far
from equilibrium, in particular, the problem of wave-
number selection (see Ref. I and references therein). In
this Rapid Communication, we investigate a restricted class
of systems, those for which a so-called Ginzburg-Landau
"free energy" can be written down. Examples are provid-
ed, e.g. , by superconducting films subjected to a steady mi-
crowave field or materials under constant nuclear irradia-
tion. It is believed that the final state of such systems is
uniquely determined by their free energy V and by the char-
acter of their fluctuations —which are not always of purely
thermal origin.

Consider a nonequilibrium system which, beyond thresh-
old, may stabilize in any of several local minima of V,
VI= V(k;), each corresponding to a structure with wave
number k;. External noise induces transitions between
minima i,j at a net rate R; J which, close to a stationary
state, is given approximately by A,&{exp[(V~

—V&)/T] —I),
where T is an effective temperature depending on the noise
intensity, and A,~ is a kinetic prefactor which embodies such
effects as noise statistics, activation energy, etc. For our
purposes, A,~ may be thought of as indicating an effective
attempt frequency for i j. In the following, we assume a
Gaussian white-noise spectrum. When the noise is weak, it
is reasonable to expect that 3,& is essentially independent of
ij, and that the most probable state is the (unique) one cor-
responding to the absolute minimum of V. At stronger
noise levels, however, the prefactor may acquire a nontrivial
k dependence, thus effectively renormalizing the "bare"
free energy V. It is the purpose of the present work to
study this effect in more detail. We shall be interested
mainly in the "high-noise" limit (to be defined later),
where the influence of the prefactor actually dominates the
transition rate, i,e. , entropy effects are the most important
ones.

In what follows, we present a one-dimensional model sys-
tem, simulate its dynamical behavior numerically, and pro-
pose a partial explanation of the results, in the form of a
rough estimation' of the k dependence of the kinetic prefac-
tor. The estimate is based on the idea that 3 J is directly re-
lated to the noise sensitivity of the pattern's local wave
number, as explained below.

We consider a model defined by the following free ener-
gy:
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where u is a real variable and $(r) Gaussian white noise.
The boundary conditions are assumed periodic with period
L » qo

' and the integral in (1) runs over one period. A
variant of (1) with b =0 has been used to study Rayleigh-
Benard convection; we include the b term for reasons that
will become apparent later. We have integrated numerically
the Fourier-transformed Eq. (2) for a=0.95, qo= I, where
the system is past threshold [i.e. , there exist nontrivial sta-
tionary solutions of (2)], and various values of a and b
ranging from 0.5 to 500. The integration procedure is
described in Refs. 1 and 7. In Figs. 1 to 3, we present typi-
cal time-averaged spectra; usually the averaging time was on
the order of 400 time units. Figure 1 corresponds to the
case a =0.5, b =0; the noise variance is 50%. Although
this is very high, the peak in the spectrum remains located
very near the absolute minimum of the potential energy V,
as denoted by the arrow. The second figure pertains to the
case a = 0.5, b = 1; the noise is about 30%. We see that the
spectrum is more complicated, with the peak now displaced
slightly from the minimum of the energy. Finally, in Fig. 3
we stimulate the same system, but at a higher noise level of
50%. The spectral peak has shifted even further away from
the energy minimum. It would thus appear that the spec-
trum of a Ginzburg-Landau system driven from equilibrium
depends, in a delicate way, on the detailed form of the free
energy V as well as on the intensity of external noise.

It is natural to surmise that the prefactor A,& plays a major
role in explaining our results. We now evaluate approxi-
rnately the kinetic part of A;I, i.e., the rate of attempts at es-
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FIG. 1. Time averaged Fourier spectrum for model [(1),(2))
with ~=0.95, q0=1, a =0.5, b =0. External noise variance is
50% of largest peak amplitude; bars indicate standard deviation of
amplitude. The wave number k is in units of 2m divided by the
length. Arrow denotes the absolute minimum of the free energy
V [see Eq. (I)].
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(
plicit by using (2), which can be rewritten

du~ d @~ dU~
d,
' = i d'+ d' e '=yq((u})+(, (r)

i
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FIG. 2. Same as Fig. 1, but with b =1, and noise variance30%.

Note that the spectral peak has shifted slightly away from the
minimum of V.

cape from i. In order to do so, we assume the existence of
two time scales t „„. « tp],zsc where t„,;„ is the average
time between noise-triggered events i j (or "phase
slips"5), while r,h„, is the usual phase diffusion time scale
(see, e.g. , Ref. 8). The above inequality clearly requires
that the noise be strong enough. We are interested in the
dynamics on a scale t„„.„. Let us now consider a large
subregion of the system, with length L' )) qo ', a local and
instantaneous "wave number" q may be defined as follows.
With the quasicontinuous Fourier spectrum in the subregion

'4'a 4'
uk = Uke (and u k = uk ), we introduce P~( (uk} )
= 8Uq/dk I q ~', q is then given, for instance, by

The last decomposition rests on the fact that the mode q
and its harmonics are phase locked —thence the common
phase factor exp(i/~) —and represent a set of hydrodynam-
ic variables. The BI terms are contributions from the modes
uk with k ~ nq. These are of two types. First, those with
I k —nq I (( q, the sidebands of the spectral peaks; the
dynamics of these modes is described by phase-diffusion-
type equations. Since we assume a time scale t « tph„„
the sole effect of the terms involving the sideband modes in
Eq. (5) will be to effectively cancel the contribution from
idibq/dr in the left-hand side. As for the other modes, they
are not strongly phase locked to u~, and we shall assume the
noise is intense enough so that their phases are essentially
random, leading to near cancellation. This approximation is
valid at those times when the system does not come close to
a saddle point of V.9 Equation (5) thus reduces to dU~/dh
= f~((U~})+ f~ and (4) becomes

(6)

Finally, averaging over the noise,

(7)

P, ((uk}) =o ~ (3) where we have taken

with the range of q properly restricted for unicity. As the
system evolves, so will q. Restricting ourselves to variations
hq such that L'5q « 1, we therefore set to zero the total
time derivative of (3):

BP dq Bpk () dU dq gP+ '+
9t dt Qk k Bq dt dt Bq

(4)

Our basic assumption is that fluctuations of q, as defined by
(4), are attempts at escaping from the minimum of V with
wave number q. Equation (4) will now be made more ex-
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FIG. 3. Same as Fig. 2, but with noise variance of 50%. The

spectral peak appears very close to the state with least noise sensitivi-

ty, as given by equating Eq. (7} to zero, and denoted here by the
dashed arrow.
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with U' a stationary solution of (2) without noise. This is
accurate provided the average is made over times such that
q changes only little. '0 The right-hand side of (7) can now
be taken as a measure of the escape attempt rate. We ex-
pect that, when noise is large, this rate will rule the dynam-
ics; if, e.g. , the attempt rate should vanish for some q = q„
we anticipate a particularly noise-resistant state which would
become populated preferentially, i.e., at a given time, most
subregions would lie close to q = q, . Note that the left-hand
side of (7) depends solely on the stationary amplitudes U'.
It is thus easy to evaluate numerically, and does indeed ex-
hibit a zero in the range of interesting wave numbers. We
now examine the computed dynamical average spectra in
the light of our prediction that q = q, should be "selected. "
In doing this, we must keep the following in mind. The
dynamical simulations are costly and, in fact, had to be re-
stricted in such a way that k,„, the largest wave number
taken into account, always satisfied k,„&2q, q denoting
the main spectral peak; not too far from threshold, the
neglected peaks at 2q, etc. , remain small anyway. With (7)
effectively limited to n =1, it is not difficult to see that the
b(B„u) term in (l) plays a crucial role: When b =0,
equating the left-hand side of (7) to zero yields q, = q
the wave number at which V also has its absolute minimum.
Figure 1 confirms that, when b =0, the maximum in the
spectrum seems to remain located at q;„. On the other
hand, with b W 0, we have q, A q;„; Figs. (2) and (3) indi-
cate that, in this instance, progressively larger noise results
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in the peak shifting away from q;„ toward q, (interrupted
arrow). This seems to be true —within numerical
accuracy —for all the cases which we have tested. Note
that, remarkably, (7) depends in no way on the existence of
a potential V: Only the equations of motion, f~((u}), not
the potential, enter the derivation. It is thus interesting to
mention here that results similar to those described above
seem to hold in dynamical simulations of nonpotentiaI sys-
tems as well '", altogether, these various results would ap-
pear to strengthen the case for the analysis that leads us to
Eq. (7).

To summarize, we have evaluated, by numerical simula-
tion, the average spectra of several driven Ginzburg-Landau
systems under noise. The spectra are difficult to calculate
analytically, but we believe that, at least, the location of the

first spectral peak can be understood both in the low- and in
the high-noise limits. The analysis presented here for the
high-noise case actually seems to carry over to the much
more complicated but widespread case of non-Ginzburg-
Landau systems.
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