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Liquid alkali metals are treated as a system of charged hard spheres (CHS) in the back-
ground of interacting electrons. Such a system of CHS in a uniform background of elec-
trons has been solved exactly by Palmer and Weeks in a mean spherical approximation.
With the use of this model as a reference, the effect of responding electrons is taken into ac-
count in a linear-response approximation. The resulting expression for the structure factor
involves the CHS diameter as the only free parameter and is very simple to compute. It
reduces to the familiar Ashcroft-Lekner model when the charge on the hard spheres is taken
to be zero. The results obtained for the static structure factor of all the alkali metals at dif-
ferent temperatures are in excellent agreement with the experimental data.

I. INTRODUCTION

One of the important properties characterizing a
liquid is its static structure factor S(q), which is a
measure of particle correlations in the reciprocal
space. Apart from that an accurate knowledge of
this quantity is crucial’ for studying numerous ther-
modynamic and transport properties of the system.

All the earlier attempts’~® to calculate S(g) of
liquid alkali metals had the system of neutral hard
spheres as their reference system. Such models are
quite useful for studying inert-gas liquids or po-
lyvalent metals but do not give satisfactory re-
sults?~? for alkali metals. Among these the simplest
and most extensively used model is due to Ashcroft
and Lekner.? In this model, the structure factor is
obtained from the exact solution!® of the Percus-
Yevick equation for hard spheres. It involves only
one independent parameter—the hard-sphere diame-
ter which is obtained to get best fit of S(q) with the
experimental data. Although this model gives good
results for other systems, no value of the hard-
sphere diameter could fit*® the alkali-metals data
satisfactorily. In fact Greenfield et al.? have intro-
duced one more parameter in this model and adjust-
ed these two parameters independently to get a best
fit to their experimental data for Na and K. The re-
sults, however, remained unsatisfactory as conclud-
ed by the authors.> The reason for general inade-
quacy of neutral hard-sphere models in the case of
alkali metals seems to lie in the fact’ that their
repulsive cores are comparatively soft.

This implied the need for a better reference sys-
tem for alkali metals and the system of classical
one-component plasma (OCP) offered a natural
choice since structurally they are quite similar.!!?
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According to this model the reference system con-
sists of Coulombically interacting postively charged
point charges in a uniform background of conduc-
tion electrons. The recent activity!!~!7 in this field
has shown that OCP is a better reference system
than the neutral hard spheres for alkali metals.
Chaturvedi et al.'® have obtained an expression for
the structure factor using this model and have ap-
plied it with good success to calculate S(g) of some
alkali metals near their melting temperatures. How-
ever it is not easy to use their result as it involves a
large number of parameters, the determination of
which requires the simultaneous solution of many
complicated equations. Also they have used empiri-
cally scaled values of the plasma parameter I" (e.g.,
155 instead of the actual value 209 for sodium) the
physical meaning of which is not clear.

The purpose of the present paper is to investigate
the possibility of an accurate but simple model
which could be applied with about the same ease to
alkali metals as the Ashcroft-Lekner model to other
systems. This is highly desirable for calculating
other metallic properties.! The approach shall be
similar to that of Chaturvedi et al.'® While taking
the classical OCP as the reference system, we keep
in mind that in this model the positive ions are tak-
en as point charges. This is not so in actual alkali
metals whose ionic diameters are of the same order
of magnitude as the Coulomb hole in the corre-
sponding OCP. Therefore, we take a slightly dif-
ferent reference system—a system of charged hard
spheres (CHS) in a uniform neutralizing back-
ground. Essentially this system is same as the usual
OCP except that its particles (positive ions) have fin-
ite extension in space. This system has been solved
exactly by Palmer and Weeks!'® within a mean
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spherical approximation. We use their result as
such and account for the effect of electron screening
using a linear screening approximation.'*'* The
static structure factor is then evaluated for all the al-
kali metals at different temperatures. The results
obtained are in excellent agreement with the experi-
mental'®~2* data.

II. THE MODEL

As already introduced, our model for liquid alkali
metals is a system of charged hard spheres in the
background of interacting electrons. To make the
paper self-contained, we quote the exact result of
Palmer and Weeks!? for the direct correlation func-
tion of the system of CHS in a uniform background
of electrons:

_ |A+4+Bx 4+Cx?+Dx3+Ex> forx <1

C
ox) —v/x forx>1
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where x =r /0, o being the effective hard-core di-
ameter of the charged spheres. This diameter can be
appreciably larger than the actual ion-sphere diame-
ter in alkali metals due to strong Coulomb repulsion
between the ion cores. The coefficients of Cy(x) are
conveniently written in terms of dimensionless vari-
ables,

S k=(24ny)? 2)
o

which determine the packing fraction, ion-ion cou-
pling strength, and the Debye-Hliickel inverse screen-
ing length, respectively, for the system at a given
density n and temperature T. Further, B =(kzT)~!,
Ze is the ionic charge, and ¢ is the static dielectric
constant of the system. Since the electron back-
ground is uniform, its dielectric constant is unity.
However, the ion cores have finite dimensions and
thus their polarization should in principle give rise
]

nCo(q)=2—:1L

to €y which should be slightly greater than unity.
For the present we shall take €,=1 to keep the
matter simple. The familiar plasma parameter I is
related to ¥ as I'=(o/ay)y where a, is determined
from the average volume available to an ion, i.e.,
ao=(3/4mn)'3. The coefficients in Eq. (1) are
given!® by
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(1—7)*  4(1—n)? 127
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B=6nM? C=«2/6, (3b)
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and
E =nx2/60 . (3d)
Here
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M =Q%/24n—(1+4+7)/(1—7)*, (4b)
and
U=—(14+n—n%/5)/(129)
—(1—7)Q/(127k) . (4c)

The static structure factor Sy(g) of the reference
system is related to its direct correlation function by
the familiar relation

1
Solg)=—""+"7".
o(q) 1_nColq) (5)
It is straightforward but lengthy to Fourier
transform Eq. (1). The result is given by

<~ {Aq>(sing —g cosq) +Bq*[2q sing —(g>—2) cosq —2]+cq [(3g°—6) sing —(g>—6)q cosqg]

+D[(4g>—24)qg sing —(g*—12¢g*>+24) cosq +24]

+E[6(g*—20g2+120)g sing —(q®—30g*+ 36092 —720) cosqg —720]/q9*>—vq*cosq} ,  (6)

where only in this equation q is expressed in units of
o~ !. For a given temperature and density, the only
parameter involved in Eq. (5) is the diameter o of a
CHS, which makes the application of this approxi-
mation very simple. A reasonably good estimate of

o is obtained by requiring that the CHS pair correla-

tion should be continuous at the hard-sphere boun-
dary.?> This criterion can be seen to imply the equa-
tion M =0, whose solution determines o uniquely.
We shall refer to this value of the CHS diameter as
gp.
In the long-wavelength limit, Eq. (5) reduces to
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Equation (7) represents the typical plasma-mode
behavior and is thus in contrast to the sound-wave
mode actually found in metals in this limit. It is
known,'* however, that the bare OCP plasma mode
transforms into the required acoustic mode in met-
als if the effect of electron screening is taken into
account. Evidently the electrons in metals do not
form a stiff background as assumed in the reference
system, rather they are quite mobile and move about
to screen out any charge imbalances.

The effect of responding electrons on the ionic
motion is taken into account by assuming weak
electron-ion coupling which is also the basis of
standard pseudopotential approach.! Within a
linear screening approximation,'>!416 the static
structure factor of a liquid metal is given by

So(q)
S(g)= o4 : ©)
14+nBv(q)So(q)
where
_ viq) | 1
=4 |1 10
d(q) | elq) } 19

is the attractive screening correction to the direct
ion-ion potential. In Eq. (10), v(q) is the electron-
ion pseudopotential, ¢(g)=4me?/q* is the Fourier
transform of bare Coulombic interaction between
two electrons, and €(q) is the wave-vector-dependent
dielectric function of interacting electrons. For €(q)
an expression due to Vashishta and Singwi® is used
since it is known to give accurate descriptions of
electron correlations in metals. The pseudopotential
is approximated by the simplest function available,
which is obtained within the Ashcroft empty-core

model?” in the form
2
v(g)=— 47228 cosqgR. , (11)
q

where Ashcroft core radius R, is expected to be
close to the actual ionic radius. In the literature,??
R, is determined from Fermi-surface or phonon-
dispersion data of crystalline metals, or from the
resistivity of liquid metals, and so on. We shall
determine it'® from the compressibility sum rule
which relates the isothermal compressibility of the
system to the long-wavelength limit S(0) of its
structure factor S(g). Taking the g—0 limit in Eq.

(9), we get
172
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where g2 is the coefficient of ¢~2 in the long-

wavelength expansion®® of e(g) and determines the
compressibility of interacting electrons. It is trivial
to see that if Z =0 (as is the case for neutral hard
spheres), then Eq. (9) reduces to the Ashcroft-
Lekner"? model.

We now proceed to the calculation of the struc-

.ture factor using Eq. (9). The value of the unknown

CHS diameter o is taken to be equal to o Like
Chaturvedi et al.,'® we also get unphysical (nega-
tive) values for S'(g) near its principal peak region.
To overcome this difficulty, we truncate!® v(g) after
its first node which in alkali metals occurs roughly
around g <2gp, qr being the electron Fermi wave
vector. Similar truncation of pseudopotentials is
desirable’® to appropriately take into account the
nonlocal effects and the optimization of the pseudo-
potentials in the sense of getting smoothest pseudo
wave functions. Recently Senatore and Tosi?® have
convincingly argued the need for such a truncation
within the spirit of a standard optimized random
phase approximation*® for S (g).

III. RESULTS AND DISCUSSION

We present our results for the static structure fac-
tor of Na at 473 and 373 K in Fig. 1 and compare
them with the experimental data.!®—2° Results ob-
tained with o =0 are in reasonably good agreement

40
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FIG. 1. The structure factor S(g) of liquid sodium at
473 and 373 K versus wave number g, compared with the
experimental data (filled circles) of Greenfield et al. (Ref.
19). Dashed curve is obtained for o =0, and full-curve
results when the charged-hard-sphere diameter is taken
instead as an adjustable parameter op. Open circles near
the first two peaks at lower temperature represent the ex-
perimental data of Huijben and van der Lugt (Ref. 20).
In other g regions these two sets of data are indistinguish-
able on the scale of the present graph.
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FIG. 2. S(gq) of liquid potassium at 408 and 338 K
versus q. The curves and experimental data are labeled as
in Fig. 1.

with the experimental data'® of Greenfield, Wellen-
dorf, and Wiser (GWW), as is shown by the dashed
curve. This is encouraging in view of the simplicity
of the model and the fact that there is no adjustable
parameter. These results are of better quality than
most of the results obtained’~® using neutral hard
spheres as the reference system and with a few free
parameters therein. We find, however, that if o is
taken as a free parameter, then there is a marked
improvement in our results and the agreement with
experiments becomes quantitative (as shown by the
continuous curves) in all respects. We do not deter-
mine o by a least-squares fit to the experimental
data. Rather, its value is increased beyond oy in
small steps until the first minimum of S(q) is well
reproduced. So in this sense o is determined
through a one-point fit to the experimental data.
We refer to this value of o as op, and hereafter the

20 I 3.‘0 40 5.0 ! 6.0
q (A7)

FIG. 3. The structure factor of liquid cesium at 373
and 303 K versus gq. The curves are labeled as in Fig. 1,
and the experimental data (filled circles) used for compar-
ison are due to Huijben and van der Lugt (Ref. 20):

present results refer to this value of o. It is interest-
ing to note that the value of op for all the alkali
metals at different temperatures is about 10%
higher than the corresponding value of oy.

We have chosen to determine o from the first
minimum of S(q) in contrast to the usual practice
of fitting the first maximum (the so called principal
maximum). We are prompted to do so because there
is a lot of discrepancy between different experiments
in the value of the height of the first maximum. It
is not so for the value of the depth of the first
minimum. For example, the first peak height as
measured in earlier'® experiments deviates about
40% from the accurate measurements of GWW.!*
However, such a deviation in the depth of the first
minimum is only about 49%. Another accurate mea-
surement for S(q) of Na, K, and Cs has been report-
ed?® recently by Huijben and van der Lugt (HL) us-
ing the x-ray diffraction method in transmission
geometry like GWW. On the scale of the present
graphs their data for Na and K are indistinguishable
from those of GWW except that the amplitude of
their?® first maximum for Na and K is about 10%
higher than that of GWW. Huijben and van der
Lugt have attributed this discrepancy mainly to the
fact that their®® detection system had a better resolu-
tion. This difference is not noticeable after the
second peak. In contrast, there is no discrepancy be-
tween these two experiments for either Na or K as
far as the depth of the first minimum is concerned.

As seen in Fig. 1, the agreement of the present re-
sults with the data of GWW (Ref. 19) is good except
that the calculated first peak height is slightly
higher. However, as shown (by open circles) for
T =373 K, this peak height is in good agreement
with the data of HL.2® Such a comparison could not
be shown at higher temperatures in Figs. 1 and 2
since for these temperatures HL have no data. In
the g region where the data of HL are not shown,
they are indistinguishable from those of GWW.
Again for the sake of clarity, the theoretical results
obtained with =0, are not shown at lower tem-
peratures in Figs. 1—3. Their trends relative to ex-
perimental data are similar to those at higher tem-
peratures. In Fig. 2, we present our results for S(q)
of K at 408 and 338 K. The first peak height is
again slightly higher than that of GWW and is in
good agreement with the data of HL as shown for
T =338 K. Our results for Cs at 373 and 303 K are
plotted in Fig. 3 and are compared with the experi-
mental data of HL. The agreement, as in the case of
sodium and potassium, is excellent. It may be noted
that all the experimental data plotted in Figs. 1—3
are read from tables.

The experimental situation for the accurate deter-
mination of S(q) of Rb and Li does not seem to be
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FIG. 4. S(q) of liquid rubidium versus g at T =313 K.
The curves are labeled as in Fig. 1. Filled circles
represent the x-ray data of Zei (Ref. 21) and the open cir-
cles are the molecular-dynamics results of Rahman (Ref.
23).

so good as for Na, K, and Cs. An x-ray diffraction
experiment on Rb has been carried out only recently
by Zei.?! There is an appreciable difference?""?? in
the first peak height as measured by different neut-
ron diffraction experiments.”> There exists also a
molecular-dynamics (MD) calculation?® for S(gq) of
Rb. The agreement of the MD data of Rahman??
and the neutron-scattering data of Copely and
Rowe?? is good except that the first peak height in
the latter is a bit higher. In Fig. 4, we present our
results for Rb at 313 K and compare them with the
data of Zei*' and Rahman.?* The agreement is very
good—especially with the MD data of Rahman. To
our knowledge, the only experimental data for Li is
due to the x-ray scattering experiment of Ruppers-
berg and Egger® at 573 K. The MD calculation?’
of S(q) is at a different temperature. Our results are
shown in Fig. 5 at 573 K and are in good agreement
with the experimental data.

In order to facilitate the further application of
this model and to bring out the similarities among
different alkali metals, we have tabulated the inputs
used along with the packing fraction 7 in Table L

FIG. 5. The structure factor of liquid lithium versus
wave number g at 573 K. Curves are again labeled as in
Fig. 1 and the experimental results (filled circles) used for
comparison are due to Ruppersberg and Egger (Ref. 24).

TABLE 1. The inputs used in the calculation of
present results for different alkali metals along with the
packing fraction 7. The approximate melting tempera-
tures are underlined. ao=(3/4mwn)'/3.

T n
Metal (K)  (g/em’)  Xe ar 7
ao ao
Li 573 0.498 0.43 1.51 0.430
Na 373 0.928 0.45 1.52 0.449
Na 473 0.903 0.45 1.50 0.418
K 338 0.827 0.47 1.54 0.457
K 408 0.811 0.47 1.51 0.430
Rb 313 1.475 0.47 1.54 0.452
Cs 303 1.840 0.48 1.54 0.457
Cs 373 1.770 0.47 1.51 0.430

For a given metal, T and n are naturally given and
R, was determined from Eq. (12) using the experi-
mental value of the compressibility S(0). The only
free parameter op was determined from the one-
point fit of the experimental data at the first mim-
imum of S(g). m was calculated from Eq. (2). It
can be seen that there is a wide variation in the abso-
lute value of R, and op from one metal to another.
However, it is interesting to see from Table I that
the values of R./aq and op/a, are almost constant
for all alkali metals near their melting temperatures.
This indicates that different liquid alkali metals are
scaled versions®!%2° of each other. Further it is re-
markable to note that the packing fraction of all the
alkali metals at their melting temperatures is equal
(within 2%) to 0.45. Thus to calculate the structure
factor of different alkali metals near their melting
temperatures, o can be simply determined from
11=0.45 without affecting the present results in any
way.

To conclude, we have given a simple but accurate
model for calculating the structure factor of liquid
alkali metals. Because of its simplicity it should be
quite practical for calculating the thermodynamic
properties and transport coefficients of these metals.
We have proposed but not taken into account the ef-
fect of core polarization, which is expected to be
small. However, it is desirable to take core polariza-
tion into acount since it may be one physical reason
for the scaling!® of plasma parameter I. We hope
to investigate this problem in the near future.
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