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It is observed that the Feynman path summation for the one-dimensional Dirac equation can be project-
1

ed into three spatial dimensions to yield a path-summation formula for physical spin- —particles of nonzero
2

mass. Since the three-space projection matrix is independent of time and does not involve the particle's
mass, relativistic motion governed by the Dirac equation has an underlying one-dimensional aspect.

The Dirac equation for one spatial dimension is express-
ible as
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Assuming that the initial value p($, 0) is prescribed, the
general solution to (I) is given by

y(g, t) = K(g —g', t;m)y(g', 0 dg'

in which the propagation kernel

K(g, t;m) = jl—+imr~ —r2
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satisfies
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subject to the initial condition

K($, 0;m) =Ig(g)

(5)
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where I is the 2 x 2 identity matrix.
Feynman and Hibbs' have noted a path-summation ex-

pression for the propagation kernel (4),

K(g, t;m) = lim g AR(C, t;e)(ime)
0R-0

(7)
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where g denotes the spatial coordinate, Q(g, t) is a two-
component wave function, m is the particle's mass, physical
units are chosen such thath =c =1, and

posed of t/e constant-velocity steps from the space-time ori-
gin (0,0) to (g, t) with (t+()/2e steps forward
(Ag = /2, t = e), (t —g)/2e steps backward (Ag = —At
= —e), and R reversals (i.e., changes in the sign of succes-
sive Ag), where the subscripts /' and I denote the signs of
the first and last steps, respectively, for the class of space-
tirne paths. It follows from the recurrence formulas satis-
fied by N~~ and expansion for small e that (7) satisfies the
propagation kernel equations (5) and (6), ' and hence the
right-hand side of (7) equals the right-hand side of (4).

Paths that enter the Feynman summation (7) have
dg/dt = +1 during each step interval: The particle moves
with a lightlike shuttle motion, forward or backward along
the g axis, and the double-valueness that makes (7) and (8)
appear as 2x 2 matrices stems from the initial and final
values of dg/dt = +1. Such paths are appropriate quantum
mechanically in view of the Heisenberg operator equation
dg/dt = 22 which follows from (1). Similarly, the three-
dimensional Dirac equation yields a Heisenberg velocity
operator 3

dx =0(—= ~XT3
dt

(9)

whose components in each spatial direction have eigen-
values equal to +1. However, the three components of (9)
are noncornmuting dynamical variables, and thus only one
of the velocity components dx~/Ct, dx2/dt, or dx2/dt is di-
agonalizable at a certain instant of time. Thus, the propaga-
tion kernel for the three-dimensional Dirac equation [shown
below in (14)] cannot be obtained from a dimensional ex-
tension of (7) and (8) in which the paths are defined on a
cubical lattice in x space with two components of dx/dt
equal to zero and the third component equal to +1 during
each step interval.

With the distance coordinate g in place of t, the 2x 2 ma-
trix propagation kernel for Weyl's mass-zero neutrino wave
function satisfies

N++
AR(f, t;e) —= e —+

(8) (10)

In (8) Ntf Ntf($/e, t/e, R ) is the number of paths com- W(x, O) =Ih' '(x)
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in which g denotes the Pauli spin-
2

matrices. Since

5t (x) = (2mr ) '5(r) = —(27rr) '5'(r)

with r =—[x ~, the solution to (10) and (11) is given by

II'(x, g) = jl —cr 0 [(sgng)5(r' —g') ]
2m 9g

into 2x 2 matrix-valued functions of x by direct multiplica-
tion and integration over g. In particular, (12) enables one
to express the 4 x 4 propagation kernel for the three-
dimensional Dirac equation as a Feynman summation based
on (7), viz. ,

M(, t;m &=Im g f W&, g& && X„&g,i;, &&;
0~-0

(13)

(12)

The latter 2X 2 projection matrix maps scalar functions of g

where signifies the direct product of the indicated 2 && 2
matrices. In view of (7) and (12), the Feynman summation
(13) is equivalent to

(14)

In (13) each path in (g, t) space-time is weighted with the additional projection-matrix factor II'(x, (') and a final "summa-
tion" is performed by integrating over all (.

To see that (14) is the propagation kernel for the three-dimensional Dirac equation, one makes use of (10), (5), and the
definition part of (9) to obtain

WM(x r m) = — 5 ( ~) e .,K(g r m) dg= II (x g) e ~
5K(~~™

dg—oo (j( —oo

W(x, g) e —I—+ tm~, X(g, t;m) dg .8
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Hence, it follows from the first and last members of (15)
that

I—+ n '7 +im p A (x, t;m ) = 08 (16)

where p —= —I ]3 ~ ]. Moreover, the second member of (14)
in combination with (6) and (11) implies that

M( x, 0;m ) = 1l I5"'(x ) (17)

Equations (16) and (17) are the defining relations for the
propagation kernel which gives the time evolution of the
four-component Dirac wave function, and thus this pro-
pagation kernel is expressed by the Feynman summation
(13).

Since the three-space projection matrix W(x, g) in (13)
is independent of time and does not involve the particle's
mass, relativistic motion governed by the Dirac equation ap-

I

pears to have a fundamental one-dimensional aspect: In the
path summation (13), it is the lightlike shuttle motion along
the g axis which generates the time evolution of the four-
component Dirac wave function in x space.

The extension of this Feynman path summation to in-
clude electromagnetic interaction is straightforward. For the
primary case of a static magnetic field described by the vec-
tor potential A= A(x), (10) is superseded by

+ ~ ( V —ieA) W(x, g) =0
8$

(18)

and it follows from the second member of (14), (18), and
(5) that (16) obtains with ( V' —ieA) in place of '7 . The
propagation kernel equation for general electromagnetic in-
teractions then follows unambiguously from the require-
ment of invariance under gauge transformations
A —(A+ '&7 X), Ao- (Ao+BX/Br), and M- (expieX)W
with X= X(xr) arbitrar, y.
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4The Dirac function 5(r ) = 5( —r ) has the normalization

OO 1J 5 (r ) dr = —for r ~ 0.
2


