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Small-signal gain in lethargic and conventional laser amplifiers
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The lethargic regime of a swept-gain laser amplifier is investigated theoretically to determine the pro-

cedure for passing over to the conventional limit Tj (level lifetime) » T2 (phase memory time) of laser

amplifiers. The calculation is done with a model in which the transit time of the atoms to, is less than T~,

which is soluble in closed form. The conventional limit is taken as to ~. The general and conventional

limits involve contradictory conditions of operation; nonetheless, both agree with experiment. This ap-

parent contradiction is resolved by our finding that the conventional limit is a singular case.

INTRODUCTION

Research into short-wavelength lasers' has shown that
maximum gain per atom is achieved in swept-gain amplif-
iers. ' ' Some earlier work dealt with amplifiers that are
equivalent to a swept-gain case. A gain pulse, moving with
the velocity of light c, is found to give an asymptotically de-
creasing gain coefficient due to "laser lethargy, " ' first ver-
ified in the free-electron laser (FEL),'8 and subsequently in
laser amplifiers. Lethargic gain is incompatible with laser
operation since the light pulse lags behind the gain, thus
utilizing a decreasing fraction of it. In the FEL, an ex-
ponential gain is achieved by what is equivalent to having a
gain pulse that moves at a velocity less than that of light
(called a "delayed" velocity or boundary). 8

An earlier paper gives an analytic solution for small-signal
gain in a swept-gain amplifier with a delayed boundary. ' It
dealt with a transit-time broadened laser amplifier, i.e. , the
atomic decay times are long compared to their transit time
across the laser beam. The model describes a gain pulse
moving at velocity v, with atoms' moving transversely to
the laser pulse, so in homogeneous broadening can be
neglected. Note that transit-time broadening dominates the
Stanford FEL.'

Here we generalize, straightforwardly, the previous work
to include homogeneous broadening by transforming our
equations back to the previous case. ' The results can then
be used to compare with the FEL in the warm-beam limit. "
We are not concerned with this comparison, but rather with
the connection between the analysis of the delayed boun-
dary problem and the conventional analysis of small-signal
gain' in the case where both the level lifetime T~ and the
transit time to are much longer than the phase memory time
T2. We consider the case T~ && tp, and go to the limit
to » T2

The transition between the lethargic and conventional
cases is not trivial. The conventional analysis" applies for
v «c. The optical pulse grows exponentially, and moves at
a pulse velocity V & c. With lethargy, the pulse can only
have exponential gain for v ~c, and then only for a pulse
velocity V=v «c. Hence the conventional analysis meets
neither requirement for the lethargy analysis. The conven-
tional analysis is valid but singular, applying rigorously only
in the limit T~ ~, to ~. In our analysis of the general
case we find that the answer depends on how the limit is
taken. Our result connects with the conventional one when
the limit is taken so that for all ro (or Tt) the velocity ~
gives maximum gain. By our construction, the conventional
result is shown to be the largest gain achievable in the limit

T»& to » T2. This conclusion maintains consistency in
our understanding of laser gain.

METHOD OF SOLUTION

The amplifier is described by the equations
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which are the Maxwell-Bloch equations' for this case in the
small-signal limit. The slowly varying field amplitude E is in
units of the Rabi frequency, and P is the dimensionless
slowly varying amplitude of the polarization. The variable
p, =t —z/c is the retarded time (z denotes position and r

denotes time) and n' is a coefficient related to the gain. '"
The difficulty in the analysis is to impose the appropriate

boundary conditions. ' The swept-gain boundary is imposed
at the retarded time p = z/p, where p is given by
v ' = p '+c '. The atoms enter the beam at p. =z/p with
P (p„z) =0, and exit at p, = z/p + ro, where ro is the transit
time. The region z/p~ p, ~z/p+to has active atoms and
nonzero gain. In the region p, ~z/p the field is nonzero,
since it propagates out of the region of gain with a velocity
of c & u. In the region p, ~z/p+ro the field is zero, pro-
vided one has a zero field at z =0 for p, & to. For to « T&,

and weak fields, the inversion remains at its initial value of
unity. Because the field is unknown at p, =z/p, one cannot
apply a boundary condition on the field at that time, as is
done in the conventional analysis. Instead the field is
prescribed at the time p, = z/p+ to, for all z, in which case it
reads E(p„z) =0.

These equations and boundary conditions enable us to
find a set of functions, labeled by n, in which we can ex-
pand'5 any arbitrary initial field at z =0, provided of course
that it is zero for p, ~ fp. These solutions take the form of a
pulse that has an invariant shape in the rest frame of the
gain. These have been called "supermodes" by Dattoli and
Renieri, " who were the first to apply such an analysis to
swept-gain devices. Supermodes have the form
f'„(p —z/P)exp(7t„z), with a similar expression for P Only.
modes with positive gain survive for large z, modes with
negative gain are ignored (n runs over values rt„&0). A
general field takes the form
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Solution for general T2 conventional analysis

The solution for general T2 is now found by a substitu-
tion that takes this problem over to the one solved previous-
ly. ' Define Eand P by

E =Eexp —,P =P exp
p, p
T2

'
T2

(4)

Upon substitution into Eqs. (1) and (2), one obtains equa-
tions for E and P that are identical to Eqs. (1) and (2), ex-
cept that the term containing T2 in Eq. (2) is missing. This
transforms the problem into the one solved in Ref. 10. We
denote by o.„ the gain found in Ref. 10 for the case
1/T2 ——0, and we define y„by

&/2

~„(p) =2 —(1 —y.'/p~') (5)

As found in Ref. 10, the boundary condition on E leads to
the condition

sin(roy„) = 7n
o. 'p

(6)

P = gc„exp n„(p) — z
1

pT2
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which determines the acceptable values of y„. For conveni-
ence, let us define r = p, —z/p, which is the time in the rest
frame of the gain medium. Then the analysis of Ref. 10 to-
gether with Eq. (4) gives

t

2 (/p
FIG. 1. Gain g(p) as a function of 1/p for tp = 5, 10, 15, 20, and

25. The gain approaches a maximum of g = 1 at p = 1 in these
dimensionless units which are obtained by setting o. '=1, and T2 =1.
The conventional case is shown at 1/p =0 and g =1 (note that the
velocity of the optical pulse is at 1/p=1 in this case). When the
symbol g is used without an argument it refers to the condition of
the global maximum gain given by g = n'T2.

is shown explicitly in Fig. 1. One can see immediately that
there are two difficulties in the passage to the conventional
case. First, the gain for 1/p=0 is zero for all finite to

secondly, when tp is increased, the point of maximum gain
is found to move away from 1/p=0 towards 1/p =1. In the
general analysis, the exponentially growing pulse has the
same velocity as the gain medium, while in the conventional
anlaysis, ' these velocities are different. We show below
that the limit of the optimum medium velocity that is found
in Fig. 1 agrees with the pulse velocity obtained from the
con ventior, al analysis.

n7r

tp

Equations (5)—(8) give the general solution for the amplif-
ier in the limit tp » T2. In Fig. 1 we show the gain ob-
tained from Eq. (7)

g„(p) = „(p)—
pT2

(9)

as a function of 1/p. For this plot we have taken n'= I and
T2=1, which is no restriction since they can be removed
from the problem by scaling p, and z. The gain is computed
for n =1, and o.„ is evaluated using a first-order Taylor's
expansion of Eq. (5) in y„. The position of the medium
velocity for the conventional analysis, i.e. , v = c, or 1/P =0,

We analyze P rather than E since the formula is somewhat
less cumbersome. In the limit tp » T2, the pulse evolves
to become much wider than T2, in which case E can be ob-
tained from Eq. (2) by dropping the time derivative, giving
E =P/T, .

In the limit that ro goes to infinity, Eq. (6) shows that y„
vanishes as 1/to. Therefore y„ is obtainable by multiplying
the right-hand side of Eq. (6) by rp/ro, and taking the limit
as tp ~, keeping y„tp constant. The right-hand side of
Eq. (6) vanishes in that limit, giving

Connection to the conventional analysis

To pass to the limit tp ~ it is necessary to take some
prescription for choosing the velocity at each step, since Fig.
1 shows that the gain is otherwise undetermined. The na-
tural choice is to take the velocity that gives rise to the
highest gain since this gives the optimum operation of the
amplifier in the small-signal regime. In the limit tp ~ the
gain is given from Eqs. (5), (8), and (9) as

g(p) =2~/l~p 1/p», —

and its maximum occurs at p= I/cx'». The maximum gain
is g =n'T2, which is the conventional result for amplifier
gain in this limit. " Now substitute these expressions into
Eq. (7) to obtain (keeping only the lowest-order terms in

y. )

P = exp(gz) gc„exp[ —y„(gTzz + r T2/2) ]sin(y„r) . (10)

Let us quickly review the conventional analysis in order
to compare it with this expression. The analysis is carried
out by Fourier transform of Eqs. (1) and (2) with the boun-
dary conditions P (p, = O, z ) =0 and E (p, = O, z ) = 0, for all z,
i.e. , for u=c, 1/P=O. We denote by Co(co) the Fourier
transform of E(IA, ,z = 0) and expand in cu to obtain'~

f

1 0! zT2E ( p„,z ) = d cu Co ( co)ex p ( t co p, )exp-
2m 1 + lQPT2
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The various factors in Eqs. (10) and (ll) are arranged to
correspond to each other. The first shows that they have
the same gain. The last factor is clear if one rewrites the
expression for P obtained above in terms of g to give
1/P = gT2, and if one recollects that r = p, —z/P = p. —gT2z
Hence the last factor in Eq. (11) describes a pulse moving
with the velocity 1/gT2 in the retarded I'rame. In Eq. (10)
the pulse velocity equals the velocity of the gain medium,
which is p = 1/g T2 The . remaining factor in Eq. (11)
describes the phenomenon of gain narrowing. ' The width
of the spectrum of the electromagnetic field gets narrower
as I/Jz with propagation. This factor is present in Eq. (10)
as well, but there is an additional term of the form y„r T2/2.
The factor multiplying y„' in Eq. (10) can be written as
T2(z/p+ 2

r). For r (( ro, z ~, this extra term is negli-1

gible and the expressions (10) and (11) give the same pulse
shape. When finally the pulse width approaches to, the term
r Tq/2 reminds us that our approximate analysis no longer
applies.

CONCLUSION

nonunique. To obtain the result, one must go to the limit
of a homogeneously broadened amplifier by a process that
keeps the gain at its maximum. In that case, the optimal
gain velocity is found to be the pulse velocity of the con-
ventional analysis, and the value of the gain is the value
found in the conventional analysis. Gain narrowing is also
seen, but the approximations that connect the two solutions
break down if the pulse gets too wide, which is precisely
that one would anticipate.

The analysis does not imply a need to reinvestigate all
cases in which the conventional analysis has been used to
predict experimental results. The analysis is relevant, in a
practical sense, mainly for swept-gain lasers, and not neces-
sarily for laser amplifiers. For a typical neodymium glass
amplifier the proper boundary velocity is so close to c that
corrections can be ignored. In addition, the small-signal sig-
nal applications of amplifiers almost always involve tran-
sients, while the present analysis applies to the asymptotic
gain. There are still puzzling features connected with the
way the general approach works in the case of transients.
Hopefully further study will clear up this problem.

We have investigated the properties of gain in cases in
which the conventional boundary condition v=c leads to
nonexponential gain due to laser lethargy, and a boundary
condition v & c is needed for exponential growth. We have
shown how to connect this case to the conventional
analysis, '2 which is seen to emerge as a singular case. The
procedure for going over to the conventional analysis is
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