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A high-energy expansion is obtained for nonrelativistic phase shifts in a screened Coulomb potential, ex-
pressing their difference from the corresponding point Coulomb phase shifts as quadrature integrals over
the potential. The result exhibits the role of small- and large-distance regions of the potential in determin-
ing these phase shifts.

We wish to report high-energy expansions for nonrela-
tivistic phase shifts in screened Coulomb potentials V(r).
We characterize screening by a function g, with r V =— —ag,
a =—Ze', g(0) =1, and g(~) =0, with units A = m, = c = 1.
We assume we may take g =g(h. r ), with X a small parame-
ter (A. ' large compared to the electron Compton wave-
length) characterizing the screening of the nuclear charge,
and we assume the potential in the interior of the atom is
well represented by the first few terms of a power series ex-
pansion in Xr: g = Q„V„(h.r)", Vo—= 1. The Yukawa and
Hulthen potentials are analytic examples; a Herman-
Skillman potential may be fit to such a form. [Here g(kr)
should be understood as corresponding to a smoothed poten-
tial, omitting, for example, shell structure effects, in order
that a few terms in an expansion in integral powers suffice;
such a smoothed potential is quite adequate to obtain energy
levels and wave functions close to those of a more accurate
potential. ) We have previously found' that small-distance

I

properties of bound and continuum wave functions of given
angular momentum I are well determined by the small-
distance properties of the smoother potential (by the V„),
including also bound-state energies and bound- and
continuum-state normalizations in the case that the energy
of the state (positive or negative) is large in magnitude and
the angular momentum is not large. Our results here com-
plete this discussion by showing to what extent the phase
shifts at high energy are also determined from the short-
distance properties of the potential. With these results it
should be possible to obtain analytic expansions for bound-
free angular distributions, just as before such expressions
were obtained for total cross sections.

Our result for the phase shift 5I(p), as a function of an-
gular momentum I and momentum p, expressed relative to
the corresponding point Coulomb phase shift 5ci(p )
= arg(I (I + 1 —I v) ), keeping terms through p

3 (i.e.,
through r in a small-r expansion, and making no expansion
in h. , but collecting terms by order in X/a = 1/Z I ), is

gl(P ) —ger(P ) = v(ln2P/h. + bo) —v'( V| fn2p/h. + —,Po) + v'I(I + 1)(—, V, ln2p jg+ b, + —, V, )

+
4

v'V, +v'Ref(i+1) [Vi ——, V2I(I+1)]

where v = a/p, P is the logarithmic derivative of the I func-
tion, V„—= (A./a )"V„,and

bo= — dx g'(x) lnx
0

t = ——,(ai )'J, d g"'( )ln (2)

Po= —(&/a) dx [g(x)]'Inx
dx

The well-known term v ln2pjh. reflects the infinite phase
difference as one approaches the Coulomb potential as the
limit of a screened potential; Taylor's result includes the
portion of Eq. (1) of order v. The three coefficients
60, 6 i, Pp are not determined from the first V„and represent

1

larger-distance information about the atomic potential. We
shall examine the significance of other aspects of this result
subsequently.

We will give the derivation of this result, which is fairly
lengthy, elsewhere. In summary, our procedure is (1) to
obtain an iterated eikonal wave function of complex
momentum, (2) to use the iterated eikonal to reconstruct
the small-distance behavior of the solution of the three-
dimensional Schrodinger equation characterized by an in-
coming plane wave and outgoing scattered spherical wave,
and (3) to read out the phase shifts from the coefficients in
the partial-wave decomposition of the three-dimensional
wave function. We had previously obtained the small-
distance behavior of the general solution of the Schrodinger
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equation in three dimensions, well behaved at the origin, in
a screened Coulomb potential characterized by g, and also
the partial-wave decomposition of the general solution.
However, we did not have a way to pick out the particular
scattering solution (equivalent to determining the phase
shifts), since our solution was only valid at small distances,
not in the asymptotic region where the boundary condition
is applied which usually determines the scattering wave
solution. We now see the eikonal wave function, valid for
large p, as providing a bridge between small- and large-
distance properties, since it can be determined from quadra-
ture integrals (which do involve large-distance properties of
the potential) in the small-distance region and, therefore (in
the large p case), can be used to identify the correct particu-
lar three-dimensional solution. To go beyond order p ' one
must iterate the eikonal, and the further results can also be
obtained in quadrature. However, for real p the iteration is
in fact not justified, as is illustrated by the failure to pro-
duce terms of an asymptotic spherical wave character. The
problem is avoided by considering complex p, for which the
spherical terms are exponentially small for large p, and then
returning to real p only after having constructed the desired
three-dimensional solution. The issue is related to the
Stokes phenomena.

Several checks of our expansion for screened Coulomb
phase shifts are available. In the case of the Hulthen poten-
tial V(r ) = —a (e"'—1) ', the exact analytic result for the
s-wave case is known. ' In the large-p limit it becomes

I

(through order p )

go""""'"—Sc, ————,(Z/a )v'Rey(1 —Iv)

+ [v + —,( Z/a )v'] ln2p/Z

——,(Z/a)v'+ —
4s (Z/a)'v' . (3)

With use of the results for this potential

Vt= —2, V2= &&, bo=G, po=
2 (A/a)1 1

— 1 (4)

in Eq. (1), Eq. (3) is indeed obtained. Another test of the
s-wave phase shifts is provided by Puff's quadratures
(rewritten in our units),

&o(p ) = —— V (r )dr ———V'(0) + — V ( r )dr1 1 1 I 1

p 0 p3, 4 2 0

ga gb ( ya yb dr ya yb
p 0 4p3

(Va 2 —(Vb 2 dr
2p3

while Eq. (1) gives

(6)

for potentials finite at the origin. However, if we work with
the difference of two screened Coulomb potentials g having
the same V~, the result (5) becomes

3

dx lnx[g —g ] + ——— dx lnx, [(g ) —(g ) ]+—— — [ V2 —V2]a a bi 1 A. a a 2 b 2 1 ~ a a b

k 2a(k dx 4 a k

Integrating by parts, we verify that these two expressions are identical. As a third check we have made comparisons with
numerical calculations of Yukawa phase shifts; the agreement is good over the range of elements and energies for which
v & 0.5 for l as great as 6.

For many purposes the phase information of interest is the relative phase, say h~ —50. Our expression for this relative
phase is very simple:

1

(6 —Sc) I
o= v I(l + 1) —V2ln + b&+ V2 ——V2 Ref(l) + v V~ Re[/(l + 1) —$(1)]3 1 — 2P — 1 — 1— 3

2 A. 2 2
(g)

It is also known that, in general, a screened Coulomb wave function is closest in shape to a Coulomb wave function of
shifted energy, corresponding to the analytic shift between screened and Coulomb energies,

E = Ec+ —,a'I —2 V)+ V2[3v'+ l (I + 1) ]]

In this form the expression for the phases is indeed also very simple:

bi—= g((p) hi(pc) = vcln —V~vc+ vbo —
2 vcPo+ V2vc[l(I+1)+ 4 ]+vcl(I+1)b~

Expressing 4~ as a function of p we may finally write in the
most compact form

b& —6 = v I(l +1)[—V (ln2p/X+1)] + b~

All dependence on Re/ has now disappeared. We note that
there are additional terms beyond v in2p/X which are not
analytic as A. 0, although these further terms all vanish in
the limit. Further, these terms are not just part of an
overall phase, but they also enter the phase-shift differences
of Eq. (8).
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