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Landau theory of cholesteric blue phases

H. Grebel, R. M. Hornreich, and S. Shtrikman
Department ofElectronics, Weizmann Institute ofScience, Rehovot 76IOO, Israel

(Received 30 June 1982)

A detailed presentation of the Landau theory of the cholesteric blue phase (BP) is given
with emphasis on the comparison of model predictions with reported experimental data.
The basic model, which is asymptotically exact in the high-chirality limit, leads to the pre-
diction of a body-centered cubic (bcc) 0' (I432) structure for the BP. However, the model
can be systematically extended to physical chiralities and used to calculate the free energies
of more complex cubic structures. ln particular, bcc 08 (I4~32) and simple-cubic O~

(P4z32) structures are analyzed and their optical and thermodynamic properties, as well as
those of 6', are compared with those reported for the two observed phases, BPI and BPII.
It is shown that, in general, the known properties of these phases are consistent with a struc-
ture assignment of 0 for BPI and 6 for BPII. Some promising lines for future investiga-
tion are indicated.

I. INTRGDUCTIQN

The nature and properties of the anomolous
phases which appear in many cholesteric liquid-
crystal systems below their clearing point, and
which are known collectively as the "blue phase"
(BP), are being intensively investigated both experi-
mentally' " and theoretically. ' ' The experi-
mental situation can be briefly summarized as fol-
lows.

(1) The anomalous phases appear only for
cholesteric systems having a "short" pitch in the
usual cholesteric (helicoidal) phase. ' ' ' ' That is,
if the cholesteric pitch is increased by, e.g. , mixing
the cholestegen with a nematic system, the BP re-
gion will narrow and, eventually, vanish as shown
schematically in Fig. l.

(2) The BP region is relatively narrow (1—2
K) 1 —11

(3) The BP region appears to consist of at least
three subregions, ' " which have been labeled, as
shown in Fig. 1, BPI, BPII, and BPIII. (The latter
has also been referred to as the "gray" or "fog"
phase. )

(4) BPI and BPII, while thermodynamically dis-
tinct phases, have very similar optically properties.
In particular, they are nonbirefringent, optically ac-
tive, and exhibit several sharp Bragg peaks. The
latter, for both BPI and BPII, are consistent with
both body-centered and simple cubic struc-

2, 3,7711

(5) BPIII does not exhibit Bragg peaks but its
light-scattering properties are, e.g. , strongly sensitive
to the sense of circularly polarized incident light.
It has been suggested that BPIII is a thermodynam-
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FIG. 1. Schematic phase diagram, showing the three
experimental observed blue phases (BP).

ically distinct phase but the evidence for this point
of view is still not compelling.

Theoretically, using Landau theory, ' ' we have
shown' " ' "that there can indeed exist thermo-
dynamically stable cubic phases in a narrow tem-
perature region between the disordered (isotropic)
and ordinary cholesteric phases when the cholesteric
pitch is sufficiently short. Since the experimental
evidence to date strongly supports the viewpoint
that BPI and BPII have cubic structures, we believe
that a detailed and unified presentation of the Lan-
dau theory of cholesterics will be useful to all work-
ers in the field. This is particularly necessary as the
notations and presentation of the results of the vari-
ous Landau calculations' ' ' differ greatly from
each other, making comparison with experiment dif-
ficult. We shall particularly emphasize those results
of our model calculations which can be compared
with the existing experimental data. In addition, we
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shall show how the basic Landau theory can be na-
turally extended to include more complex cubic
structures.

The organization of this paper is as follows. In
Sec. II we present the basic Landau theory of phase
transitions in cholesterics and analyze the transition
from the isotropic (I) to the usual helicoidal (C)
phase. We then consider the high-chirality (short-
pitch) limit and show that a transition from I to a
body-centered cubic phase with 0 (I432) symmetry
will occur. The thermodynamic properties of the C
and 0 phases are given. Finally, we consider brief-
ly the planar hexagonal structure suggested original-
ly by Brazovskii and Dmitriev and show that this
phase is not expected to be thermodynamically
stable.

In Sec. III we consider in detail the role played by
harmonics of the basic order parameter. After
presenting selection rules for the structure factor in
cubic liquid crystal phases, we calculate Landau free
energies for body-centered cubic 0 (I4i32) and
simple-cubic 0 (P4232) structures. We find that
these phases will be stable in certain regions of the
phase diagram shown in Fig. 1. The thermodynam-
ic properties of the 0 and 0 phases are con-
sidered. Finally, in Sec. IV, we compare our calcu-
lated results with the available experimental data
and indicate lines for future work.

II. BASIC LANDAU THEORY
OF PHASE TRANSITIONS

IN CHOLESTERICS

A. Cseneral considerations

The Landau theory of phase transitions' is based
upon choosing an order parameter which vanishes in
the high-symmetry phase and becomes nonzero
when the system undergoes a transition to a lower-
symmetry phase. For the case of isotropic-to-
nematic (I-to-N) or isotropic-to-cholesteric (I-to-C)

phase transitions in thermotropic liquid crystals, an
appropriate choice is the anisotropic part of the
dielectric tensor

eij(r)=e~(r) —
3 Tr(e )5J .

For cholesteric systems, the average free-energy den-
sity is then given by' '

F=V j dr[ , [aE—;+Jc,e;

+c2ejJ lelj, I —2deg&~eg„e&„i]
2 2—pE,J.E~7el; +p(e,j )

where, as usual, a is proportional to a reduced tem-
perature, ci, c2, d, P, and y are regarded as
temperature-independent parameters,

eij, i =~eij j~xl

and we sum on repeated indices. For theririodynam-
ic stability, it is clear that c& and y must be positive.
Restrictions on c2 will be given below. Note that (1)
contains all symmetry-allowed invariants up to
fourth order in e,j and includes for the quadratic
part, those involving first-order spatial derivitives of
e,j as well. Higher order contributions, which could
be significant, ' ' ' will not be considered here. There
is only one fourth-order invariant in (1) since

2 2=(etj) =2'6fj ejlelz epi

Without loss of generality, we shall henceforth as-
sume that d & 0.

Since we shall be interested in periodic structures,
it will be convenient to expand e,z(r) in Fourier
components

ez(r)= gX '~ ej(o)exp[iq(hx+ky+lz)], (2a)
h, k, l

where o =h +k +I, N =(3!)2 ' j(ni!), where
no (n, ) is the number of vanishing (equal)

~

h ~, ~

k ~, ~

l ~, and, for each [h, k, l] (including
h =k =1=0),

2

[e(o)]= g e (o-)e ' ' [M (h, k, l)]

1
i@2

6'2e E

0

i 0 0 Q 1

—1 0 +sic ' 0 0 i +&2j3eoe
0 0 1 i 0

r

—1 0
0 —1 0
0 0 2

+ E' Ie
ig

0 0 —1 1 i 0—
0 0 i +e,e'- i' —1 0—

—1 i 0 0 Q Q

(2b)

with e (o))0 and g (h, k, l)= —P ( —h, —k, —I). Note that the basis matricies [M ] are such that [h, k, l]
is along the polar axis of a local coordinate system which is defined separately for each [h, k, l].
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Since the [I ] matrices in (2b) are equivalent to the five j=2 spherical harmonics, an alternate form for
the order parameter is

@(r)= g N ' e (o)I F2 (hk l)exp[iq(hx +ky+lz)+i/ (hk l)]I,
h, k, l;m

where FJ (h, k, l) is the (j,m) spherical harmonic in the chosen local coordinate system whose polar axis is
along [h,k, l]. Although we used this representation in our earlier work, ' " ' "we shall here use the tensor
form (2) and calculate F using (1).

The calculation of the quadratic part of F is straightforward and the resulting expression is

F~= —, g N 'Ia —mdq(h +k +l )'~ +[c)+ , c—2(4 m—)]q (h +k +l )Ie (o)
h, k, l;m

= —, g Ia —mdqo'~2+[c)+ —,c2(4—m )]q o.Ie (cr) . (4)

For thermodynamic stability we must require, in addition to c~ & 0, that c& + —,c2 & 0.
Since, in Landau theory, the explicit q dependence of higher than second-order contributions to F is ignored,

we have BF/Bq =BF2/Bq=0 and, from (4), we obtain

N '[m(h +k +l )'~2@ (o.)]
h, k, l;m

~2 y I N '[1+—,(4 —m )(c2/c, )]
h, k, l;m

X (h'+k'+l')e (o) I

cr;m

Pl 0 6m CT ~& g t[1+—,(4—m )(c2/c, )]o.e (cr)I
o",m

with qz —=d/v 2c~. The h =k =l =o =0 term is ex-
cluded from the sums in (5).

For nonchiral (nematic or racemic) systems,
d =0, and the transition from the isotropic state is

I

to a phase with q =0. The excitation spectrum
F2(q) for such a system is illustrated in Fig. 2(a).
When d&0, the system is chiral or cholesteric and
the minimum in the excitation spectrum is no longer
at q =0, as shown in Fig. 2(b). Note that the ther-

%AVE VECTOR q 'IA'AVE VECTOR (q)

FIG. 2. Wave vector (q) and eigenvalue (m) dependence of the quadratic part of the Landau free energy for (a) a
nematic liquid crystal or a racemic mixture, (b) a cholesteric liquid crystal.
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modynamic stability condition c
& + —,cz & 0 guaran-

tees that the ground state will always belong to the
m =2 branch (for d & 0) of the excitation spectrum.
(The claim by Brazovskii and co-workers that for
cz (0 the ground state would belong to the m =1
branch was due to an algebraic error and is in-
correct. )

B. Helicoidal phase

The usual helicoidal cholesteric ( C) phase is
characterized by a single nonzero wave vector and,
as noted above, will necessarily be a transverse
(m =2 for d &0) spiral. From (5), the equilibrium

value of the C phase wave vector is

q =q (h +k +l )'

=v 2qo —d/c, ,

and the Bragg backreflection wavelength (in the ma-
terial) is

A,c 4~——/qc 4~——/~2qo .

Aside from the +qc Fourier components, the
description of the I Cph-ase transition requires an
additional q =0 order-parameter component, associ-
ated with the m =0 branch of the excitation spec-
trum. This is shown schematically in Fig. 3(a).
tensor order parameter e thus takes the exact form

—I 0 0
[e (r)]= eo(0) 0 —1 0

0 0 2

1 i 0

+ e2(2) expIi [q,z+gz(2)] I i —1 0 +c.c.1

0 0 0

where c.c. denotes complex conjugate. Upon substituting into (1), using (4)—(6), and noting that
(M~ ),J(M )J,

——5 ( ), we obtain

Fc= —,[aeo(0)+(a —d /c~ )ez(2)]

p[a o(0) —3e (0)ez(2) ]+y[@0(0)+@
2(2)]z .

Equation (8) can be put into a more convenient form by introducing the reduced quantities:

E=sp, s =P/V6y, f=F/(/3 /36y ),
(3y/P')a, —,'g„'=(3y/P')c, , ~=qc

Substituting (9) into (8) gives

fc =
4 tpo(0) + 4 (t —K )pz(2) + [po(0) —3po(0)p2(2)] + [po(0) + u z (2)]

(9)

(10)

The meaning of the reduced temperature t and
correlation length gz can now be understood by con-
sidering a racemic (R ) mixture, where qc ——v =0. It
is easily verified that fz fc(~ =0) is m——inimized
when p2(2)/po(0) =W3. Defining

p'= p,(0)+p', (2),
we then have

f~ 4 tp' p +p

I

unit is the difference between the thermodynamic
and extrapolated-from-the-disordered phase transi-
tion temperatures for a racemic mixture.

We now return to the general case x&0. A con-
venient way of determining the I Ctransition tem--

perature tIc is to use variables p, 8, which are related
to po(0),p2(2) by po(0)=psin8, pz(2)=pcos8, and
to set fc dfcldp=Bfc/B8——=0. From (10), we ob-
tain, in addition to the solution p =0, the equation

, trc ——,a. cos 8+(sin 8——3 sin8 cos 8)p
Setting fz ——Bfz/Op=0, we find that the isotropic-
racemic (I R) thermodynami-c phase boundary is at
t =tz ——1. From (9), it follows that g'„is simply the
correlation length for a racemic mixture on the IR-
phase boundary and that the reduced temperature

+p =0,
, trc ——,a cos 8+3(sin 8——3sin8 cos 8)p

+4p =0,

(12a)

(12b)
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WAVE VECTOR (q) WAVE VECTOR (q)

WAVE VECTOR ( q) WAVE VECTOR (q )

FIG. 3. Wave vector (q) and eigenvalue (m) dependence of the quadratic part of the Landau free energy, show'ing al-
lowed states for (a) the cholesteric helicoidal structure, (b) the bcc 0 (I432) structure, (c) the bcc 08 (I4,32) structure, (d)
the sc 0 (P 4232) structure.

—,Ir sin8+3(4sin 8 —1)p=O . (12c)

4sin 8=2—(1+—,lc )' (13b)

Combining (12a) and (12b) gives

p = ——,(sin 8 —3 sin8 cos 8) . (13a)

Substituting (13a) into (12c), we solve for 8, obtain-
1QI

From (13a) and (13b) we see that for Ir & 3 only the
alternate solution, p =0, is allowed. In other works,
for sufficiently short pitch, qc )3/gz, the I-C phase
transitu' on, if it exis'ts, must be of second order and
will occur at t = tie ——Ir .

For q (3/gz, tie can be obtained by substituting
(13a) and (13b) into the following combination of
(12a) and (12b):
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—,tie ——,a. cos 8+ (sin 8 —3 sinO cos g)p =0 .

(12cl)

We have finally

I.O

0.5

—,[1+a. +(1+—,Ic ) ~ ], for a & 3
tIC =

fora &3. (13c)
0—
0 I.O

I

20
This phase boundary is shown graphically in Fig. 4.

Also of interest are the change of entropy associ-
ated with the I Cphas-e transition and the asym-
metry parameter, which measures the local biaxiali-
ty of the ordered phase. From (10) we have for the
former

FICx. 4. Theoretical phase diagram showing the ther-
modynamic boundaries between the isotropic (I) and
cholesteric helicoidal (C) phases (tie), the I and bcc 05
phases (t 5), and the I and hexagonal (Hm) phases

(tIH ), as a function of chirality parameter a.

2 1/2
EStc=16dfc/dt ~, , = ~

c ~ + 3~ ) (1+ 31' ) ]IC
0, a. )3. (14)

[el—=e

—,( —1 —g) 0

—,( —1+q) 0

» the C phase, g =rjc is independent of r and,
from (7), we have at t =tie

gc ——1 —2tan8/(v 3 —tan8),

with 0 given by (13b).

(15b)

Note that we have normalized b,S so that
ESic(lc =0):—hS~ ——1. ASIA(ic ) is shown graphical-
ly in Fig. 5.

The asymmetry parametry g(r) (0&g &1) is
determined by diagonalizing [e( r )] for given r and
rewriting the resulting matrix in the form

C. High-chirality limit: The bcc 0' phase

In Sec. IIB we showed that for Ic) 3 the IC-
phase transition would necessarily be of second or-
der. There immediately arises the question of
whether a first order tran-sition, from the isotropic to
some other ordered phase, is possible. Such a transi-
tion, which would, of course, occur at t ) ttc, neces
sarily results in a structure whose free energy, in
some region of temperature and pitch, is lower than
t'hat of either the I or C phases. It could, therefore,
be thermodynamically stable. Since a global mini-
mization of (1) for arbitrary a is extremely difficult
(see Appendix), it is useful to first consider the
high chirality reg-ion, lc » l.

When ~~Do, it is clear from (4) and Fig. 2(b)
that any structure which minimizes the free energy
will have only m =2 Fourier components associated
with wave vectors of magnitude

qo(h +k +i )'~ =~2qo=qc .

I.O
Src

~0~0~ ~~O~ ~ ~ 0 ~ ~ ~Ass%
(/) arne

&3 0.5—+So c~~~~
ZS..cP —.~

Qpz

0 I

I.O
K

FIG. 5. Entropy changes AS associated with the dif-
ferent phase transitions as a function of chirality parame-
ter v.

In addition, since we are interested in a first-order
phase transition, it is clear that there must exist a
nonzero third-order contribution to F. This is possi-
ble only if the wave vectors associated with the
Fourier components of e,j form one or more equila-
teral triangles. ' The simplest possible three-
dimensional structure, a regular tetrahedron of wave
vectors, is illustrated in Fig. 6.

We choose our spatial axes such that the wave
vectors in Fig. 6 lie along (110) directions. Clearly,
they generate an fcc structure in the reciprocal
space. The labeling of the wave vectors is given in
Table I. The order parameter takes the form
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TABLE I. Wave vectors and local axis systems

(g, g, g) for the (110) wave vectors illustrated in Fig. 6.
For the wave vectors —q2„,g2„is replaced by —g2„.
The wave vector q is determined, in general, from (5).

FIG. 6. Diagram of the (110) wave vectors listed in

Table I, illustrating how they generate a face-centered cu-

bic lattice in reciprocal space.

Wave vector

q2) ——V 2q [(x+y)/V 2]
q. =V 2q [(y"+z)/V 2]
q23

——V 2q [(z+x ) /V 2]
q2g ——V2q[( —x+y)/V 2]
q„=V 2q [(—y+z )/V 2]
q,6=V 2q [(—z+x )/V 2)

g 2pt

(x —y")/V 2
(y"—z)/V2
(z —x)/V 2

—(x+y)/V 2
—(y"+z )/V 2
—(z+x )/V 2

[e (r)]=(—„)'g ez(2)([M2(2n)]expIi[qz„.r+Pz(2n)]I+c. c.), (16)

where both the tensor [Mz(tTn)] p u(——on)up(on), (18a)

1 i 0
[M (on)]=[M2(2n)]= —, i —1 0

0 0 0

and the phase g (on)=$2(2n), are defined in the
local axis system associated with the wave vector

q „=q2„(seeTable I).
The quadratic part of the free energy I'z is found

from (4) and (5) and is simply

(F, )~ = —,(a —d'/c, )e2(2) . (17)

To evaluate the cubic and quartic parts of the free
energy it is necessary to express the [M2(2n)] in a
common coordinate system. This can be done in
several ways. A convenient approach is to use a
dyadic notation for the elements of the basis tensors
[M2(on)] Following . Brazovskii and co-workers
we write

u = (/+i'—i)/V 2 . (18b)

Here g, g are real unit vectors, taken such that g', ri,
and

(hx+—ky+Iz)/(h +k +1 )'/

form a local right-handed coordinate system. For
the wave vectors shown in Fig. 6 the corresponding
local axis systems are given in Table I. Note that in
the complex conjugate segment of the order parame-
ter, where qz„~—qz„,w«ep»ce ti2„by —/2' so
as to preserve the right handedness of the local axis
systems. The scalar products relevant to the calcu-
lation of the cubic and quartic invariants are sum-
marized in Table II.

The cubic part of the free energy is obtained by
considering all closed triangles of wave vectors [see
Fig. 7(a)]. By inspection of Fig. 6, we have

u(26)

TABLE II. Scalar products for the complex basis vec-
tors u(2 )n=[g(2n)] +ig(2n)] /V2 (n =1, . . . , 6). All
other products can be found by cyclic permutation and
complex conjugation.

u (21) u (22) u (24) u (25)

FICi. 7. Diagrammatic contributions to the free energy
of the bcc 0' phase (a) the cubic contribution, (b)—(e)

quartic contributions.

u (21)

u (24)

u*(21)

u *(24)

1

4

3 —l(x p—e4

3 —ltx—e p
4

3 Rxp

4
1

4
1

4

3 —lcp—e4
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(F3 )g ———3!(—„)Pe z(2)( Tr[Mz(21)Mz (22)Mz (26) ]

Xexp {i [gz(21)—Pz(22) —gz(26)] I +c.c. )

+(Tr[Mz(22)Mz (23)Mz (24)]exp{i[gz(22) —gz(23) —gz(24)] I +c.c)

+ (Tr[Mz(23)Mz (21)Mz (25)]exp{i[fz(23)—Pz(21) —gz(25)] I +c.c. )

+(Tr[Mz(24)Mz(25)Mz(26)]exp{i[gz(24)+Pz(25)+Pz(26)]I+c. c. ) .

To evaluate the traces in (19), we use (18) and Table II and define
1

ao ———Arccos( —, ) (second quadrant) .

We obtain

(19)

(20)

(F3 )~ = —(9M3/128)Pez(2) {cos[3ao+ gz(21) —gz(22) —gz(26) ]

+cos[3~0+gz(22) —gz(23) —gz(24)]+ cos[3a0+hz(23) —gz(21) tt'z(25) ]

+cos[3a,+q, (24)+q (25)+qz(26)] I (21)

We now turn to the quartic part of the free energy. There are four distinct types of contributions to (E4)z
which are illustrated in Figs. 7(b)—7(e) and which we calculate separately.

(a) "Single-q contribution. " This includes Fig. 7(b) and parts of Figs. 7(c) and 7(d). It is simply

6 2

(+4)g; =
z 2 y&z(2) y»[Mz(2n)Mz (2n)] =y&z(2) .

(12)' n=1
(22a)

(b) "Two-q contribution"; adjacent moment pairs [remainder of Fig. 7(c)]. Using Table II and noting that
all such momentum pairs yield identical contributions, we have

(F4)z b —— . 2 yez(2) { Tr[Mz(21)Mz(22)]Tr[Mz (21)Mz (22)l
(12)

+Tr[Mz(21)Mz (22)]Tr[Mz(21)Mz(22)] I

(22b)

(c) "Two-q contribution"; nonadjacent momentum pairs [remainder of Fig. 7(d)]. We have

(F4)~., =
z 2 yez(2) {Tr[Mz(21)Mz(24)]Tr[Mz (21)Mz (24)]

(12)

+Tr[Mz(21)Mz (24) ]Tr[Mz (21)Mz(24)] I

=—
48 yez(2) . (22c)

(d) "Four-q contribution" [Fig. 7(e)]. This comes from the closed loops forn|ed by summing four momenta
with different indices n Consider. , for example, the loop formed by (qz~, —qz3, —qz4, —qz6). Its contribu-
tion is

(12)z
2 ye@(2) I Tr[Mz(21)Mz (24)]Tr[Mz (23)Mz (26)]+Tr[Mz(21)Mz (26)]

&&Tr[Mz (23)Mz (24)]+Tr[Mz (24)Mz (26)]Tr[Mz (23)Mz(21)] I

pe[xf (2z1) —gz(23) —42(24) 42(26)1

=„,ye&(2)(1+ —,cos4ao)exp[gz(21) —fz(23) —fz(24) —Pz(26)] . (23)
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The total "four-q contribution" is thus

(I'4)B d
——. ,~ yez(2)(1+ 8 cos4ap) I cos[gz(21) —g2(23) —gz(24) —$2(26)]

+cos[$2(22) —gz(21) —$2(25) —gz(24) ]

+cos[$2(23)—$2(22) —g2(26) —$2(25)] I .

The total quartic term is, of course,

(F4 )B (+4 )B; + (F4 )B;b + (F4 )B; + (F4 )B;d

Note that only the three linear combinations

P, (2a) =—P, (21)—P, (22) —g, (26),

gz(2b) =$2(22) —p2(23) —g~(24),

gz(2c)—:gz(23) —gz(21) —gz(25),

(22d)

(24)

(25)

appear in the expressions for (E3)B and (I'4)B. This reflects the invariance of the system free energy with
respect to an arbitrary translation or, equivalently, to the location of the origin of our coordination system.
From (20), we have cos4ap ———„and,after summing (17), (21), and (24) and using (9) and (25), we have

fB —
4 (t —K )p2(2) —(27M2/128) I cos[3ap +f (2 2a)] +cos[3ap+$2(2b)] +cos[3ap+pz(2c)]

+cos[3~p —42(2a) —fz(2b) —$2(2c)] I p2(2)

+ (79/64+ (25/1152) I cos[$2(2a) +$2(2b) ]+cos[42(2b)+ gz(2c) ] + cos[Pz(2c) +Pz(2a)] I )pz(2) .

(26a)

Since cos(3ap)= —„,fB is minimized by choosing
gz(2a) =$2(2b) =P&(2c)=0. For this choice of
phases, the order parameter (16) is invariant under
the operations of the bcc space group 05 (I432).
We therefore replace the subscript 8 by 0~ and have

and, for comparison with ASI&, is shown in Fig. 5.
Also of interest is the ratio of the magnitudes of the
order parameters associated with a single Fourier
component in 0 and C. At the triple point
t 5 tie, we have——

fo~ —,(t —~ )p2(2)———(23V 2/32)p2(2) pz(2;0')/~6pp(2;C) f, , =0.36 . (29)

+ (499/384)p2(2) . (26b)

The I Othermody-namic transition occurs when

f,,=@,,/ap, (2)=0 .

This gives

t, =1587/1996+re =0.795+~ (27)

=2 X3 X(23) /(499) =0.612, (28)

This phase boundary is shown graphically in Fig. 4.
Comparing (27) with (13c), we find that for
a. )0.939, the I Otransition oc-curs before (i.e., at a
higher temperature) than the I C. Thus it is c-lear
that insofar as Landau theory is valid there must ex-
ist one or more nonhelicoidal ordered phases in this
region of the phase diagram.

The change in entropy associated with the I0-
phase transition is

~Sto5=16df s/'dt
f t=g =4p2(2)

f )=)
IO5 los

While we have found that the 0' phase has a
lower free energy than either the I or C phase for
sufficiently large a. and appropriate t, it is clear that
C must become the stable configuration when the
temperature is sufficiently reduced for all a. Physi-
cally, this is because the low-temperature phase will
always be one in which the magnitude of the order
parameter is position independent. This is true of C
but not 0 . The 0 -C thermodynamic phase boun-
dary t, (v ) is found formally by setting

Bf /dp =df /dpo=df /dp2=0

and fc f,. The resulting s——et of equations was
solved numerically and the results for t, (a ) are
shown in Fig. 8(a), where the complete I-0 Cphase-
diagram is given.

Finally, we have calculated numerally the change
in entropy b.So& (~) associated with the 0 -C phase
transition, using
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FIG. 8. Theoretical phase diagrams when (a) only I, C, and 0 phases are allowed, (b) only I, C, 0', and 0 phases are
allowed, and (c) only I, C, 0, and 0~ phases are allowed. Here A, c" is the C-phase Bragg backreflection wavelength in air,
n is the index of refraction, and gz is a racemic mixture correlation length at the phase transition. All boundaries shown
correspond to first-order phase transitions.

hS g
——16(de/dt dfosldt). — (30)

The results are shown in Fig. 5.
The order parameter [e ( r )] defined in (16) can

also be written explicitly in real space by noting
that, in the cubic coordinate frame,

—1 1 V2i
[M2(21)]=— 1 —1 —v 2i

1

4
v 2i v2i 2—
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1
[M2(21)]e " +c.c.=—

2

—cos[qp(x +y)] cos[qp(x +y)] —V2sin[qo(x +y)]
cos[qp(x +y)] —cos[qo(x +y)] V 2sln[qo(x +y)]

—V2sin[qo(x+y)] v 2sin[qo(x+y)] 2cos[qo(x+y)l

(31b)

The corresponding expression

—cos[qp(x —y) ]—cos[qp(x —y) ]
1

[M2(24)]e " +c.c.=— —cos[qp(x —y)] —cos[qp(x —y)]
2

v 2sin[qo(x —y)] —V 2sin[qo(x —y)]

v 2 sin[qo(x —y) l

—V 2sin[qp(x —y)]
2 cos[qp(x —y)]

(31c)

is easily found by rotating the tensor in (31b) by rr about the y axis of the cubic coordinate system as this is a
symmetry element of 0 . Expressions for [M2(2n)]exp[iq2„r]+ c.c for n=2, 3, 5, 6 are obtained by cyclic
perniutations of (31b) and (31c) since [111]is a three-fold symmetry axis in 0 . We then have from (16)

[e (r )]= [e2(2)/ v 12][~52]

V 2$3(c] c2) $]$2 V 2$2(c3 c] ) $)$3

3C~C3 —X] v 2$](c2 —c3)—$2$3

3C2C3 —X )

3c)c2 —X )

e2(2)
v 2$3(c( —c2 ) —s )$2

12
v 2$2(c3 —c ) ) —s &$3 v 2s) (c2 —c3 ) —s2s3

j.

(32)

X) ——c(c2+c2c3+c~c3, c~ ——cos(qpx), $~ ——sin(qpx), etc.

By diagonalizing (32) and putting the resulting matrix in the form given in (15a), the local asymmetry
parameter g( r ) can be deterinined. NMR quadrupole splittings in the BP will be discussed in Sec. IV.

D. High-chirality limit: The planar hexagonal phase

As an alternate to the three-dimensional 0 phase
analyzed in Sec. IIC, it is possible to envision a
two-dimensional hexagonal structure as suggested

I

originally by Brazovskii and Dmitriev. In the
high-chirality limit, one would have have only a sin-
gle triangle [e.g. , (qq, qs, q6)] of wave vectors with
the corresponding order parameter,

6

[e "(r)]=(—,)' y E'2(2)([M2(2n)]expIi[q2„r+$2(2n)]I+C. C. ) . (33)

With obvious modifications of (17), (19), (22a), (22b),
and (26a), we obtain the reduced free energy

fH„——~ (t —x )p2(2) —» (cos5)pz(2)

yielding

tIH„——3 I(2 X233)+~

=0.587+x (35)
(34)

with

5 =3ao —1/2(24) —i//2(25) —q2(26) .

Clearly, fH„ is minimized by taking cos5=1. The
I IIx thermodynamic phas-e transition occurs when

fH„BfH„/BP2(2)=0, ——

Comparing (34) with (27) we see that tlH„&t
thus at high chirality the isotropic phase instability
can never result in the formation of a two-
dimensional hexagonal configuration.

At intermediate chirality, it has been argued'+"'
that a modified hexagonal structure, in which a
q =0 nematiclike component is included in
[e "(r )], leads to a region in the phase diagram in
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which fH„is lower than fi, fo&, and fc. Of course,
including such a component in fH„while not consid-
ering allowed q&qc haiixionics in other configura-
tions, is not a self-consistent procedure. We shall

nevertheless consider briefly this modified hexagonal
structure (Hm), in order to show that the conclusion
of Kleinert and Maki' ~"' is incorrect. The modified
order parameter is

6

[e (r)]=E'o(O)[Mo(01)]+ g 6 z(2)([M z(2 tt)] expIl [q'p„r+gz(2 n)] I +c.c.),
n=4

where

o o
[Mo(01)]= 0 —1 01

0 0 2

in a local coordinate system with its polar axis along [111].In dyadic notation, we write

[Mo] p=(3$ gp —5 p)/~6
and take

g(01)=(x+y+z)/v 3 .

The quadratic part of the free energy [see (4) and (5)] is simply

(Fz)H~ ———,aeo(0)+ —,(a d /c~)e—z(2) .

The cubic contribution is composed of three terms:

(E3)H .,———(3!)2(—, ) Pez(2)Tr[Mz(24)Mz(25)Mz(26)]

= —(9V 6/64)Peq(2)cos5,

(E3 )H~ .g ———( 3!)3( —,)Pro(0)ez (2 )Tr[Mo(01 )Mz(2 1 )Mg ( 2 1 )]
= —( ~6/4)Pro(0) e z (2),

(36)

(37a)

(39a)

(39b)

(F3 )Hype ~ g
— Peo(0)Tr[Mo( 01 )]= —( v 6/6)Peo(0)

Summing, we have

(F3 )H~ ———(1/V 6)P [(27/32)(cos5 )e q (2)+ (3/2)eo(0)E z (2)+e o(0) ] .

(39c)

(40)

The quartic contribution is composed of the following.
(a) "Single-q contribution. " This is simply

r

6
(F4)H~. + =p e'o(0)Tr[Mo(01)]+, 2'ez(2) Q Tr[Mz(2n)Mz (2n)]

n=4

'2

=q(~'o(O)+~z(2) )' . (41a)

(b) "Two-q = qq„contribution. " By analogy with (22b) we have

(F4)It .b =(41/192)y&z(2) .

(c) "Two-q contribution, "with one q = qz„while the second is q =0. We have

(F4)H~., ——
6 X3&(2 p&o(0)&z(2)Tr[Mo(01)Mz(21)]Tr[Mo(01)Mz(21)]

=(3/2)yeo'(0)e', (2) .

(d) "Four-q contribution, " from four distinct q vectors. We have

(41b)

(41c)
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(F4)H~ d=. ( —, ) (4f. )2yep(0)ex(2)Tr[Mp(01)M2(24)]Tr[Mz(25)M2(26)]cos5

28

= —(9/8 )pE'p(0) ez(2)cos5 (41d)

As before, FH is minimized by setting cos5= 1. Using (9), we obtain for the reduced free energy of the modi-
fied hexagonal configuration

f0~ ——
4 tpp(0)+ 4 (t —a )pz(2) —(27/32)pz(2) —(3/2)pp(0)pz(2) —pp(0)+(233/192)p2(2)

+(9/8)pp(0)Ju2(2) +(7/2) pp(0)pz(2) +pp(0) . (42a)

The thermodynamic phase boundary tzH is found by setting fH ——BfH /Bpp(0)=BfH /Bpz(2)=0. Alter-
nately, we can again introduce the polar variables (p, 8) and rewrite (42a) in the form

fH~ = —,(t —1~'cos'8)p —[(27/32)cos 8+(3/2)sin8 cos 8+sin 8]p3

+ [(233/192)cos 8+ (9/8)sin8 cos 8+ (7/2)sinz8 cos28+ sin48]p4 . (42b)

Rather than setting fzz BfH /Bp —=—Bp
=BfH /88=0 to determine tzH, it is simpler nu-
merically to set only fH BfH /Bp=—O—and seek
the extremum of the resulting equation. We then
have

of the inequalities fc &fH or f, &fH is aluzays
satisfied. The free energies are, of course, compared
at their respective thermodynamic equilibrium
values.

tzzz ——max(f3/f4+~ cos 8),
where

III. ROI E OF HARMONICS

f3(8)=(27/32)cos 8+(3/2)sin8 cos 8+sin 8, A. Selection rules

f4(8 )= (233/192)cos 8+(9/8)sin8 cos38

+(7/2)sin 8 cos 8+sin 8 . (43b)

Note that the local maximum we seek in (43a) is not
that at 8 =~/2 (p2 ——0), which describes the nemat-
ic phase.

Equation (43a) is easily solved numerically and
the results are shown in Fig. 4. We find that tzH is
always less than either tzc (for a. &0.939) or t 5 (for
a. )0.939). Thus the thermodynamic instability of
the disordered phase will not, within the model
framework discussed here, result in an ordered phase
having a two-dimensional hexagonal structure. Qne
can, of course, still inquire as to whether the IIm
structure is therniodynamically stable in some lower
temperature region, i.e., whether fH is ever lower
than both fc and f &. Numerical analysis of (10),
(26b), and (42b) shows that this is not the case as,
for both lr & 0.939, t & tzc and lr & 0.939, t & tzo„one

In Sec. II, we showed that, at least for lr &0.939,
there must exist an intermediate phase (or phases)
between the isotropic and usual cholesteric phases.
However, our analysis was based on a model which,
strictly speaking, is valid only in the v~ao limit
where only a single spatial frequency appears in the
structure factor. For finite chirality, however, addi-
tional spatial frequencies (hariaonics) are allowed
and, in fact, are observed as additional Bragg reflec-
tions. These haiiaonics have two important conse-
quences. (1) The primary BP Bragg reflection does
not appear at the same wavelength as the C-phase
reflection [see Eq. (5)]. (2) Qther cubic structures
can have lower free energies than 0 in regions of
the (a, t) plane.

In order to include spatial harmonics in the Lan-
dau free energy in a systematic way, it is useful to
first deteziiiine the allowed spatial frequencies for
any given structure. That is, we are interested in
deriving the optical analogue of the structure factor
commonly used in the analysis of elastic scattering
by x rays. In the latter case, the high energy of the
incident radiation results in purely scalar scattering,
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TABLE III. Optical structure factor for chiral body-centered cubic space groups. S( W) denotes a strong (weak) Bragg
reflection. X-ray selection rules are identical to those for m =0.

(T3)'
—,(~ '+ k'+ I') ~kI: 2 1 0 —1 —2

(Ts~b

m 2 1 0 —1 —2

(O')d
m: 2 1 0 —1 —2

110
200
211
220
310
222
321

+ ++-
+ +
+ +
+ +

+S
+S
+S
+S
+S
—Wo
+S

+S
+S
+S
+S
+S
—Bp
+S

+ —+ —+S
+ ——8'p

++++ +S
+ —+ —+S++++ +S
——+ ——8'p
++++ +S

+S
+S
+S
+S
+S
—Wp

+S

330

'Selection rules; h +k +I =2n' h 00:
Selection rules; h +k +I =2n; h 00:

'Selection rules; h +k+I =2n h 00:
Selection rules; h +k + I =2n; h 00:

m =+2,0; hhh: m =0
m =+2,0;hhh: m=0.
m =0; hh0: m =+2,0; hhh: m =0.
m = +2, h =4n —2, m =0, h =4n; hh 0: m = +2,0; hhh: m =0.

i.e., the interaction is basically one in which incident
radiation is scattered by free electrons. At optical
frequencies, on the other hand, the much lower ener-

gy of the incident radiation results in scattering, in
addition, by all components of the tensor order
parameter. In other works, the BP structure factor
has a tensor rather than scalar character.

As noted in Sec. I, the bulk of the experimental
results to date are consistent with the existence of
bcc and sc structures in the BP region of the phase
diagram. We therefore consider generally all non-
centrosymmetric bcc and sc structures, obtaining the
optical selection rules summarized in Tables III and
IV. Note particularly that the selection rules depend
upon [h, k, l;m]. That is, for an allowed Bragg re-
flection [h, k, l], the strength of the observed peak is
dependent upon the polarization state of the incident
radiation.

As an example of how the selection rules in
Tables III and IV were obtained, consider the state
[2,0,0;2]. As noted previously in (3) an alternate
description of this state is

(1/6) '~ ez(4)(15/32m )
'

XsinzOIexp[2ip+2iqx+ipz(41)]+c. c I,

where ez(4) and fz(41) are the amplitude and phase
associated with this particular state and 8,$ are po-
lar and azimuthal angles. For [200], the polar axis
is along x. In the space group 0 (I432) there exists

a fourfold symmetry axis parallel to x. Applying
this symmetry element to (44) (i.e., replacing P by
P +m /2), we find that the given function is
transformed into its negative. Thus the [2,0,0;2]
state is forbidden in 0 symmetry. Consider, on the
other hand, the space group 0 (I4&32). Here there
exists a fourfold screw axis parallel to x, in which
the ~/2 rotation is combined with a translation of —,

of a unit cell along x. Applying this symmetry ele-
ment to (44) [replacing P by P+~/2 and x by
x +(I/4)(2m/q)] we find that the state function is
unchanged. Thus the [2,0,0;2] state is allowed for
the case of 0 symmetry.

A full discussion of light scattering in cholesterics
will be given elsewhere. However, several con-
clusions can be reached immediately by inspection
of Tables III and IV and Figs. 3(b)—3(d). Consider,
for example, a back-scattering experiment using cir-
cularly polarized incident light. For 0 symmetry,
the (200) Bragg peak is due to scattering from the
m =0 state only. Thus it cannot be sensitive to the
sense of the polarized light. Moreover, this peak is
associated with a relatively high-lying state and will
necessarily be relatively weak in comparison with
the ( 110) peak. For 0 symmetry, on the other
hand, the (200) Bragg peak has m =+2 contribu-
tions. Since the m =+2 state is a low-lying one
while m = —2 lies much higher, this peak wi11 be
sensitive to the sense of the incident radition and its
intensity will be of the same order of magnitude as
the primary (110) reflection. Turning to sc struc-
tures, we see that in all cases the third [here (111)]
Bragg peak will be polarization independent and
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weak. Moreover, the first peak (here (100)) will be
unobservable in back reflection for space groups T,0, and 0 and will be polarization insensitive and
weak for O'. Only for T' and 0 are the first two
peaks expected to be of the same order of magni-
tude.

Summarizing, we see that the selection rules given
in Tables III and IV provide a direct and straight-.orward technique for distinguishing between vari-
ous bcc and sc structures for the cholesteric HP. In
addition, they provide a framework within which a
Landau theory calculation of the free energies ap-
propriate to various structures can be carried out for
general chirality parameter a..

8. bee T and 0 phases

X expIi [q2„.r+t)'jz(2n)] I+c.c. )
3

+( —,)' g e2(4)([Mz(4n)]
n=1

x expiI[q4„r+ (t(4}.n)] I +c.c. )

TABLE V. Wave vectors and local axis systems
(g, g, g) for (200) wave vectors. For the wave vectors
—q4„,g4„ is replaced by —g4„. The wave vector q is
determined, in general, from (5).

Wave vector (q4„=2qg~„) E4. $4n

q4) =2/x
q42 =2'
q43=2QZ

In the previous section we showed that the
[2,0,0;2] state, which is forbidden in the 0' struc-
ture, is allowed for 0 and T . As an example of
the role harmonics can play in a Landau free energy
calculation of cubic structures, we consider a modi-
fied order parameter in which spatial Fourier com-
ponents are associated with wave vectors of magni-
tude W2q and 2q. (Note that now q&qo. ) As in
Sec. II C we associate the former with wave vectors
lying along (110) directions as shown in Fig. 6 and
listed in Table I. For the latter the wave vectors will
belong to (200) with m =2 and their labeling and
local axis system are summarized in Table V. Using
(2), the order parameter for the modified cubic
phase is

6

[e (r)]= (
—„)'' g &2(2)([~2(2n)]
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with q4„——M2qz„——2q. Using (4) and (5), the quadratic part of the Landau free energy becomes

(F2)~ ———, I [a d—~/c~+(d ~/c&)(r —1) ]ez(2)

+ [a —d
&
/c

& + (d
&
/c

& ) ( V 2r —1 ) ]e 2 ( 4) j

with

r =[@2(2)+A@2(4)]/[e2(2)+2@2(4)].

(46)

(47)

Turning to the cubic part of the free energy, we have two contributions, one of which, (F3)z ., [proportional
to e2(2)], has been calculated in Sec. II C and is given explicitly in (21). The new contribution will be propor-
tional to e z (2)e2 (4) and is given by

(+3)Bm;b 3 ( (p )( 6 ) P~2( )~2(4)

X g [[Tr[M(2n)M(2(n+3))M*(4(n+1))]

&&expIi[g, (2n)+$2(2(n+3)) —g~(4(~+1))]j+c.c.]

+[Tr[M(2n)M*(2(n +3))M(4n)]exp[i[$2(2n) —gq(2(n +3))+$2(4n)] j+c.c.]j,

= —(v 6/96)(3+2' 2)/3e z(2)e2(4)

3

X g Icos[/&(2n)+$2(2(n +3))—Pz(4(n +1))] —cos[$2(2n) —gz(2(n +3))—$2(4n)] j .
n=1

(48)

The index n +1 in (48) is defined modulo 3. Turning to the quartic contributions, we have four distinct types.
(a) "Single-q contribution. " This is simply

(+g)g ., ——y[e2(2)+~p(4)]' . (49a)

(b) "Two-q contribution. " Including the part proportional to e2(2) and given previously in (22b) and (22c),
we have

(+4)~ 'b:}( ~92 + 48 )&p(2)+ 2 &2(2)&p(4)
12&&6

6 3

I [Tr[M2(2n)M2(4m)] Tr[M2 (2n)M2 (4m)]
n=1 m =1

+Tr[Mp(2n)M2 (4m)] Tr[M2 (2n)M2(4m)] j

+—2 e2(4) g ITr[M~(4n)M2(4m)]Tr[M2(4n)M2(4m)]

+Tr[M2(4n)M2 (4m)] Tr[M2(4n)M2(4m)] j

=@[6 &p(2)+ —, &2(2)&p(4)+ —,E'2(4)] . (49b)

(c) "Three-q contribution. " This is given by
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(F4)B ., =y 2 ez(2)ez(4)12~6
3

&( g [ [Tr[Mz(2n)Mz (4n) ] Tr[Mz(2n)Mz (4(n + 1))]
n=1

)& expIi [2tfjz(2n) —gz(4n) —hz{4(n +1)}]I +c.c.]

+ [Tr[Mz(2(n +3))Mz(4n)] Tr[Mz(2(n +3) )Mz (4(n + 1))]

)& expti [2gz(2(n +3))+gz(4n) —gz(4(n +1))]) +c.c.] J

= —ye&(2)ez(4)[(17+12~2)/288] g Icos[2gz(2n) —Pz(4n) —hz{4(n +1))]
n=l

+cos[2fz(2(n +3))+fz(«)—gz(4(~ +1))]I,

(49c)

where the index n + 1 is again defined modulo 3.
(d) "Four-q contribution. " In addition to the contribution (F4)B .d [proportional to ez(2)] calculated in

Sec. II C and given explicitly in (22d); we have additional terms due to the closed loops formed by the summing
of four momenta, three with cr =2 and different n, and one with o =4. Consider, for example, the loop formed
by (qz), qz5, qz6, —q4)). Its contribution is

( —„)~ ( —, )'~ 2 yez(2)ez(4)ITr[Mz(21)Mz(25)]Tr[Mz(26)Mz(41)]

+Tr[Mz(21)Mz(26)] Tr[Mz(25)Mz (41)]

+Tr[Mz(21)Mz (41)]Tr[Mz(25)Mz(26)] I

X exp I i [yz(21)+qz(25)+ qz(26) —yz(41) ] I

=yez(2)ez(4)(i/1152)(24+ 17v 2) exp I i [gz(21)+ fz(25)+ gz(26) —gz(41)] I .

(5O)

There are 12 terms of this type and their total contribution is given by

(F4)B ., ———yez(2)ez(4)[(24+17~2)/576]

&& g Isin[gz(2n)+Pz(2(n +4)}+fz(2(n +5))—gz(4n)]

—sin[gz(2n) —gz(2(n + 1)) + fz(2(n +2) ) —ttrz(4n)]

+sin[gz(2(n +2))—gz(2(n +3))—gz(2(n +4))—Pz(4n)]

—sin[qz(2(n + 1)}—tyz(2(n +3))+qz(2(n +5))—1j'rz(4n)] ] . (49d)

Here the indices n +m are to be understood as being cyclic in either the set (1,2,3) or (4,5,6). The total quartic
term (F4)B, obtained by summing (22d) and (49a)—(49d), is

(F4)B (F4)B; +(F4)B;b +(F4}B;+(F4 )B;d +(F4 }B (51)
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Rather than analyzing directly the total free energy Fz by summing (21), (22d), (46), (48), and (51), we first
deterinine the phases gz(2n) (n =1, . . . , 6) and gz(4m) (m =1,2, 3). For a giuen space-group symmetry, these
phases are not independent of each other and we can use these symmetry constraints to simplify our expres-
sions for the free energy. This if the origin of our coordinate system is set at the point ( —, , —,,0) in the 0 unit
cell with point-group symmetry 42, a necessary (though not sufficient) condition for 0 symmetry is that

gz(2n) =0 or m. , n =1, . . . , 6

@z(4n) =0 or m. , n =1,2, 3 .
(52)

(53)

Using (52) we find that (F3)~ .t, ——(F4)~ .,——0 and that Fz~ is minimized by setting all phases equal to zero
Using (9), we have

f~~ ——
~ [t a+a—(r —1) ]pz(2)+ 4 [t v+—lr (v 2r —1) ]pz(4) —(23~2/32)pz(2)

+ (449/384)pz(2) + [(39—4v 2) /16]pz(2)pz(4) + (13/12)pz(4) .

—[(39—4~2) /4]pz(2) . (54)

For t & to5r3 pz(4)&0 and (53) is relevant to a phase
having T (I23) rather than 0 symmetry. Equa-
tion (54) therefore gives the 0~-T second-order
phase boundary, since pz(4) =0 and r = 1 at
to5z 3(a ). The value of pz in (54) is determined from
(26b) by setting Bf,/Bpz ——0 at t =t, , Numeri-

cal calculation shows that to5r3 & to5C for 0&x & 10
and thus T is not relevant within the framework
considered here.

A necessary condition for 0 symmetry, as dis-
cussed in Sec. IIIA, is pz(4)=0. The free energy
(53) satisfies this condition for t & to5r3 where

t, , =2(V 2 —1)x
gz(2n) =0 or ~, for n =1,2, 3

Pz(2n)=+a /2, for n =4, 5, 6

Pz(4n)=+a /2, for n =1,2, 3 .

To minimize the free energy, we take

gz(21) =0,
gz(41) =Qz(24) = n/2 . —

(55a)

(55b)

Note from (20) that sin3ao ———10v 2/27 and using
the norinalized amplitudes given in (9), we have

Consider now a system having 0 (I4&32) sym-
metry. We take as our origin the point ( —,, —,, —, )

23
'

3 3 3

having point symmetry 32. Applying various opera-
tions of 0, we find that

fo,= , [t a+I' (r ——1) ]p',(2)+—, [t ir +a (v 2r ——1—)z]pz(4) —,'pz'(2)

8 (3+2~2)p2(2)pz(4)+, «pz(2)+ [(151+12' 2)/48]pz(2)pz(4)

+ [(24+ 17~2)/48]pz(2)pz(4) +—„pz(4).

The I-0 thermodynamic phase transition occurs at

f,,=af, ,/ap, (2)=af, ,/ap, (4)=af, ,/ar =0 .

The resulting set of equations was solved numerically to determine t o,(~). The results are shown in Fig. 8(b)
where we also give t, , and t, , the phase boundaries between the 0 and 0 and the 0 and C phases,
respectively. The effect of including f2, 0,0;2J states in the order parameter thus results in the appearance of a
new bcc phase for intermediate ualues of Ir. Unlike 05, the 0 structure is nonsymmorphic and has no isotropic
(defect) points.

The entropy changes associated with the phase boundaries shown in Fig. 8(b) are given in Fig. 5. In addi-
tion, at the triple point t,=tie, we find for the order-parameter component magnitude ratios

pz(2;0 )/~6pz(2;C) =0.32,
pz(4;0 )/~3pz(2;C) =0.20,

(57a)
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and, using (47), for the shift in the position of the ( 110) Bragg reflection

r(0 )=0.91 . (58)

As discussed in Sec. II C for 0, we can also write [eo (r )] explicitly in real space. Using (55b) and shifting
our origin to the standard one, we have

[ ( )]=[ (2)/~12][A ]+[ (4)/~6][A (59a)

with

X2 —3s2c3 M2(c/c3+$2$3) $2C] W2(C3c2+$&$2) —$]C3

[A s2] = ~2(c )c3 +$253 ) $2c & X2 —3s3c & W2(C2C & +$3$ & ) —$3c2

v 2(c3c2+$]$2) $/c3 v 2(C2c)+$3$]) $3cp X2 —3$ )cp

(59b)

C3 —C2 $3

[A s41= —$3
I I I

C1 —C3 —$1

—$1 C2 C1

(59c)

with Xz ——s~cq+$2c3+$3c&, c&
——cos(qx), s&

——sin(qx), c&
——cos(2qx), s&

——sin(2qx), etc. As before, the local
asymmetry parameter g(r) can be found by diagonalizing [e (r)] and comparing the resulting matrix with
(15a).

C. sc 0 phase

In this section we consider a different modification of the basic 0 structure analyzed in Sec. II C. ~e intro-
duce a subharmonic, whose spatial Fourier components are associated with wave vectors of magnitude q.
These wave vectors belong to the set (100) with m =2 and their local axis systems are identical with those al-
ready given in Table V for (200). As is clear from Fig. 6 and Table IV these Fourier components destroy bcc
translational invariance and the resulting structure is sc. ' "' The relevant order parameter js

3

[P(r)]=(—,)' ' g Ez(1)([M2(ln)] expI i [q,„.r+$2(1n)] j+c.c. )
n=1

6

+(—„)'y E2(2)([M2(2n)] expIi [qzg r+$2(2n)] j+c.c.),
n=1

with q&„——q2„/V2=q. Using (4) and (5), the quadratic part of the Landau free energy is

(F2)$ ———, I [a d~/c~+(—d ~/c& )(r/M2 —1) ]@2(1)+[a —d &/c+(d ~/c~ )(r —1) ]62(2) j

with

r =M2[ez(1)+ M2e2(2)]/[ez(1)+2ez(2)] .

(60)

(61)

(62)

There are two cubic contributions, one of which, (F3)$.
„

is proportional to eq(2) and is given by (21). The
second part is

(+3)s,b =3!(—, )( —„)''p~2(1)E2(2)

X g [[Tr[M2(1n)M2(1(n + l))Mz(2n)]
n=1

XexpIi [P (21 )n+g (21( n+1)) —$2(2n)] j+c.c.]
+[Tr[M2( ln)M2(1(n + l))M2(2(n +3))]

XexpIi [$2( ln) —$2(1(n +1))+$2(2(n +3))j+c.c.] j
3

=[~3(3+2~2)/48]Per(1)e2(2) g Icos[$2(ln)+$2(1(n +1))—gq(2n)]
n=1

+cos[ttj2( ln) —$2(1(n + 1))+ tt 2(2(n + 3) )]j, (63)
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where the index n + 1 in (63) is defined modulo 3.
The quartic ter Ill contains contributions proportional to ez(1), ez(2), and ez(1)ez(2). Noting that the con-

tribution proportional to ez(1) is identical to that proportional to ez(4) which was calculated in Sec. III8, we
have from (49a) and (49b)

(F4)s.,= „y—e z(1)

The ez(2) contribution is simply

(F4)s I,
——(.F4)zi,

(64a)

(64b)

and is given by (24). The final contribution, e'z(1)ez(2), is composed of "single-q, " "two-q, " "three-q, " and
"four-q" terrxis. The first two are identical to those calculated for the case of ez(2)ez(4) in Sec. III B and, from
(49a) and (49b), we have

(F4)s., ——y[2+ (19/24)]ez(1)e'z(2)

=(67/24)yez(1)e z(2) .

The "three-q *' term is given by

(F4)s.d =y 2 Ez(1)ez(2)12X6

(64c)

3

&& g f [Tr[Mz( ln)Mz (2n)] Tr[Mz( ln)Mz(2(n +3))1
n=1

X exp Ii [2gz( ln) —fz(2n)+ pz(2(n + 3) )] I +c'.c.]

+ [Tr[Mz(1n)Mz (2(n +2))]Tr[Mz( ln)Mz (2(n +5) )]

&(expIi [2$z(ln) —Pz(2(n +2))—Pz(2(n +5))]I+c.c.]J

3

=ye&(1)ez(2)[(17+12' 2)/288] g Icos[2fz(ln) —gz(2n)+gz{2(& +3))]
n=1

+cos[2tfz(1n) —hz{2(n +2))—hz{2(n +5))]I, (64d)

where all indices are to be understood as being cyclic in either the set (1,2,3) or (4,5,6).
The "four-q" term is due to closed loops formed by the summing of four distinct momenta, two with o =1

and two with o.=2. Consider, for example, the loop formed by (q», q, z, —qzz, —qz6). We have

( —,)(—„)2'ye&(1)&z(2)( Tr[Mz(11)Mz(12)] Tr[Mz (22)Mz (26)]

+Tr[Mz(11)Mz (22)] Tr[Mz(12)Mz (26)]

+Tr[Mz(11)Mz (26)] Tr[Mz(12)Mz {22)]I

&&expIi [tPz(11)+gz(12)—fz(22) —fz(26)]I,

= —yEz( 1)Ez(2)[(9e + 13+12')/576] exp Ii [4z( 11)+Wz(12)+Qz(22) —gz(26)] I

(65)

There are 24 terms of this type and their total contribution is
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(F4)s., ———ye z(1)ez(2) [(1+2')/48]

X g Icos[ltt (ln)+g (1(n +1))—fz(2(n +1))—fz(2(n+5))]
n=1

+cos[gz(ln)+gz(1(n +1))—t/iz(2(n +2))+gz(2(n +4))]
+cos[gz(ln) —gz(1(n +1))—gz(2(n +4))—gz(2(n +5)))
+cos[fz( ln) —gz(1(n +1))+gz(2(n +1))—gz(2(n +2))]I

3

+ (~2/72) g Ias above, cos =-sinI ],n=1
(64e)

with the same index convention. The total quartic term (F&)s is obtained by summing (64a)—(64e).
Setting the origin of our coordinate system at the point (0,0,0) in the 0 (P4z32) unit cell, we find that the

phases must satisfy

ltjz(ln)=0 or m, n =1,2, 3

fz(2n)=0 or m, n =1, . . . , 6 .
(66)

The free energy F & is minimized by choosing gz(2n)=~ for all n. Using (9), (21) (59) (61) (62a)—(62e), and

(64) then gives

foz= —,[t ~ +lr (r /V 2 1) ]pz(—1)+ ~ [t @+le (—r —1) ]pz(2)

—[3(4+3' 2) /8]pz(1)pz(2)+(23W2/32)pz(2)+(13/12)pz(1)

+ [(139—12v 2) /48]pz( 1)pz(2) + (499/384)pz(2) . (67)

pz(1;0 )/M3pz(2;C) =0.51,
'pz(2;0 )/~6pz(2, C) =0.20,

(68a)

(68b)

and, using (62), for the shift in the (110}Bragg re-
flectloll

The I-0 thermodynamic phase transition tempera-
tloz(lc ) is determined by setting f,

=af,,/ap, (1)=af, ,/apz(2) =af, ,/a. =0 These.
equations were solved numerically and the result is
shown graphically in Fig. 8(c), where the complete
phase diagram for the I, 0, 0', and C phases is
given. 8'e again find that a modified order parame
ter results in the appearance of a new, nonsymmorph
ic phase. Unlike the case of 0, however, the new
phase is now no longer bcc, but rather sc. A com-
parison of the 0 and 0 phases will be given in the
following section.

The entropy changes associated with the phase
boundaries of Fig. 8(c) are given in Fig. 5. At the
triple point t,=ttc, we obtain the order parameter
component magnitude ratios

but rather

r(Oz)/v 2=0.89 . (69b)

with

+ [~2(2)/~12] [~22] (70a)

[~zl l =
C3 —C2 $3

—$3 C1 —C3 —$1 (70b)
—$3 —$1 C2 C1

[~zz] = —[~sz] . (70c)

The tensor [A&z] was given previously in (32). Once
again, the local asymmetry parameter is determined
by diagonalizing the order-parameter matrix and us-
ing (15a).

IV. DISCUSSION

In real space, the order parameter [e (r)] takes
the form

[e (r)]=[&z(1)/l 6][~21]

r(O )=1.25 . (69a)

Experimentally, however, the quantity of interest is
the shift of the first Bragg reflection with respect to
that of the C phase. For the case of 0 this is not r

In this paper we have developed the Landau
theory of phase transitions in cholesteric systems
and shown, within this framework, that the ex-
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istence of anomolous cubic phases can be understood
and their properties studied in detail. In particular,
the following experimental results, summarized ear-
lier in Sec. I, follow naturally from the calculations
in Secs. II and III.

(1) The narrowing and eventual disappearance of
the BP region with increasing pitch.

(2) The narrowness of the BP region. Experimen-
tally, the index of refraction n =1.6, the correlation
length (Ref. 24) g'~ —250 A, and the C-phase Bragg
backreflection is at' ' A c'=4000—6000 A. Thus
a is in the range 0.8 &v & 1.3 and, from Fig. 8, we
see that the BP region should be of the order of uni-

ty on our reduced temperature scale. This unit, as
noted following (11), is extrapolated-from-the-
disordered phase transition temperatures for a ra-
cemic mixture. Experimentally, it is (Ref. 25)
0.5—1 K. Thus our model prediction is in excellent
agreement with experimental data [see particularly
Ref. 7(d)].

(3) The existence of more than one BP. We have
seen that the inclusion of harmonics in the order
parameter results in cubic structures other than 0
becoming thermodynamically stable. The Landau
theory does not, however, encompass an amorphous
phase having the properties of BPIII. A possible ex-
planation for the existence of this anomolous phase
has been given elsewhere. ' ' '

(4) All of the cubic phases (0, 0, 0 ) discussed
here will exhibit many of the experimentally ob-
served optical properties of both BPI and BPII.
These include absence of birefringence, optical ac-
tivity, and Bragg scattering.

We now give a more detailed comparison of the
calculated properties of the 0, 0 and 0 phases
with those observed in BPI and BPII. To begin,
note that the results of Flack and Crooker ' ' rule
out any identification of 0 with either BPI or
BPII. In the materials studied, these authors found
that the second Bragg line is strongly sensitive to the
sense of polarized input light. By using Table III or
Fig. 3(b) and noting the discussion in Sec. IIIA, we
conclude' ' "that neither BPI or BPII can have an
0 structure. This conclusion also follows from the
more limited data of Meiboom and Sammon taken
on different compounds.

There remains the 0 and 0 structures to be
considered. Let us consider the (a. , t) plane phase di-
agram [Figs. 8(b) and 8(c)]. For the 0 and 0
model structures analyzed in Sec. III, we find, for
values of ~ between 0.6 and 1.4, that t, and t, are
equal to within 0.1%. Lacking at this stage a more
refined calculation, we can nevertheless make some
qualitative predictions. From Tables III and IV or
Figs. 3(c) and 3(d), we see that the third and fourth
low-lying harmonics [2,1,1;2] and [2,2,0;2] are al-

lowed in 0 while the corresponding [1,1,1;2] and
[2,0,0;2] states in 0 are forbidden. Extending our
calculation to include these states would therefore
necessarily raise t, while leaving t 2 unchanged

Comparing Figs. 8(b) and 8(c) we thus expect that
0 will occur at smaller a. values and, as a. is in-
creased, the 0 portion of the phase diagram will
grow while that of 0 will decrease.

Turning to experiment, it has been generally re-
ported, ' as noted schematically in Fig. 1, that
BPII occurs at a higher temperature than BPI.
However, these results must be interpreted cautious-
ly as in these experiments v was varied by mixing
structurally very different liquid crystal systems. In
effect, all the parameters in the Landau free energy
(1) were varied simultaneously and not just the
chirality, as we would desire for comparison with
theoretical results. The only exception is the recent
study of a chiral-racemic mixture by Marcus and
Goodby. ' ' By changing relative concentration,
these authors succeeded in varying essentially only
the chirality parameter x.. Thus their results are well
suited for comparison with the theoretical phase dia-
grarn.

Marcus and Goodby ' ' found that as a is in-
creased BPI only appears between the I and C
phases. Its width increases gradually to 0.2 K. At
somewhat higher x, there is a region in which a
BPII phase of average width O. l K appears between
I and BPI. The latter's width in this chirality range
is 0.2 to 0.4 K. This region is most similar to other
reported phase diagrams. ' Finally, as ~ is further
increased, BPI disappears and the BPII segment
widens sharply to approximate 0.6 K. The first
and third chirality regions (i.e., BPI only, BPII only)
are in qualitative agreement with the theoretical re-
sults discussed above if we identify BPI with 0
(bcc) and BPII with 0 (sc). The situation in the in-
tei-ixiediate chirality region (BPII followed by BPI as
the temperature is reduced) is much more delicate.
In fact, higher-order terms' ' ' in the free energy,
which were not included in (1), could be required in
order to completely model the experimental results
in full detail.

Gur assignment of BPI to a bcc space group on
the basis of the observed phase diagram is consistent
with all the other experimental evidence. Flack and
Crooker ' ' have identified four polarized Bragg re-
flections in BPI at wavelength ratios of I:v 2:V 3:2.
This would rule out any sc group assignment for
BPI since the third Bragg ((111))reflection is po-
larization independent for all sc structures (see Table
IV). The situation for BPII seemed to be more com-
plex. Flack and Crooker ' ' (see also Her et al. '

)

interpreted their results in terms of two distinct
phases, BPIIA and BPIIB, occurring at larger and
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smaller lr values, respectively. From the polarized
Bragg measurements, BPIIB was identified3'b'3'"' as
being bcc while BPIL4, where only the first two re-
flections were found, could still be either bcc or sc.
This puzzling situation has been considered by
Marcus, "who has argued convincingly that BPIIB
is not a distinct thermodynamic phase but rather a
two-phase, I plus BPI, region. Its occurrence is thus
an artifact of the use of mixtures of structurally dis-
tinct liquid crystals. BPIL4, on the other hand, is a
distinct thermodynamic phase and corresponds to
the BPII phase found in the chiral-racemic mixture.
This reinterpretation of the BPIIB data fits in well
with our assignment of BPI to bcc 0 and our argu-
ment that the I to BPI transition should occur at
lower a values than the I to BPII one.

The morphological studies of Onusseit and
Stegemeyer" and Marcus ' ' also support our
theoretical picture. They have reported that under
controlled conditions the BPII phase grows in the
form of square platelets. Analysis"' ' shows that
this is associated with a fourfold (1,0,0) symmetry
axis normal to the plane of the platelets. At the
BPII to BPI transition, crosshatching is observed
within the platelets, as a consequence of the forma-
tion of two equivalent sets of (110) planes normal
to the observation direction. These results are all
consistent with BPII and BPI having sc and bcc
structures, respectively. Interestingly, Onsusseit and
Stegemeyer do not observe square platelets in the
so-called BPIIB region. This supports the argument
of Marcus "that BPIIB is a mixed, two-phase re-
gion (I plus BPI) and not a distinct thermodynamic
phase.

An additional characteristic of BPI and BPII is
the so-called' ""red shift. " This refers to the ob-
served shift (to longer wavelength) of the first BP
phase Bragg back reflection with respect to that of
the C phase. Experimentally, ' the red shift has
been found to be 10 to 20% in BPII and 25 to 40%
in BPI. Theoretically, for 0 with an order parame-
ter composed of two spatial frequencies only, we
find a red shift of 11—12%, in reasonable agree-
ment with the experimental value. Moreover, nu-
merical calculations based upon (62) and (67) show
that the theoretical 0 red shift is, to better than
1%, constant in the region 0.6 ~ ~ ~ 1.4. This again
is in agreement with experimental observations. '

For 0, on the other hand, the theoretical red
shift calculated with a two spatial frequency order
parameter is approximately 10%, much less than all
experimental values. This strongly indicates that
the order parameter composed of [1,1,0;2] and
[2,0,0,2] harmonics used in Sec. II 8 is not sufficient
to given an accurate description of the 0 phase and
that additional spatial frequencies are needed. The

necessity of including higher harmonics (i.e.,
[2,1,1;2] and [2,0,0;2]) was noted earlier in our dis-
cussion of the theoretical phase diagram, and is fur-
ther supported by the fact that such harmonics have
been observed experimentally in BPI.

Another experimentally accessible quantity is the
latent heat associated with the various phase transi-
tions. Using high-resolution differential scanning
calorimetric measurements, Stegemeyer and Berg-
mann' showed that the latent heat associated with
I—+BPII is 30 times greater than that of either
BPII~BPI or BPI~C in cholesteric esters.
Theoretically (see Fig. 5), we find that
[ES 2/ES, ],„=4,which is considerably smaller
than the measured ratio. (Since the BP region is ex-
tremely narrow, latent heat and entropy ratios are
essentially identical. ) One possible cause of this
discrepancy is our use of Landau (i.e., mean-field)
theory, in which fluctuation contributions to the en-
tropy change are neglected. These are likely to be
much greater at an I-BP than at a BP-C phase tran-
sition, since the former is order-disorder in character
while the latter is between two ordered phases. Thus
comparisons of theoretical latent heat ratios calcu-
lated using Landau theory with experimental ratios
are not likely to be useful.

A much more promising approach is to compare
calculated and measured order parameter com-
ponent intensity ratios. Experimentally, these can
be determined by measuring the areas under Bragg
peaks and noting that the observed optical reflection
intensity I(o ) for a polycrystalline specimen is pro-
portional to A, 'e (o), where A. is the wavelength of
a given Bragg backreflection and e~(o) is defined in
(2a). If only m =2 amplitudes need be considered,
(5) may be rewritten in the form

(71)

Unfortunately, accurate intensity ratios for the ob-
served optical Bragg peaks are not yet available. An
estimate can, however, be obtained from the three
observed lines (steps) of Meiboorn and Sammon.
Using (71), we obtain r =0.8, i.e., a red shift of
20%. This is in reasonable agreement with the ob-
served value, r =0.73. Note that since only three
lines were measured, the calculated value r =0.8 is
in fact an upper bound.

An alternate method of determining relative am-
plitudes, based upon Darwin width measurements,
has been given by Marcus. " Based upon his data,
we find for the primary BP reflections

p(BPII) /p( C) =0.41+0.05,

p(BPI)/p(C) =0.24+0.05 .
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Again assigning BPII to 0 and BPI to 0, we com-
pare (72a) and (72b) with (68a) and (57a), respective-
ly. In both cases the calculated values are approxi-
mately 25%%uo greater than the average experimental
ones. The trend, however, is consistent with those
structural assignments. Further measurements of
this type, particularly for the harmonic amplitudes,
will clearly be of great value.

An additional area in which contact with experi-
ment can be made is NMR quadrupolar spectra.
Experiments of this type have been reported and
show clear differences between BP and C phase
spectra. However, no attempt was made to distin-
guish between BPI and BPII. As pointed out in
Secs. II and III, theoretical NMR quadrupolar split-
tings for polycrystalline systems can be calculated
once the order parameter [e(r )] is found by minimi-
zation of the Landau free energy. The theoretical
quadrupolar splitting is obtained by averaging

g . . e,ja; aj, where a; are the direction cosines ofgJ lJ l J&

the applied magnetic field, over a unit cell and over
all spatial orientations of the cell with respect to the
field. Theoretical NMR quadrupolar spectra for C,0, and 0 structures and a comparison with avail-
able experimental data will be given by us elsewhere.

We close by noting that, while we have concen-
trated our analysis on 0 and 0, other structures
are also possible. Thus even when it is accepted that
BPI is bcc, we see from Table III that the groups T
(J23) and T (I2,3), in addition to 0, are compati-
ble with the results of Flack and Crooker. ' ' While
theoretical calculations (see Sec. IIIB) seem to rule
out T, the T structure is consistent, both experi-
mentally and theoretically, with the known proper-
ties of BPI since T is a subgroup of 0 . Similarly,
T' (P23), a subgroup of 0, is a possible structure

assignment for sc BPII.
In order to distinguish experimentally between the

above possibilities, a more complete description of
the scattering properties of cholesteric liquid crystal
systems is needed. Such a description is provided by
the 4)&4 Mueller matrix' I I' which relates the po-
larization state of scattered or reflected light to that
of an incident beam at an arbitrary scattering angle.
A full analysis of the scattering properties of
cholesterics and the Mueller matrix formalism will
be given elsewhere. We note here only that initial
measurements along these lines have been carried
out ' ' and that further studies should prove most
useful.

Summarizing, we have here presented a detailed
analysis of the Landau theory of cholesterics. Ex-
tensions of the basic Landau theory to more com-
plex structures have been given. We have em-
phasized the comparison of model calculations with
available experimental data and noted the most
promising areas for further theoretical and experi-
mental work.
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APPENDIX

Using the reduced quantities defined in (9) the average free-energy density (1) becomes

f= V dr [ , (tp j+$ pRl I+p/R p—ij,plJ I
—2&$ReiJI pin pjn, l) 6piJ pJI pli+(piJ) ]

with p=cz/c&. To avoid the variational constraint p;; =0, we add to f the term

where A,(r) is a Lagrange multiplier. The extrema of the functional f [p,;I] are now given by the variational
equations

2
2 [tpiJ kR pij II 2 PER(pil jl +pjl il ) +CR(eiln pjl n + jln pil n )] + 6pil pjl+4(pin ) pij ~~ij

(A3)
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By setting i =j in (A3) and summing over this in-
dex, we obtain

Substituting (A4) into (A3) gives a set of five in-
dependent, coupled, second-order, nonlinear dif-

ferential equations which, in principle, determine
the order parameter p;&. Since these equations are
likely to have more than one solution, one substi-
tutes all p;J. satisfying (A3) and (A4) into (Al) and
selects that solution which corresponds to minimal f
as the thermodynamic equilibrium state.
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