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M. D. Girardeau and C. F. Hart
Department ofPhysics and Institutes of Chemical Physics and Theoretical Science,

Uniuersity of Oregon, Eugene, Oregon 97403
(Received 10 June 1982)

The general method of the preceding paper is applied to the theory of spectral line shape.
Illustrative calculations of the transition-energy shift and width are carried out for a two-
level atom interacting with the quantized electromagnetic field. In the thermal-equilibrium

case, explicit results are given in terms of the digamma function and Bose-Einstein distribu-

tion, generalizing the standard Lamb-shift and Weisskopf-Wigner natural width results to
nonzero temperature. In the nonequilibrium case expressions are obtained which exhibit the
influence of nonequilibrium photon distributions on the shift and width. A general theory
of the time-dependent power radiated in the decay of an excitation is developed for systems
not necessarily at or near equilibrium, in terms of appropriate generalizations of the Liouvil-
lian Green's functions of the preceding paper. This approach is illustrated by calculation of
the time-dependent radiated power for the same two-level model.

I. INTRQDUCTIQN

In the preceding paper, ' a general Liouville-space
method has been developed for evaluation of
Liouvillian Green s functions and transition self-
energies of dissipative quantum-mechanical systems
not necessarily in or near equilibrium. The objec-
tives of the present paper are firstly to illustrate that
method by explicit transition-energy shift and width
calculations for a two-level atom in a radiation bath,
secondly to formulate a general method of calcula-
tion of radiated power in terms of suitably general-
ized Liouvillian Green s functions, and thirdly to il-
lustrate that method by explicit calculations for the
same two-level model.

The transition-energy shift and width calculations
for the two-level atom in an equilibrium or none-
quilibrium radiation bath are carried out in Sec. II.
In Sec. III formulas for the time-dependent power
radiated in the decay of an excitation are derived for
a system not necessarily at or near equilibrium, and
a Liouvillian Green s-function hierarchy for evalua-
tion of such quantities is derived. This general for-
malism is illustrated in Sec. IV by calculation of the
radiated power for the same model considered in
Sec. II. Analysis of the spectral line-shape function
will be left for a future paper.

II. NATURAL VERSUS ENVIRQNMENTAL
RADIATIVE WIDTHS AND SHIFTS

FQR A TWQ-LEVEL ATQM

In this section the general approach of the preced-
ing paper' will be illustrated by calculation of

transition-energy shifts and widths for the familiar
two-level atomic model interacting with electromag-
netic radiation. We shall first consider the case
where the system of atom plus electromagnetic radi-
ation differs from thermal equilibrium at some
nonzero temperature T only through the specifica-
tion that at time t =0 the atom is excited into its
upper state, with probability one. The radiative in-
teraction and thermal radiation bath act to perturb
the transition (excitation) energy, and the shift and
width of this perturbed transition energy are given
by the quantity b, iy p—reviously defined. This fre-
quency shift and width will be shown to approach
the standard results of natural —line-shape theory
(Lamb-shift and Wigner-Weisskopf width) in the
limit T~O. The same model system will then be
considered in the case where the initial conditions
are those describing the atom interacting with a
nonequilibrium coherent state of the photons. This
case is investigated as a simple example of a calcula-
tion of the self-energy of a system far from equili-
brium.

The Hamiltonian H of the model is taken to be

H =Hp+H',

~o=~oa a+ g ~kb kP qg ~

k, A.

A AfH'= g M-„(b-„+b-„)("—"
) .

k, A,

Here coo is the energy difference between the unper-
turbed atomic levels, in units with A'=1, a is a Fer-
mi annihilation operator lowering the atom from
its upper to its lower state, and a is the correspond-
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ing creation (raising) operator. The eigenvalue zero
for the Fermi occupation-number operator N =a a
then implies that the atom is in its lower state,
whereas N =1 implies that it is in its upper state.
The b k & and b k & are Bose annihilation and creation
operators for photons of wave vector k, polarization
index A, =1 or 2, and energy cok ——ck. The commuta-
tion and anticommutation relations are

The notation here implies a =1, A =a, where the
1 is a reminder that the atom is in its upper state
(denoted by 1) after excitation. By (1) and (2)

[a,H]=co0a i—g M kz(b kz+b k&)(1—2a a) .
k, A,

a =(a ) =0, [a,a ]+——1,

kA. ' k 'A, ']— k k '

[a,b-~] = [a,b k) ] =0 .

(2)

We thus identify the unperturbed transition energy
e& ——c(1

~

1) as e~ ——co0 (as expected) and the nonzero
c(1

~

n ) with n&1 as

c(l ~;kA)=c(1
~

kA, ; )= iM—
k&

k e k~
——0, e k~. e k~, ——5 (4)

The Hamiltonian (1) differs from the usual two-level
model ' only in that Fermi operators, instead of
Pauli spin matrices, are used to describe the two-
level atom —only a trivial change of notation and
shift of —,A@0 in the energy origin.

The first step in the evaluation of (I.58) consists
of determination of the nonzero c(1 n ), the coeffi-
cients in the operator basis expansion' (I.5):

[a,H] = g c(1
~

n )B„.

The photon wave vectors k are quantized in the usu-
al way, i.e., a discrete cubic k-space lattice with lat-
tice constant 2~/0'~, where 0 is the macroscopic
system volume which will eventually become infin-
ite. The interaction matrix element is

M k~
—(2~/mkn)1/2&od e k~

where d is the transition dipole matri~ element (as-
sumed real) and e k& are the unit transverse polari-
zation vectors satisfying

c(1 1;l,kA, )=c(1
~

l, kk;1)=2iM-k& .

Here c(1 ~; kA, ) and c(1
~

kit; ) are the coefficients
of b k& and b k&, respectively, whereas c(1 1; l, kA, )

and c(1
~

1, kk;1) are those of a b k &a and a b k &a,
respectively. In general, c(1

~

W~', Wf ) is the coeffi-
cient of the normal-ordered basis element which is a
product of creation operators labeled by the set W~
and annihilation operators labeled by the set Wf a
blank before or after the semicolon denotes the ab-
sence of creation or annihilation operators, respec-
tively.

It follows from (6) or (7) and (1) that the set of
basis elements W0 degenerate' with a for which
c(1

~

n )&0, consists solely of those terms b k z and
a b-k&a for which ck =A@0. This is a set of measure
zero (a surface in the three-dimensional k space),
from which it follows that the first-order contribu-
tion [first term in (I.58), with n EP'&] vanishes, as
do the second-order contributions with n EW

&

[second line of (I.S8)]. Thus (I.58) reduces, with
(I.60), to

c(1
~

n )c(n
~

m )g(m, O
~

1,0)
(co0 —e„+iq )g(1,0

~

1,0)

(9)

c(1
~

n)c(n
~
m)g(m, O 1,0)

(co0 —e„)g(1,0
~

1,0)

im g g c(1—
~

n)c(n
~

m)5(co& —e.„)g(m, O [ 1,0)
g(1,0

i
1,0)

(8)

to second order in the interaction. To evaluate these expressions we need to evaluate the relevant c(n
~
m)

where the n label the basis elements B„defined by (7) and the subsequent discussion, and where m HW„ i.e.,
B that are MD degenerate with a. Evaluating the relevant commutators [B„,H'] with (1), one finds that the
only c(n

~

m ) satisfying these criteria are

c(;kA,
~
1)=iMkq B~ =a,

c(kA, ;
~

1)= iMk~~B =a, —
c(l, kk;1

~

1)= iM k&~B~ =—a,
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c(l;l, ki,
~

kA, ;1«kA, )= iMk~~B =b-„~b-„a,

(, ; 1
~

k A, ; 1, k A. ) = iM—k ~~B = b -„b-„a .
(10)

The contributions to (8) from m =1 (Bm =a) give a Weisskopf-Wigner (WW) transition self-energy
[see (].61)] which is found from (7) and (9), uPon writing g s (2n) «t) f d«k (va)(d asymptot

ically for Q —+ ~ ), to be

—()' = Hg(2«r) 'tt f d«kM'-s«
1

kA,

—«n y (21r ) t) f d k«)d- [t5( rc—c rca) dg(rcc/ rce)]

WpB„=[B„,H[]]=e„B„, (12)

e(;kl[, )=cok, e(kA, ; )= —cok,
(13)

e(l, kA, ;1
~

1)= tok —.
Inserting [ok =ck and the expression (3) for M k &,

noting that the angular integrations and polarization
summation give a factor 8m/3, and int~oduci~g a
new integration variable co =ck, one finds

8m toodgww
27T

where the relevant e„(unperturbed) transition ener-

gies), which follow from
These expressions agree with those previously ob-
tained ' for the transition frequency shift and width

by a Heisenberg equation-of-motion approach y.
is half the Einstein 2 coefficient for spontaneous
emission. b, is an improved version of the
Weisskopf-Wigner line shift. As previously noted

by Ackerhalt et al. , it is only logarithmically diver-

gent, in contrast with the linear divergence of the
standard Weisskopf-Wigner line shift. In fact, the
contribution to the expression (14) for 5 coming
from co in the range co ) coo but co (mc, found by
expanding the integrand in powers of cop/co, retain-
ing the nonvanishing term, and integrating from coo

to mc, is

4co []d
~Lamb

3vrc

2(~ood )WW [g(3c' 2' od

3c

(14) This is the two-level version of Bethe s nonrelativis-
tic expression for the Lamb shift.

The environmental contributions to 6 and y come
from the terms in (8) with m &1 (Bm &a ) but
m EW] (B that are Wo degenerate with a). These
are found to be

d'"' t)"""= B' g (2e ) «t—) f d'@2M'-as
cop —Q)k cgp+Q)k

' (b'-„b-„,aa')

(b kgb [,qaa )
t7r g (2m. )—0 d k2M k~[5(coo —cok)+5(too+rok)]

(aa )
(16)

These expressions are valid for either equilibrium or
nonequilibrium ensemble averages (indicated by the
angular brackets).

Consider first the case of thermal equilibrium. .
Then the averages are taken in the canonical ensem-

le

ready of second order in the interaction, we need
evaluate the averages (indicated by angular brackets)
only to zeroth order, i.e., we may replace H by Ho,
Eq. (1), in (17). Then there is no statistical correla-
tion between the atom and photon operators, i.e.,

=Z —'e -I'~ Z =Tre —I'0 (17) (18)

with P=1/kt]T. Since the integrand of (16) is al- and one finds
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(b-„„b-„„ua )

(aa )p

4' pd f(/3' p ),

where f(y) is the Bose-Einstein distribution function

the usual Bose-Einstein photon distribution func-
tion. Transforming to integrals over a dimensionless
energy variable x =co /cop in analogy with the reduc-
tion of (11) to (14), one finds

f(y) =(e~ 1)—
and I(y) is the integral

1[y)=H f xf(yx)« .

(21)

genv I(/3' p ),
3 [TC

3 2

I [5()—x)
+ &(1+x)]xf(/3' px )«

(22)

This integral is expressed in Appendix A in terms of
the digamma (g) function. It is shown there that its
behavior for low and high temperature is

„(2~k—sT/cop) +0((ksT/cop) ), kg T((cop
I(cop /ks T ) =

ln( 27rks T /co p ) +0 ( 1 ) k~ T ))co [)
(23)

i.e., the environmental shift b, '"" vanishes quadratically with kz T/cop at low temperatures and increases loga-
rithmically with the same quantity at high temperatures. The behavior of the environmental width y'"" is
quite different. It follows from (21) that

o/ka T —267o/kg T

f(- /kT)= ' ), kg T ((co p

kg T/co +p0( 1 ) kg T ))cop (24)

i.e., y'"" vanishes exponentially at low temperatures
and increases linearly at high temperatures. Thus
the environmental width is negligible compared to
the natural width y [Eq. (14)] at low tempera-
tures, but dominates it at high temperatures
k~T&&cop. In contrast, the environmental shift is
negligible compared to the Lamb shift AL, b [Eq.
(15)] at low temperatures, but it never exceeds the
Lamb shift at physically reasonable temperatures.
However, because both b,L, b and 5'"" vary very
slowly (logarithmically) at high T, it follows that
5'"" is of the same order of magnitude as b.L, b al-
ready when kz T-cop. In Fig. 1 the expressions (20)
for 5'"" and y'"" are plotted as functions of
kz T/ cpupsing the exact expressions for I(rpplk~ T)
(Appendix A) and f(cop/kz T) [Eq. (21)]. As a
check of the derivation of the expressions (20) by
our Liouvillian self-energy formalism, it is shown in
Appendix 8 that the same formulas follow from the
standard (but less general) thermodynamic Careen's-
function formalism.

Shifts and widths of highly excited (Rydberg) en-
ergy levels of a number of atoms due to blackbody-
radiation environment have been calculated by Par-
ley and Wing. Their calculation treats the radiation

6 eny, y'eny
IO—

5 6 7
k T
(0 o

8 9 lO

FICx. 1. Environmental shift 5'"" and width y'"" as
functions of k~ T/mo.

classically, and expresses the widths in terms of an
integral closely related to our integral I(y), Eq. (22).
The connection is discussed at the end of Appendix
A; we show that their integral is expressible in terms
of the digamma function, as is the integral of Eq.
(22).
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&o)=&y~o~q)
in a normalized coherent state

(25)

I 'P ) =const e"p
k, A,

0), (26)

where g k I, is a c-number function and
~
0) the vac-

uum of the b k q and a:

Let us next consider a case where the radiation is
not in thermal equilibrium, namely, that where the
statistical average (I.3) is an expectation value

tion A, , so that it can be written as a function of aIk,

f kI, =f(~k«)=fUX»
where x =aI /aIo as before, e is some natural energy
scale (any parameter of the dimensions of energy'o),
and y =aIp/e, then Eqs. (30) reduce to

3 2

genv

3~ 3

(32)
4ci7 pdr'""=, fb»

bqq i0)=a ~0)=Q.

Then

b&I 0)=gk~l0)

(27)

(28)

with I(y) defined by (22). This generalizes (20)—(22)
to a spherically symmetric nonequilibrium photon
distribution function f(y ). Another interesting
choice for f k & is that typical of a single-mode laser,

so that the mean values in (16) are trivially evaluat-
e:

&b-"bk.aa &

&aa )
= &b»b-„, & =

l gg~ l
=f &~ ~

(29)

Then

~'""=W g (2~)-'n

1

~o —~k

q'""=~g (2~)-'n

2M k ~ Mo —6)k

+&(~o+~k))f»
(30)

Note that the coherent-state assumption is not essen-
tial for the derivation of (30). In fact, the only prop-
erty of the coherent state necessary for the validity
of (30) is the factorization (29) of the statistical aver-
age, and (30) remains valid for any ensemble satisfy-
ing this factorization property. This is as far as we
can go without assuming an explicit form for f k &,
the photon distribution function. If f I, &

is taken to
be the thermal-equilibrium (Bose-Einstein) distribu-
tion (19), then the expressions (30) reduce to the
thermal-equilibrium expression (20)—(22). More
generally, if f kI„ is assumed to be any spherically
symmetric function of k independent of polariza-

f kg=f&(k —ko+~I (33)

where f is a real, positive constant. Then (30)
reduces with (3), to

f roo(d. e k )
env 0

2~ ckp
+

co p
—ckp

1

cop +ckp

(34)f'coo(d. e k
)'

6(coo —cko) .
2vrcko

The shift exhibits a resonance behavior as the laser
frequency ckp approaches the atomic transition fre-
quency, whereas the width is zero if ckp&aIo but in-
finite when cko =cop. Since dissipation is a result of
coupling to a continuum, the vanishing of y'"" when
cko+cop Is to be expected, a laser lasing in a single
mode being a discrete state rather than a continuum.
The singularity at ckp ——

asap is an artifact of the sim-
plified ansatz (33). A real laser has nonzero intensi-
ty in a narrow but nonzero range e of wave vectors,
so that y'"" will be smaH for

l
ko —~o/c

~

&& and
large for

~
kp —coo/c

~

(E.
We conclude this section by establishing the con-

nection of the expressions (8), (11), and (16) with a
previously described" diagrammatic approach to
the evaluation of Liouvillian self-energies. The "a-
irreducible self-energy diagrams" defined there are,
for the Hamiltonian (1) and to second order in the
interaction H', those shown in Figs. 2 and 3. Lines
directed toward the right stand for the atomic
lowering operator a (solid line) or photon annihila-
tion operator b z& (wavy line); lines directed toward
the left stand for the atomic raising operator a
(solid line) or photon creation operator b k& (wavy
line). Each vertex stands for one operation of the in-
teraction Liouvillian W' (commutation with M'),
which gives a matrix-element factor from the ex-
pression (1). The ordering of lines and vertices from
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X (z)= g(2m) 0

FIG. 2. Irreducible self-energy diagrams contributing
to the natural shift and width 5 and y to second or-
der.

)( f d3k M-„z
1

Z —Cgk

W'9'0(z )W'a, (35)

where $0(z)=(z —W0) '. The diagrams of Fig. 2
yield a transition self-energy contribution

left to right corresponds to the ordering of factors
from right to left in the product (36)

which agrees with (11) if we put z=ro0+ig, a re-
placement which is justified through second order in
the interaction matrix element M k&. Similarly, the
diagrams of Fig. 3 yield" '

1+
Z+COk

(37)

This agrees with (16) if we replace z by roa+iri and
note (19), replacements which are again correct to
second order in M-„„. Note that the natural line
shift and width expression (36) comes from the
"completely diagonal" diagrams of Fig. 2, while the
environmental contribution (37) comes from the
"quasidiagonal" diagrams of Fig. 3.

III. POWER RADIATED IN THE DECAY
OF AN EXCITATION

Standard expressions' ' for spectral line shape
in terms of current-current correlation functions
( J(r, t) J(r ', t')) or dipole autocorrelation func-
tions (d(t)d(t')) involve a number of assumptions
that we wish to avoid here, in order to obtain a more
general nonequilibrium theory. These include the
assumptions that (a) the average indicated by angu-
lar brackets is taken in an equilibnum ensemble; (b)
the line shape sought is that for absorption of exter
nal radiation which acts as a perturbing probe; (c)
this perturbation (hence the incident radiation inten-
sity) is small; and (d) the semiclassical theory of ra-
diation may be used, according to which absorption,
induced emission, and spontaneous emission are
treated separately. We wish to give up all of these
assumptions here. We are interested, in the first
place, in the electromagnetic radiation produced by
the decay of some specific kind of excitation, creat-

I

ed by some excitation operator A as in the preced-
ing paper' and in the example considered in Sec. II
of this paper. On the other hand, the standard for-
mulas involve total absorption summed over all
types of excitation that might be created by a weak
external electromagnetic field which is treated clas-
sically. The excitation created by the operator A is,
in fact, quantized and hence not necessarily "small".
Furthermore, we wish to consider the case where
this excitation is relative to some initial state of the
system which may itself be far from equilibrium,
described by some nonequilibrium statistical ensem-
ble. One can then hope to use the calculated line
shape as a diagnostic of the nonequilibrium state of
the medium, which influences the dynamics of the
decay and hence the line shape. Finally, we wish to
treat the radiation field by quantum electrodynamics
so as to avoid an artificial separation of spontaneous
and induced emission, which are both contributions
from the same quantum-dynamical process.

In order to obtain a sufficiently general theory, it
is best to return to first principles. Determination of
the time-dependent radiated power P(t) is more
straightforward in principle than that of the power
spectrum, so we shall consider the former here. Let
H„d be the portion of the total Hamiltonian
representing the energy of the quantized radiation
field:

(38)

kA +

FIG. 3. Irreducible self-energy diagrams contributing
to the environmental shift and width 6'"' and y'"' to
second order.

Here X k & is the occupation-number operator
b k &b k & for photons of wave vector k and polariza-
tion A, . The rest of the notation for H„d is as in Eq.
(1), but the Hamiltonian of matter and matter-
radiation interaction is general, not restricted to the
special case of the two-level model of Eq. (1) and
Sec. II. Suppose that the system is initially in some
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pure quantum state
~ gp) and is then excited, at

time t=O, into some nonstationary, decaying state
A~ Pp ), where A is an appropriate excitation
creation operator, as in the preceding paper. As-
suming that this excitation couples to the elec-
tromagnetic radiation field, decay of the state
A

~

1/Jp ) will result in a time-dependent increase in
the energy of the quantized radiation field. The in-
stantaneous power P~(t) being radiated at time t due
to decay of the excitation a is

P (t)=B,(gp ~A H„,d(t)A Qp)

= g cok(Pp ~A B,N-~(t)A ~Pp) (ps),
k, A,

(39)

(where ps represents pure state) where the Heisen-
berg operators H„d(t) and N k&(t) are propagated
with the full Hamiltonian including the matter-
radiation interaction and any other interactions con-
tributing to the decay of the excitation. This pure-
state expression is generalized to quantum statistical
mechanics by replacing the expectation value

( gp ~

0
~ fp ) by an ensemble average

(O) =Tr(O~) (40)

can write (41) formally as

P.(t) = t g—~„(A.(e-'~'WN»)A. ') .
k, A,

(43)

WN k & can be expanded in terms of an operator

basis IB„I, as in' (I.8):

WNk~ ——[N~~,H]= gc(kA, n)B„. (44)

P.(t)= —g g „(kX~ )(A. ( -'~%„)A.') .

(45)

One has the contour integral representation

e ' '=(2m)) ' f dze '*'(z —W) (46)

g„ze '" z, 47

where the contour encircles all eigenvalues of W in
the counterclockwise sense. Since these all lie on the
real axis, the contour is as shown in Fig. 4. Then

P (t) = —(2~) ' g g coke(kA,
~

n )

P (t)= g cok(A B,N-„q(t)A ) . (41)

over an equilibrium or nonequilibrium ensemble.
Then where the Green's functions g „are

g.„(.) = (A.[(.—~)-'k„]A.') . (48)

k, A.

This expression is quite general, not being restricted
to dipole approximation, far zone, equihbrium, e«.
It includes, in principle, all spontaneous, induced-
emission, and induced-absorption contributions
A is truly an excitation operator, then P (t) is ex-
pected to be positive, at least for most values of t.
However, there is no reason, in principle, to exclude
the case that A is a deexcitation operator, in which
case P (t) is expected to be negative and to represent
induced absorption. More generally, A could be
taken to be a projection operator describing any
well-defined state preparation. We are, however, as-
suming that all sources of radiation and any other
mechanisms affecting the radiation process are in-
cluded dynamically in some total, conserved, time-
independent Hamiltonian Hused to propagate th'e

Heisenberg operators, rather than being described in
the external-field approximation by parametric
time-dependent fields.

Recalling that the Heisenberg operators required
in (41) can be written as

(42)

in terms of the Liouvillian W [see' Eq. (I.64)], one

P (t) =(2mi) ' g g toke(kk
~

n)
n

Here f „ is the cut discontinuity function

Q „(co')=i[g „(tu'+i') —g „(co' iri)], —(50)

Irn z

LO 0 ~ Rez

FIG. 4. Contour for the integral (46).

For a macroscopic dissipative system, these are ex-
pected to have cuts along the real axis, as do the
simpler Cireen's functions of the preceding paper. '

Then the integrals in (47) with the contour of Fig. 4
can be written in terms of the discontinuities across
the cut:
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+9p(Z)W Sp(Z)W 9p(Z) +
=Sp(z)+ 9'(z) Y'Sp(z), (51)

with S(z) = (z —W) ' and 9'p(z) = (z —~p)
The decomposition of W into unperturbed and per-
turbation parts, Wp and W', is defined by the
decomposition into diagonal and off-diagonal parts
with respect to the operator basis I 8„I:

WB„=e„B„+g'c(n
~

m )8 —=WpB„+W'B„

(52)

[see Eqs. (I.8) and (I.14)]. Here e„=c(n
~

n). The
B„are eigenoperators of Wp with real eigenvalues
&n:

WpB„=e„B„.
It is convenient to choose the basis such that

WB„=[B„,H] =WpB„+W'B„,
WpB„=[B„,Hp], W'8„= [B„,H'],

(53)

(54)

where the interaction Hamiltonian H' includes the
matter-radiation interaction and any other interac-
tions contributing to the decay of the excitation a.
Since Hp is diagonal with respect to (commutes
with) the photon occupation-number operators N z &,
one has

(55)

i.e., N k & is an eigenoperator of Wp with eigenvalue
zero.

Substitution of (53) into (51) yields

S(z)B„=(z —e„) '8„

+(z —e„) ' g'c(n
~

m)$(z)B (56)
m

and substitution into (48) then yields the hierarchy

with g =0+.
A hierarchy of coupled Liouvillian Green's-

function equations similar to Eqs. (I.17) can be de-
rived from the identity

S (Z) =Sp(Z) +9p(Z)W 9p(Z)

This suggests introduction of a self-energy function
X „(z) by an ansatz similar to that of Eq. (I.19).
However, we shall see in Sec. IV that for the g „oc-
curring in (47) in the case of the two-level model,
the initial values (A B„A ) vanish identically, in-
validating the ansatz. More generally, they may be
very small in some cases, in which case an ansatz of
the form (I.19) leads to a poorly convergent expan-
sion for X~„(z). This problem is easily circumvent-
ed by using an iterated expression, writing each g „
in (47) via (57) as

g „(z)=(z—e„) ' (A B„A )

+ g'c(n
~
m)g (z)

(59)

Even if (A B„A ) vanishes or is very small, this
will not, in general, be true of the (A 8 A ) for
the relevant g, and one may then use a self-energy
ansatz similar to (I.19) for them:

(A.B J.')
g (z)=

z —e —X (z)
(60)

For example, for the two-level model to be studied
in Sec. IV, the leading contributions to the sum over
m in (59) will be found to be those involving only
two m values, namely, 8 =N=a a (occupation-
number operator for the atomic excitation) and
8 = 1 (unit operator). The Green's function for the
case 8 = 1 can be trivially evaluated in closed form,
and that for B~ =N has a well-defined self-energy
representation (60). In the general case (not restrict-
ed to two-level model) the corresponding g in (57)
are those coupling g „ to those 8 which are bilin-
ear in the electric current. ' This is, again, physical-
ly satisfying in view of the prominence of current-
current correlation functions in standard
theories' ' of spectral line shape, which we are
generalizing here.

The derivation of the explicit expressions for the
terms in the expansion

X (z) =X"'(z)+X'"(z)+

(z —e„)g „(z)= (A B„A )

+ g'c(n
~
m)g (z) .

Note the similarity with Eqs. (I.17).
The unperturbed Green's functions are

(A".B„A".')

(57)

of the self-energy proceeds exactly as in the deriva-
tion of the corresponding expressions in the preced-
ing paper' for the different but closely related
Green's functions defined therein. In fact, the ex-
pressions for the various terms in (61) are obtainable
from the previously given ones by merely changing
the notation appropriately. For the calculations we
have in mind, sufficiently accurate results are ob-
tained by terminating the expansion (61) with the
second-order term. The first-order term, obtained
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by adaptation of Eq. (I.42), is

c(m ~1)&A B(A )&'"(z)=
&A.B.A. )

c(
~

&)&A.a,Z)
+ (z —

~yg )
(z —~, )&A.B A. )

Here W is the set of l values such that 8& is Wo
degenerate with 8, i.e., has the same Wo eigen-

value as does 8; this corresponds to the previously
discussed separation into "resonant" and "non-
resonant" contributions. Note that this is not the
same as the usual distinction between "rotating-
wave" and "counterrotating" contributions; we
found in Sec. II and shall find in Sec. IV that
resonant contributions to the self-energy in our sense
contain both of the latter contributions. The expres-
sion for X'~ is the analog of (I.55). Omitting the
pole term [analogous to first line of (I.55)] which
vanishes for a macroscopic system by the same ar-
gument as given previously, ' one has

y()( ) y
c(m

~

l)c(l ~p)&A B~A )

(z —e )&A 8 At)

~

i) (i ~p)&A. B,A.')
(z e, )&A—8 A )

2c (m
~

l )c (m p) &A BIA ) &A~BzA~ )
(z —eq) &A~8~A~ )

c(m
~

l)c(l ~p)&A 8 A )

(z —eI )(z —e ) &A 8 A )

c (m
l
l)c (m

l
p) &AaBIA~ ) &A 8&A )

(z —ei)(z —e~)&A 8 A )

(63)

Let us conclude this section by considering the
problem of the power spectrum of the radiation, i.e.,
the spectral line shape. This is not expressible
directly in terms of the time-dependent radiated
power P (t). It is, of course, well known that the
Michelson-Lorentz' line shape corresponds with the
approximation

P (t)=const)&sin (coot)e

characteristic of a damped classical radiating dipole;
however, there is no simple, general relation between
P~(t) and the line shape. Note, for example, that
the line shape is peaked about co =coo, whereas the
Fourier transform of the above classical approxima-
tion to P~(t) is peaked about co =2coo, the power be-
ing quadratic in the field. It seems to us that any
correct derivation of a general expression for line
shape cannot avoid the measurement problem, i.e. , it
is necessary to have some qualitatively correct
model of how the line shape is to be measured. Ac-
tual detectors capable of spectral analysis do so by
measuring the variation of the degree of resonant ex-
citation of the detector as its resonance frequency co

I

is varied. ' A simple and rather natural model of
such a detector is a two-level atom coupled to the
electric field in the same way as that of Sec. II, but
with an adjustable transition frequency co. We plan
to carry out a detailed analysis of such a model in a
future publication. Here, however, we merely wish
to point out that one could formally define a line-
shape function I' (co) by

&A".Z )
z —X (z)

(65)

The self-energy X (z), is likewise, that previously
defined, ' which forms the basis of the evaluation of
the line shift and broadening in Sec. II of this paper.

+ (~ ) =Reg(a, co +ig
~

a ),
where g(a, z

~

a) is the Cireen's function defined in
the preceding paper, ' on which the calculation of
line shift and broadening is based in Sec. II of this
papeI".

g(az
i
a)= &[(z —W) 'A ]A )

IV. RADIATED POWER FQR THE TWQ-LEVEL MODEL

In the case of the two-level model of Sec. II, A is the atomic raising operator a, which is a Fermi creation
operator in the representation used in Eq. (1). Putting a =1 to denote the atomic excited state (upper level) as
in Sec. II, one has for the instantaneous radiated power at time t [see Eqs. (41), (49), and (50)]
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P)(t) = g cok (a B,N k k(t)a )
k, A,

=(2eei) ' g g eeee()ke(e) f l/i&„( ee')e ' 'dee',
k, A, ~

(66)

where g ~„ is the cut discontinuity function g, „(z)=(z e—„) '-y'c(n
~

m)g, (z) . (71)

4i ((o )='[gl (~ +'9) gi (ro —i'9)1. (67)

The c ( k A.
~

n ) and B„are determined from the
operator-basis expansion

YN-„k ——[N-„k,H]=[N kk, H']

=iM-„(b -„—b-~)(a —a ) (68)

which implies, with (1), the following operator-basis
elements, coefficients, and transition energies:

The c(n
~

m) and corresponding B are to be
evaluated by taking the commutator of each of the
B„of(69) with H, as in the similar calculations in
Sec. II. For example,

[b-
=g'c(b k&a ~

m)B

i g—M k,k, b kk(b k,~, +b k,k, )(1 2N)—

B„=b&&a: c(kA In)=iMkk &. =too rok—
—+B„=a b-„k: c(k&

~

n)=iM-„„, c„=a)k coo, —

k ', A,
'

+iM-„„N, (72)

b kka: c(k~
I
n)= —iMkk ~ ~oo+~k

(69)

—+B„=a b-„k. c(ki,
~

n)= iM-„—k, e„= coo —ro—k .

Since

a(a —a')a t=o, (70)

it follows that (aB„a ) vanishes identically (in-
dependently of which ensemble is used to evaluate
the average) for all the B„occurring in (66). This is
the situation discussed in Sec. III, where the g „
must first be expressed in terms of g via Eq. (59)
before applying the self-energy representation (60).
In the present case Eq. (59) reads

with N=a a. The terms in the summation over
(k ', A, ') all have vanishing expectation values in the
state a

~

0) (unperturbed atomic excited state),
whereas N has expectation value unity. One there-
fore expects the terms in the summation g k, &, to
give contributions to g&„which are of higher order
in the interaction than the contribution from the
term proportional to N, so we shall only retain the
latter. The same argument applies to the case
B„=a b k & and also to b k &a and a b k &, except
that in the latter two cases there are contributions
proportional to the unit operator 1 which must be
retained as well as those from N. One thus obtains
the following leading-order expressions for the g&„
of Eqs. (66), (67), and (71):

B)( —b kka: gin(z) (z —&0+&k) ~Mp&ggla( )z,

B„=a b-„k.. g)„(z)=(z —cok+coo) 'iM-„kg„(z),

B„=b-„~a: g)„(z)=(z coo —~o—k) 'iM-„~g), (z) —(z —coo — co)k'iM-„~z '(1 —(N ) ),
B„=a b kk. g)„(z)=(z+ruo+rok) 'iM-„kg „(z)—(z+coo+cok) 'iM-„kz '(1 —(N ) ) .

Here g&, is the Careen s function for the atomic excitation occupation-number operator N,

g~, (z)=(a[(z —W) ~N]a ),
and the corresponding Green's function for the unit operator is

(a [(z —W) '1]a ) =z '(aa )

(73)

(74)

in which (N ) may be interpreted as the excitation probability of the atom in the given ensemble, which
vanishes in the unperturbed vacuum and hence arises only from the radiative interaction (vacuum
fluctuations) and environmental effects. Equations (66), (67), (69), and (73) imply

(75)
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p, (t)=(2m) 'g ru„M'~~ f da) e'
k, A,

X g ),(ro'~iq )
CO —CO p +COk +E'Q

1

N' —COk+COp+ Eg

~g „(co' iq—)

1 1+ +—Np —COk+l'g N +Np+Np+lX/

1 1

ro mo—+~k ~'9 n rok—+

choo

CO —CO p
—N k

—E'g

1

CO +COp+COk —E'g

1 —(N)
co +le

1 1
I ~ + /

~o —~oo —rok+ig ro ~roo~rok ~ig

+ 1 —(N)
CO —l 7j'

1 1

CO —CO p
—COp —E'g CO +CO p +N k

—E'g
(76)

We assume (and shall presently verify) that the discontinuity of g&, (z) across its cut on the real axis consists
of a change of sign of its imaginary part, the real part remaining continuous. Then

1 1= H —+i+5(x),x+ig x

one finds that the expression reduces to

p&(t)=i g mqM zz f
k, A,

dco 8

g~, (ro'+ig)=g~, (ro')+igI' (~o'),

where g&~ and g&', are real. Inserting this into (76) along with the standard relation

(77)

(78)

X g'I (coa)[ 5(~o roo+~ok )+5(~ ~ok+~op)

—5 ( co —co o —cok ) —5 ( co +co o +cok )]

1'g (', (ro')
CO —COp +Nk

1

~o —~ok+roo

1

N +COp JNk

1~ (1—(N ) )H —,[5(co' —~p —~ok)+5(~'+~o+rok)]
N (79)

The integrations over co can be easily carried out explicitly. Those involving the 5 functions are trivial:

f 00 ~ /de'e ' 'g), (co')[5(co' —cop~cok)~5(ro' —rok —cop) —5(co' —rop —cok) —5(co'~a)p~rok)]

= —2ig I (cop —cijk )sin[(cop —cok )t] + 2ig '„(rop +rok )sin[(rop +~k )t] (80)

and
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co e —,co —coo —cok co +col +cok = —21 I— sin[(coo+cok )t] .

Here we have assumed that g'„ is an odd function.
We shall show presently that this is the case, and
that g,", is even:

g ~', ( —to ) =g I', (to ) .

The integrals involving the principal-part functions
can be evaluated by contour integration. Recalling
that t) 0, one can close the contour in the lower
half-plane, as shown in Fig. 5. The indentations
avoid the singularities at co'=coo+cok and

I

1 1+
Qj —Cgo+QPk M —COk+Q)o

(81)
I

ci) = —cop+cok. We shall find later that g &', (co') has
poles at to'=+i I, where I is a real quantity which
will be evaluated later to leading order in the radia-
tive interaction. The contour encircles (in the nega-
tive sense) the pole at to'= i—I', but there are no
other singularities within the contour, and ~gI',

~

is
of order ~co'~ ' for ~to'~ ~oo. Then the semicir-
cle at infinity contributes nothing, whereas the in-
tegral along the indented real axis is the sum of the
desired principal-value integral and half of the pole
contributions from co'=cop+cok and co'= —cop+cok.

In this way one finds

1

CO +Mo+Mk

= —2ie 'WI', ( —iI )2iI
(co —co„) +I (top+~ok) + I

—2lg )~ (cop —ci)k ) co[s(cop —cok )t] +2tg )g (cop+ cok )cos[(cop+ cok )t], (83)

where A&', ( —iI ) is the residue of g &', (co') at its pole to'= iI —Use. has been made of the symmetry property
(82) of gI', .

The sum over ( k, A, ) in (79) can be reduced, in the infinite-system limit, to an integral over co =tok according
to

k, i,

2
8~ trod
3c 2 tT f cu fice)dry, (84)

to g'), (cop —co )sin[(cop —co )t]—g ~, (cop+co )sin[(top+co)t]

as in the derivation of Eq. (14). The high-frequency cutoff at co =mc has been introduced as in the derivation
of the Lamb-shift expression (15). Insertion of the results (80), (81), and (83) for the to integrals yields

2
16m. ~od

P, (t) =
3c 271

+2iI e ' 'A')', ( —il )
(cop —to) +I (top+ to )'+ I'

+g y~ (cop —co )cos[(Cop —co )t]—g ]z (Cop+ tel )cos[(Cop+ co )t]

1+ (1—(X))H sin[(cop+to)t] dto .
cop+ co

(85)

The term proportional to A&' ( —il ) can be evaluated to leading order by contour integration, assuming
top «mc and y «cop, where y is the natural line width (14). Then, as shown in Appendix C, the dom-
inant contribution comes from the pole at co = op+ci I, yielding

mc
dc' co 2iI e "'AI', ( i I )—

o ~
( )2+I 2

1

(too+co) +1
=2mitooe ' 'A&', (

.—iI ) .

(86)

The last integral in (85) is expressible in terms of the sine integral ' and trigonometric functions:
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m~' z»n[(~p+co )t] "+ o, z sin(co't)f CO (Co —cop), dc'
0 COp+67 Ci)

O C9

= cop[Si((mc +cop)t) S—i(topt)]+2copt '[cos((mc +top)t) —cos(copt)]

+t [ slB((mc +ct)p)t) —(mc +cop)tcos((mc +cop)t}

—sin(capt)+toptcos(copt)] . (87)

1 —(N&
gla z

z —X „(z)
use having been made of the identities

(.-N.-') = ((.-")'&
=((1—N) )=(1—N}=1—(N} .

(88)

(89)

Decomposing the self-energy of the real axis in anal-
ogy with (77),

X „(co+i')=X'), (co)+iX I', (co),

with X &, and X I', real, one finds with (88) and (77)

(1—(N ) )[co —X'), (co )]
g~, (~o) =

[~ —X'i. (~)1'+I:Xi'.(~)l'

g )', (co ) =
[~—Xl.(~)] +[Xl'.(~)]

(91)

X &„and hence X'&, and X I'„can be evaluated up to
second order in the radiative interaction from the
expressions (62) and (63) for the case B =N, A =a.
The expression (62) for the first-order, self-energy
specializes in the present case to

IITI ~
I

Xg Xy w & X X

I

t

!
t

l

I

l~

FICx. 5. Contour for the integral (83).

In order to analyze the contributions of the other
terms in (85) it is necessary to evaluate the leading
contributions to the functions g'&, (co') and gI', (co').
First write the Green's function g&, (z) of Eq. (74) in
the form (60) exhibiting the self-energy X &, (z):

c(a n)(aB„a }
Q Q

c(a
I
n)(aB„a )

gg~ Q Q
(92)

where Wp is the set of n such that B„are Wp degen-
erate with N, i.e., such B„ that have Wp eigenvalues
zero. The coefficients (c-matrix elements) c(ct

I
n)

and corresponding operator-basis elements B„are
read off from the identity

[N,H]=[N, H']= g c(a n)B„

B„=bkka: c(a
I
n)= iM kk, e—„=~p cok, —

B„=a b k& c(a
I
.n)= iM k&, e„—=tok —~p

(94)

b kka: c(a
l

n)= —iMkk ~ ~p+'tok

B„=a b -„k. c (a
I

n ) = iM-„k, e—„=—cop cok . —

As in the case considered in Sec. II, P'p is a "set of
measure zero" with the consequence that the first
line of the expression for X'„' vanishes in the macro-
scopic limit Q~co [see the discussion before Eq.
(8)]. The second line of (92) vanishes indentically in
view of an identity differing from (70) only in the
sign between a and a .

Next consider the second-order self-energy, Eq.
(63) with B =N and 3 =a. The terms from the
first double summation are negligible [O(Q ')] as
were those in the first line of (108) for the same
reason. Those from the last double summation in
(63) are negligible for a different reason, namely,
their prefactor z. Since the two c-matrix elements
imply that these terms are of second order in the in-
teraction (second order in the M k &), it follows that
these terms will be smaller than the term z in the

i g M—kk(b kk+b kk)(a+a ) (93)
k, A,

analogous to (68), use having been made of the expli-
cit expression (1) for the Hamiltonian. One has in
comparison with (69)
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denominator of (88) by a small factor of order
~=ez/Pic. This argument does not apply to the
terms from the middle double summation in (63),
which contain no prefactor z. It follows that these
terms will dominate when

~

z
~

&a. But it is pre-
cisely such small values of z that are important for
the long-time behavior of the radiated power, since
the large-t behavior of a Fourier transform is deter-
mined by the low-frequency behavior of its in-
teg rand.

We conclude, then, that the self-energy
reduces, through second order, to

C a n C n m a a
X1,(z) =

n &P 0 m E' p' Z —~n

(95)
The c(a

~

n) and B„are given in (94) and the
c(n

~
m) and B~ are determined by taking the com-

mutator of each of these B„with M ', Eq. (1), as in
the derivation of Eqs. (11) and (16). The resultant
B with m EWo are N, the unit operator 1, the
Nk&, and the products Nk&N. The derivation
parallels that in Sec. II, so we shall only give the re-
sult

2 1 1X1,(z) = g M k1 +
Z —CO O +COk Z —COk +Cg O

1 + 1

CO 0 +COk Z —COk +6)0
+ +

Z —Q7 O
—6)k Z +6)O +Cg k

(N k1(l —N))
(1—N)

(96)

In obtaining this result identities like (89), which follow from the fact that a and a are Fermi operators, have
been used.

The first summation is independent of the environment (independent of the ensemble ) as was the general-
ized Weisskopf-Wigner line shift and width expression of Eq. (11). This contribution is directly related to the
spontaneous emission, and will therefore be denoted herein by X ~,

'". The second summation in (96) is an en-
vironmental contribution similar to the environmental line shift and width expression (lb), and will therefore
be denoted by X &",". Thus

X 1,(z) =X ',~'"(z) +X;","(z) . (97)

Changing X'P'" to an integral in accordance with (84) and making use of (78) as in Eqs. (11) and (14), one
finds"

X1, (Co+17))=
2

8~ a1 od

277

fPZ C
(cop —co) +9(cop —co (0)111 +1

CO —CO 0

2

+ 5(0 & co p
—co & mc )ln

fPL C
+8(a1p —co) mc )ln 1— OlC

—(cop+co) 5(p)p+co &0)ln MC + 1

+4(0(a1p+co &mc )ln

T

+ 19'(cop+co) mc )111 1— IC

r

~od
2 2[(~o—~)&(0&coo p1 &mc )+(—~o+~)5(0&coo+co &mc )],2& (98)

where the 8 function of an inequality is defined to be unity if the inequality is satisfied, and otherwise zero.««s consider first the case in which the environmental contribution X &", in (97) is negligible compared to
the spontaneous decay contribution X;, ". This is the case, for example, in thermal equilibrium at zero tem-
perature. When X 1",

' is evaluated, we shall find that at zero temperature it reduces to a vacuum field fluctua-
t»n contribution which is very small compared to X',~'", due to the smallness of the virtual vacuum photon
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mc—1 —(cop+co )ln

distribution function. Then putting X &a
——X &a'", one can determine g'&a and g i'a from (90), (91), and (94). The

integrals over g'&, and gi', in (85) have to be subdivided into integrals over various ranges of co, due to the 0
functions in (98). In the range 0 & co & cop one has

2
Svr copd mc

X i, (co) = (cop —co )ln —1
3C 2 CO p

—CO COp+CO

8m.
X i', (co ) =

3c

2
Copd

27rco p =X i' (0 ), 0 & co & co p

One sees that X,'(co) vanishes as co~0, and for
co )&copd /c it is negligible compared to co. One
may therefore drop X &, in Eq. (91) in this range and
write

g i', (Co) =

(1—(N ) )co

co +[Xi',(0)]

(1—(N ) )X i', (0)
0 (co (Mp

co '+ [&i'(o) l'

(100)

Note that gi', becomes large of order [X,",(0)] ' for
co «X i', (0), and g'&, is large of the same order for
co-Xi'a(0), although it vanishes as co~0. Note
also, from (99), that X i', (0)=2y, so the width of
the frequency region in which g'& and gi' become
large is of the order of the natural line width. Then
the corresponding range of photon energies for
which g'~ (cop —co) and gi', (cop —co) become large is
of width -y centered on co=cop, as exPected
physically. This suggests that the dominant contri-
butions to (85) comes from these terms, in the range

~

co —cop
~

&y, and we shall presently verify this
expectation. Note also that it follows from (100)
that the quantity I in (83), (85), and (86) is just

gla Co

(1—(N))&i', (co)

r 2

pco d

27r
m (cop+co ),

(101)

co o (67 (mc —co p
2

gi'. (~)=

cu ~mc —coo .2 (102)

In determining the boundaries of the subdivisions, it
has been assumed that cop & ( I/2)mc . One can
then write the integrals in (85) involving g'~, as

I

X i', (0)=2y to leading order, and that the corre-
sponding residue A&', ( i I —) is (I/2)i(1 —(N )).

Arguments similar to those leading to (100) can
be applied in the other subintervals of co, leading to
the following expressions for g'&, and gi', in these
various subintervals:

2

( )
Sm copd

3c 27r

mc
co Ig'] (cop —co )sin[(cop —co )t] —g'~ (cop+co )sin[(cop+co )t]jdco

2~o co (cop —co)=(i —(N))f, „sin[(a)„—cu(t]d~
(cop —co) +[X i', (0)]
,2 CO Sin[(COp —CO)t] m, 2 CO Sin[(COp+CO)t]

+(1—(N)) dco —(1—(N)) dco (103)
2' p Mp —CO COp+ CO

where use has been made of the symmetry properties (82), which follow from (17), (91), and (98). One finds
similarly that the integrals involing g i', are

me
co Ig )a (cop —co )cos[(cop —co )t] —g )a(cop+co )cos[(cop+co )t]jdco

2~p co cos[(cop —co )t]=(1—(N ) )X,",(0)
(cop —co)'+[& i'(o)]'

2 3
Svr copd mc co cos[(cop —co )t]

+(1—(N)) 7T dco
27r (cop —co )

2

"—'"o ~'(2~p+~)cos[(~p+m)t]
(104)

0 (COp+Co )
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The last integral in (103) cancels the last one in (85) so the contribution (87) is not actually present in the ex-
pression for Pl (t). The second integral in (103) differs from (87) only in the upper limit of integration:

,& co sin[(cop —co )t] m&' —~p sin(co't)
dco = (co —

cop�),
dco

2' o COO —Col coo CO

=co p[Si(tmc co—p)t) —Si(copt)] +2copt '[cos((mc —cop)t) cos—(copt)]

+t [sin((mc —cop)t) (m—c cop—)t cos((mc co—p)t)

—sill(copt ) +copt cos(co pt )] (105)

The last, two integrals in (104) can be combined and expressed in terms of the cosine integral ' and the slue.
However, the result will not be exhibited since these contributions to (85) are smaller than the contributions
(105) by factors of order (yww

~
cop) &&1. Here use has been made of the connection between X I~(0) and the

spontaneous linewidth yww, namely, X I', (Q)=2yww; see Eqs. (99) and (14). The first integrals in (1Q3) and
(1(}4) can be expressed in terms of explicitly evaluable contour integrals and integrals like (105) apart f'rom

terms negligible compared to those retained. This is done in Appendix C; the resultant expressions are

2~p co (cop —co)sin[(cop —co)t]
dco

(cop —co) +[&l'(0)]

WW]= Irco p I e I' '+2Ir '[Si(co pt) Ir/2] +—2m '(co pt ) [sin(co pt ) co pt co—s(copt)] I (106)

~p co cos[(cop —co )t ]
dco = , ~co(')—(yww) 'e

(Cop —Co) +[XI', (0)]
(107)

The only approximations made in evaluation of the integrals (106) and (107) consist of neglect of terms of or-
der (y

~
cop) &&1 relative to those retained.

Combining the various results (100), (103)—(107), (86) and (87) and substituting into (85), one finds the fol-
lowing expression for the radiated power:

P lp'"(t) =2@ cop(1 —(N ) ) I e I' ' +m '[Si((mc co p)t )+Si(—copt) m]—
+2(Irco pt ) '[cos((mc co p )t ) —co—s(copt ) )

+~ '(copt) [sin((mc —cop)t) —(mc cop)t cos((mc——cop)t)

+sin(cop t ) —cop t cos(cop t ) ] I (108)

PsP011(0) 0 (1Q9)

In fact, this can be shown to be a rigorous conse-

The superscript "spon" is a reminder that we are
considering here the case in which the environmen-
tal contribution to the self-energy is negligible com-
pared with the spontaneous decay contribution [see
Eqs. (96) and (97)]. The expression (108) has rather
different behaviors in various different regimes of
time. Consider first its initial (t =0) value. Using
the limiting behavior of the sine integral ' one finds
that

I

quence of (43} in the case of the two-level model,
which implies with (68)

P, (0)= i g cok (a [N-„I,,H ]a t
&

= g cokM I, &(a(b I, &a —a b k&}a ) =0
k, A,

(110)

independently of the above statistical ensemble aver-
age indicated by angular brackets, since a and (a )

vanish identically; see also Eq. (70) and the follow-
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ing discussion. The result (109) can be regarded as a
check on the derivation of (108). Next consider the
behavior for small but nonzero time. The terms
with argument (mc to—p)t cause P P'"(t) to in-
crease extremely rapidly initially [rise time
-cop/(mc ) ], the behavior for t «(mc )

' being27

P) '"(t)=(2y /3mcop)(mc ) (1—(N))t,
t «(mc )

For t —(mc )
' the expression (109) oscillates ex-

tremely rapidly [frequency (mc —top) =mc ] with
very large amplitude of order

cop(mc /cop)

taking on both positive and negative instantaneous
values. These oscillations decay like t ', the
behavior for t »(mc )

' being

P',~'"(t) =2y to (1—(X) )
2

mc2 cos((mc —cop)t)
2 2

~mc t
( mc ) « t « co p (112)

The dominant oscillatory term in this regime of time is the one involving cos((mc top)t) i—n the last line of
(1()8); those from Si((mc2 —cop)t) and the other sine and cosine terms with the same argument are smaller by
factors of order cop/mc2. Note that the oscillation is still very violent [amplitude »(mc /top) »1], of very
large amplitude compared to the term —, in (112). Note also that P&

'" still does not remain instantaneously
positive in this time interval in view of this large amplitude of oscillation. However, the average of (112) over
a time large compared with (mc )

' is positive, and (mc )
' «cop is an extremely short time interval. For

t top-the oscillatory terms with argument topt also become important. In fact, all terms in (108) are impor-
tant in this range of time; the function Si(empt) i's only given numerically in this range. The oscillations take
place about a mean value e ~ '=1. The amplitude of oscillation of the cosine term in (112) is still large
compared to the terms with frequency iop for t -co p

'. For t »cop ' the terms will frequency top become negli-
gible and

mc~ «s((mc —~p)t)
2 2

Mo mme t2
t ))~o—]. (113)

The exponential decays away for t »(y )
' (na-

tural hfetime), leaving the oscillatory nonexponen-
tial tail.

We turn now to the question of the physical inter-
pretation of this very complicated behavior of the
instantaneous radiated power. Note first that the
nonexponential tail at large times and nonexponen-
tial behavior at very small times are in agreement
with the well-known fact that pure exponential de-
cay is impossible in Hamiltonian quantum mechan-
ics for both very small and very large values of the
time. The nonexponential oscillatory terms average
to zero over time intervals large compared to
cop

' «(y ) '. The time integral of the exponen-
tial term is

2~WW&

which is, in leading order, just the transition ener-

gy of the two-level atom. This is in agreement with
the fact that the total radiated energy must equal the
transition energy in order that energy conservation
hold. The oscillatory terms with frequency cop are
very short-lived transients which are expected on
general grounds. The terms with frequency
mc —cop are more difficult to interpret. Two possi-

bilities suggest themselves: (a) These terms are ar-
tifacts of the sharp frequency cutoff at mc2, or (b)
they are related to a real physical effect connected
with the relativistic Zitterbetoegung Only. a rela-
tivistic calculation can decide between these alterna, -

tives; we hope to investigate this in the future. If
such very high-frequency terms are real, their de-
tailed forms would almost certainly be changed by a

»nally, note that there is no
»g»n (108) of a sin (topt) modulation of the ex-
ponenti» de~ay, in contrast with the situation for a
classical radiating dipole. ' The behavior of the
quantum system over very short-time intervals is
very different «om that of the classical system.
However, if one averages the radiated power of both
over a time interval »cop but «(y )

' (the ra-
diative lifetime), then one obtains the same exponen-
tial decay law for both. We are not aware of any
other published results for the time-dependent radi-
ated power for this model, valid over the whole time
range 0 & t & oo, with which we can compare our re-
sult (108). There are, however, several published
treatments of this model based on solution of
Heisenberg equations of motion, ' ' which are close
in spirit to our Liouville-space treatment. (See note
added in proof. ) The results of these other treat-
ments agree with ours insofar as the exponentially
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decaying terr&i is concerned, they also find no
sin (coot) modulation.

We have thus far limited ourselves to the case
where the environmental contribution to the self-
energy (97) is negligible. Suppose now that it is not.
Then the general form of the environmental con-
tribution to the self-energy [second term in (96)] is
not difficult to find, and we shall evaluate it here.
However, it follows from (91) that the environmen-
tal and spontaneous contributions to g&, and g&'„
hence to the radiated power, are not additive. We
shall therefore defer the detailed analysis of such
cases to later publications. The situation simplifies

I

again when the spontaneous contributions become
negligible compared with the environmental ones,
i.e., when the environmental effects dominate the
decay. Here we shall, however, limit ourselves to
the determination of the general form of the expres-
sion for X &",". We assume that the ensemble is such
that the mean value in (96) factorizes,

(115)

as in (18), (19), and (29). Then

X )","(co + iq ) = g M q ~
k, A,

M —MO —Mg CO +COp —Mg
f-

C0 +COO+My

+'~ X M ~a[~('o roo ~&)+~(ro roo+~&)+&(~+~o —~a)+&(ro+roo+roa)]fpg
k, A,

(116)
where f z & is the photon distribution function &X z &). In the thermal-equilibrium case (19), it is straightfor-
ward to reduce (116) to integrals of the same type occurring in Eqs. (20). We shall omit the derivation, which
proceeds as in Sec. II, and only state the results:

2
8~ ~ood

X), ,„„(co)= [(co —coo)I(p ~co —coo
~
)~(ro~~o)I(p ~co~coo

~
)] (117)

3c

B.nd
2

eood (ro —coo)sinh[P(co —coo)]
X i', ,„„(co)= +

sinh [ —,P(co —coo))

(co ~coo)sinh[P(co ~coo)]

sinh [ —,P(co ~coo)]
(118)

where X'~~,„„and X,", ,„„aredefined in terms of the
real and imaginary parts of X &",

' as in (90). The in-
tegral I(y) is defined in Eq. (22) and expressed in
terms of the digamma function in Appendix A.
Note that X &, ,„„and X &', ,„„are, respectively, odd
and even functions of co.

The expressions (117) and (118) are rather similar
to some that were obtained in a study of thermal ef-
fects on the absorption spectrum of a two-level sys-
tem coupled to a crystal lattice, by Huber and Van
Vleck. The similarity is not surprising, in view of
the similarity of the models. Their treatment em-
ployed standard equilibrium thermal Green's func-
tions, whereas our Liouville-space approach is
equally applicable to nonequilbrium ensembles, al-
though the specific expressions (117) and (118) are
for the special case of equilibrium.

The asymptotic behavior of the functions I and f,
given in Eqs. (23) and (24), implies that the environ-
mental contributions (117) and (118) to the self-
energy are negligible compared to the spontaneous
ones for k~ T (&coo, but become important for
k~T)coo. The latter situation can occur, e.g., for

1

Rydberg states of atoms. We shall not carry the
analysis further herein, but hope to come back to it
in subsequent publications. Nonequilibrium situa-
tions of the sort considered in Sec. II can be
analyzed by choosing appropriate nonequilibrium
photon distributions fg& in (116).

Rote added in proof. Since submission of this pa-
per we have become aware of a Liouville-space treat-
ment of the three-level model: R. Kornblith and J.
H. Eberly, J. Phys. 8 11, 1545 (1978). We thank
Professor Eberly for bringing this work to our atten-
tion.
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APPENDIX A: EVALUATION OF THE INTEGRAL I(y)

The integral I(y) defined by Eq. (22), which occurs in the expression for the environmental line shift of the
two-level atom interacting with thermal radiation, is expressible in terms of the digamma (g) function

y(z) =d inr(z)/dz,

where I (z) is the gamma function. Using the formula (I.59) one has

(Al)

1(y ) R=ef 1+E77 —X

1 X+
1+i'd+X e+ —1

= —2 Re (1+i' )
[x —(1+i') ](e~"—1)

where g =0+. Let

yx =2~t, z = i (1+i'—)(y /2' ) = ( i +g )(y—/2~ ) .

Then

OO X X 00

o [x —(I+iq) ](ex"—1) o (t +z )(e ~' 1)—

(A2)

(A3)

(A4)

Then by a standard formula

I(y ) =ReI ( I +iq )[g(z) —lnz+ —,z '] I .

One has with (A3)

lnz=ln
~

z +i argz

ln(y /2lr ) in/2, — .
g ~0+

(A5)

(A10)

z ~ iy/2~—, z ' ~ i2~/y . (A6)
g ~0+ g ~0+

It follows from NBS Eqs. (6.3.10), (6.3.11),
(6.3.17), and (6.3.19) that P(z) remains finite as
q —+0+, so that the prefactor ig in {A5) may be
dropped. Then

I(y ) =Rex/i( iy/2~) l—n(y/2rr ) —.
Then by NBS Eqs. (6.3.10), (6.3.17), and (6.3.19) one
has for small y

I(y ) = —in(y/2m. )+ 1 —y —[I+(y/2~) ]

Here y is Euler's constant 0.57721. . ., the Bz„are
Bernoulli numbers [NBS (Ref. 36) Chap. 23], and
the g{2n + 1) are Riemann zeta functions (NBS edi-
tion, Chap. 23). The small-y expansion (A8) still
converges rather rapidly at y =2m; see NBS p. 811
for the necessary g(2n+1). The series (A9) con-
verges fairly rapidly for all y, the rate of conver-
gence increasing slowly with increasing y. The
asymptotic series (A10) is useful only for y »2m. A
numerical table for Re f(1+iy) is given at the bot-
tom of NBS p. 288. Note the function needed in
Eq. (A7) is related to Ref(1+iy) by [NBS Eq.
(6.3.10)]

+ g ( —1)"+'[g(2n + I ) —1](y/2~ ) ",
n=1

y &4~ (A8)
Re/( iy)=Ref(1—+iy) . (A 1 1)

In Eq. (20), the shift 6'"" comes from the real
part of the expression in curly brackets in (A5),
whereas the width y'"" comes from the imaginary
part:

for all y

I(y ) = —ln(y/2m ) —y

+(y/2') g n '[n +(y/2') ]
n=l

and for large y

(A9)

4' ody'""=— Im[g(z) —lnz+ —,z '] . (A12)
3Sic'

By (A6), (A7), and NBS (Refs. 36) Eq. (6.3.11) one
has
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Im[g(z) —lnz+ —,z '] =— (A13) F(y) = — y—'ln(y /2' )
3

Substitution into (A12) yields an expression in agree-
ment with the second Eq. (20) when one notes
y =Phoo and Eq. (21). This is a check of the deriva-
tion of (A5).

As mentioned in the text, in the paper by Farley
and Wing, an integral similar to Eq. (22) is found
to describe the dependence of the dynamic Stark
shift on the blackbody spectral distribution. They
compute the integral

and for large y,

~'yF(y)- — + g3 n=1

2~ 16m

15y 63y

3+ 5 y —1( 2+ 2) —I

n=1

(A20)

F(y)= f dx +
e —1 ++X

(A14)

numerically; however, it is possible to derive an ana-
lytic expression for I'(y), analagous to the derivation
(A7). First note that I'( —y)= I'(y). W—e shall as-
sume that for y positive in (A14), y is really
limz o+(y ig —), the irj coming from boundary con-
ditions implicit in the problem. We then make the
substitution u =x to reexpress

F(y)= —y f dU . (A(S)
(e "—1)[u+(iy) ]

We next use the property of Stieltjes transforms to
rewrite this as

F(y)= —y f, e

-«'f.
(e "—1)(u —y )

(A16)

F(y)= — —y 1n(y/2m )
3

+y Re/( —iy/2m. ) . (A17)

Using the same expansions as before we have for
y &4~,

Z(y ) —— y
y ln(y /2' )—

We are interested in the real part of (A16); note that
the second integral is essentially Eq. (22) when «ex-
pressed in terms of x =V u. The first integral gives
~ /3 and we have

Equations (A18) and (A20) agree with the expres-
sions given by Farley and Wing for the small- and
large-y behavior of E(y), while (A19) corresponds to
the results given in their Fig. 1.

APPENDIX B. STANDARD THERMODYNAMIC
GREEN'S-FUNCTION FORMALISM APPLIED

TO T%'O-LEVEL MODEL

In the case of thermal equilibrium we may,
with one important modification, apply standard
temperature-time Green's function techniques' ' to
verify the results derived in the text. The interac-
tion Hamiltonian H ' in Eq. (1) is linear in the Fermi
operators a and a ". Such a linear Fermi term in a
Hamiltonian is usually considered unphysical; how-
ever, here it occurs as a result of the two-level ap-
proximation where we use the transition operators a,
a t. Standard Careen's-functions methods are not ap-
plicable to Hamiltonians linear in Fermi operators
since the definition of time ordering cannot be ap-
plied consistently. As shown below, this problem
can be circumvented by applying a canonical trans-
formation such that, to each order in a perturbation
expansion, the resulting canonically transformed
Hamiltonian is bilinear in Fermi operators. Let

H=H +A, V, U=e', W=W
(81)i8'~ —i W

A A
where Ho is as in Eq. (1) while A, V is H in Eq. (1)
and A, indicates M k &. Expand 8' and V' perturba-
tively as

(82)

+y (1—y)— y'
$ +@2 We have

n=1 n=1

+ g ( —1)"+'yz" +3[/(2n +1)—1];
n=1

(A18)

H'=Ho+i[~ Ho]+, [~,[~Ho]]+

V+i [W, V]+, [8', [W', V]]+

for ally, (83)
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which give

V', =i [W, ,Ho]+ V,

V2 i——[ W2, Ho]+ [W(, [W),Ho]]

+i [W), V] . (84)

both the density matrix and the operator which we
are taking the expectation value of:

(0 ) =Tr(pO) =Tr[(e' pe ' )(e' Oe ' )]
=Tr( '0 ')

=Tr(P '0 )+i I, TrIp '[ W, O] I

pince V is odd in Fermi and Ho even, choose W~
odd such that V'& ——0 and [W&,Ho]=i V. We then
have to second order (which is all we need)

V2 i [ W——2,Ho]+ —, [ W), [ W),Ho]] where

+0(A, '),

,'i [W—,, V], for W, =o, (85)

and H ' is now strictly bilinear in Fermi operators.
In order to calculate equilibrium expectation

values using this transformation we must transform
I

e —PH'

Tre-~H' (86)

For the two-level model, some tedious algebra
gives the following:

Wi= —2 (ab-„+a b -")+
6)0+COk COO

—COk
(ab-„+a tb -„) (87)

[A W(, A V]= i g—g'MM'[ —(0++0 )(b b '+b tb t )+(0+ —0 )(b b '+b b) —2M+

+2(Q+ +0 )a a(b b '+b b" +b t b '+b b+5)],
where a condensed notation is used:

&+ =(~o+~) ' n =(~o ~) ' 5 =5
u k 5~~

(88)

[W&, [W&,a]]=g g'MM'[0+0'+(2ab "b '+a5 —2a b tb )+0'+0 (2ab 'b 2a b b t )—
+O' Q+(2ab b t 2a b b ')+—Q 0' (2a b t b+a5 —2a tb b ')] .

The corresponding expressions for a are easily related to the above by conjugation. Using these expressions
we have correct to 0 (M ):

(89)

TrIp'T, [a(z)a t(z)]I = g [ —M (II++0 ) coth(coP/2)M(r —r ')

+M [tanh(cooP/2)] [0+P(~ —~')+0 2'(~' —g)]

4M'[0+ P(~' ~)—9'(r ~')9'(~' —~)—
+O' W(~ r')&(r ~')&—(r' —r)] I

+$ ' otM(cooP/ h)(0~2+ )f()d~, S(v —r, )S(v, —r') .

The first term (enclosed in curly brackets) comes from the terms (89) while the second term is the 0(k ) term
in the expansion of (Tre ~ )

and the unprimed b ' 's and M have ( k, A. ) indices while the primed have ( k ', I,') as indices. In order to calcu-
late the self-energy for the two-level atom we need to compute ( T, (a(~)a (r')) ), where T, is the usual time-
ordering operator. From (86) we need the following:

[W&,a]= —gM[A+b (2a ta —1)+0 b(2a a —1)],

[W(~ —~'))&~(k, k ')=(Tre ) Trfe T, [bok&(~)bok, &,(~')]I,
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where ap(r)=e a(0)e and the same for bp (W and W are just the usual noninteracting temperature
—pHO ~ 13HO

Green s functions). The teitns in (810) are all connected; the disconnected terms in the numerator are can-

celled as usual by similar terms in (Tre ~ o) '. The expression (810) is easily evaluated using standard
finite-temperature Fourier expansions and we shall just list the results:

M coth(cup/2)
2 2 2

( 1CP CP p ) —( CP p
—CP )

Q+
M [tanh(copP/2)) coth(cPP/2)

LM~ + CO LCO~ —M

2 2

M coth(cop/2)[1 —tanh (cppp/2)] + .2 2 Q+
lCO+ +67 LCD+ —CO

(811)

—M coth(cup/2)(Q++Q ) .

The total equals

k, i,

coth(cpP /2) 1 1

(lCP —Cup) ICP~ +CO lCP~ —CO

(812)

We therefore have for the self-energy

X' '(cp, )= g M z& coth[cp(k)p/2] + .
tCP~ + CO lrua —CP )

(813)

where

W(CO, )=& (CO, )+M (CP, )X(CP, )&(CO, ) .

Let4'

For such a Lorentzian, the excitation energy is

v =cup+Kit(v) =cop+&lt (cup)
(2)

and the damping is

&lt(x)+l&1(x) =—&(~a) l;~ =x,„,
Then

~( ) /
dx p(x)
2'7T LEOD

—X

where

2XI(x)
p(x) =

[x —Cup —Xlt(x)] +XI(x)

(814)

(815)

C) Xll1—

The result (813) therefore gives exactly the same
level shift and width as derived in the text [Eqs. (14)
and (20)].

and &(co, ) is the full finite-temperature Green's
function for the two-level model. In (815) expand x
about x =v where v —cup —Xlt(v) =0. Assume that
(c)XI(c)x)„ is small so that p(x) can be approxi-
mated as a Lorentzian

2XI(v )

1m~ ~I

I

I

I

I

I

I

I

2
,
' imc
I (~+i) mc'

(x —v) 1—
X

+ [&i(v)]'

(816)

x
I

0 mc
FIG. 6. Contour for the integral (86).
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APPENDIX C: EVALUATION OF INTEGRALS FOR THE RADIATED POWER

Consider first the integral of Eq. (86). This can be related to the integral around the square contour shown
in Fig. 6. The x indicates the pole at co =cop+i I A. pplication of the residue theorem yields

2 3

me
dco co 2iI'e A'3, ( i —I )

2 ~ —It I 1

0 (cop —co) +I (cop+co) +I
=2vrie "'A&', ( i I—)(cop+i I )

0—2(I'e '&,",( —i('3 j,(iy(' 1

(cop —iy) +I
1

(cop+iy) +I
mc 1

(mc 2+ iy)
0 (mc —cop+iy ) + I

1

(mc +cop+iy) +I
0

+ X +lmC
1

(x —cop+imc ) +1 (x+cop+imc ) +I
(C 1)

We shall find later that I is of order y «cop. Then I «
~

cop+iy
~

and one may, in leading order, drop 1"
in all of the denominators on the right-hand side of (Cl), yielding for the expression in large brackets

4copy' 4tcop(mc +iy)
(y +Co(3) [(mc +iy) —Cop]

4co(3(y+imc )

[(y+imc ) cop]—
(C2)

This integral is of order cop ln(mc /cop). Then the ratio of its contribution to (C2) to the leading (pole) contri-
bution is of order (y /cop) ln(mc /cop) «1, assuming that y «cop and that the logarithm is not ~~1.
Here we have used the fact that I is of order y . Under the same assumption one has (cop+il ) =cop. Then
the integral (Cl) reduces, in leading order, to the pole contribution (86).

Let us next evaluate the integrals in Eqs. (103) and (104). Consider first the one in Eq. (103):

co (cop —co ) sin[(cop —co )t]dco ~p (co'+cop ) co' sin(co't)
ww 2

(Cop —Co)'+[& 3' (o)]' p (Co')'+(2y )'

~p (co'+cop)'co'(e' '—e ' ')
dco

leip (CO e)2+ (2yWW)2
(C3)

~p (Co'+Co(3) Co'e-+ '

( ')'+ (2y )'

In the case of I+, close the contour in the upper half-plane, as shown in Fig. 7. The x s indicate the poles at
co'=+2iy The contou. r is closed at the top by the horizontal line at co'=x +i pp (x real), which contributes
nothing to the integral. By the residue theorem

(2cop+iy) (cop+iy)e +;~,, (iy) ( —cop+iy)e
2lI+ +ie' '

dy ie — dy =2~i &(2iy ),p ( + ~ )2+(2yww)2 p ( + y)2+(2yww)2

(C5)

use having been made of the relationship X I', (0)=2y, since we wish to eventually relate the decay rate of
the radiated power to y, the spontaneous decay linewidth [see Eqs. (14) and (115)]. The integral (C3) will be
evaluated as the difference of the two integrals I+ ..

where the residue at co'=2iy is

~(2 ww) 3

( +2 yww)2 2y~wt—
2 wwt

067 e (C6)
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and we have assumed y «cpo. For the same reason

2~WW

so one may write for the sum of the two integrals along the vertical legs, apart from a negligible correction,

sr (2ccc+(y) s — st ) (iy) s
le dy —le

Q)0+le —cpp+iy
icoot lcoot lcoot 2 3 —ty[4cppe +coo(3e —e )y —2y sin(coot)]e=l

0 y +~o

=jap[4e f (coot) —(3e —e )g'(coot) —2sin(coot)g"(coot)] .

Here '

e
—Xg

f(x)= I dy =Ci(x)sinx —[Si(x)—n /2] cosx,
0 y2+1

ye
—XP

g(x)= J dy= —C)(x)cosx —[Si(x)—n /2] sinx,
p y2+1

g' and g" are the first and second derivatives of g, and x & 0. Then with (C5) and (C6)

(C8)

(C9)

WWt 1 P icoOt lct)0t —/co
O

t
I+ —

2 srcooe r —,cop[4e f(coot) (3e ——e )g (coot) —2sin(coot)g (coot)] (C10)

the only approximation being those of Eqs. (C6) and (C7). A similar derivation, but with the contour closed in
the lower half-plane, yields

1 2 2 WWt 1 2 —
ingot

—kuOt koOtI = —, +co pe r —+, co p[4e —f(coot) —(3e —e )g'(coot) —2sin(coot)g"(coot)] .

Then the integral (C3) is

~o (cp +cop) cp sm(cp t) 2 2 ww,
dco 'crco pe —4cp p eos(coot)f (coot)

( s)2+(2yww)2

(Cl 1)

+2' o cos(copt)g (cppt)+ 2co p sin(copt)g "(coot)

=~Coo I e r '+2~ '[Si(coot) —m /2]

2m '(coot) [sin(coot) —coot cos(co[]t)]I, (C12)

Im ~'
A

the final expression being obtained with the aid of
(C9) and the definitions ' of the sine and cosine in-
tegrals.

The first integral in Eq. (104) can be evaluated in
the same way. One has

2~o cp cos[(cop —cp )t] Ccp=J++J
(~o —~)'+ [&I;(o)]'

Re u)'
u)o ~0 (co +cop) e —'

—goo (~s)2+(2yww)2

(C13)

FICx. 7. Contour for the integral I+. Proceeding as in the evaluation of I+, one has
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p f 2' o +iy e——,~e' '
(coo+ ty)'

i—a)ot ~ (iy) e+ , i—e dy .
(too —ly)

(C14)
(yww) —1 —2y (C15)

The integrals in (C14) need not be evaluated, since
they are of order (y /coo) «1 relative to the pole
contribution. The integral J is the complex conju-
gate of J+. Hence
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