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Green s functions and transition self-energies of dissipative quantum-mechanical many-

body systems are formulated in terms of operator-basis expansions of Heisenberg equations

of motion in Liouville space. Matrix elements of the Liouvillian with respect to arbitrary

nonorthogonal operator bases play a primary role in the analysis. The self-energies are ex-

pressed as functionals of initial statistical ensemble averages which are presumed known

and not restricted to systems at or near equilibrium; this provides a first-principles approach
to use of spectral line shapes as a diagnostic of the nonequilibrium state of a dense gas, plas-

ma, and/or radiation field. A perturbation expansion of the seLf-energy is derived and the

general term is interpreted in terms of a subtraction of reducible parts. A separation into

resonant and nonresonant contributions plays a crucial role in the analysis. The first-order

resonant contribution yields a generalized statistical Hartree-Fock approximation, whereas

the second-order contribution generalizes the Weisskopf-%'igner theory of decaying states to
include thermal and, more generally, nonequilibrium environmental effects on transition-

energy shifts and widths. Off-diagonal contributions to the self-energy are shown to be

essential for inclusion of environmental contributions.

I. INTRODUCTION AND MOTIVATION

Quantum-field-theoretic Green's functions and
self-energies are an indispensable tool in condensed-
matter theory, particularly in calculations of the
response of a system to external perturbations, and
of energy spectra and lifetimes of various types of
excitations, quasiparticles, decaying composite states
(atoms, molecules, . . . ), etc. The behavior of many-
body systems far from equilibrium is of great
current interest; a few examples are nonequilibrium
plasmas, lasers, and chemically reacting systems.
However, application of standard quantum-field-
theoretic techniques to such systems is handicapped
by the fact that the standard calculational tools are
based on specific properties of thermal-equilibrium
(canonical and grand-canonical) ensembles, being
based on thermal-equilibrium Green's functions
(temperature Green's functions) and their analytic
continuations, the temperature-time Green's func-
tions. ' Although adequate for dealing with small
perturbations from equilibrium (linear-response
theory), these CJreen's functions are not applicable to
systems far from equilibrium.

A different line of approach to the application of
quantum-field-theoretic techniques to statistical
mechanics is based on systematic use of the Liouvil-
lian and Liouville-space methods. This approach
leads to systematic methods for calculation of the
dynamics of the propagation, to arbitrary times

t ~0, of correlations which are presumed known at
t =0. Since these initial conditions are not restricted
to those prescribed by an equilibrium ensemble, such
methods are particularly well suited to the develop-
ment of nonequilibrium statistical mechanics.

The aim of this paper is to combine these two
lines of approach (Green*s-function self-energy
theory and Liouville-space methods) into a general
procedure for determination of "Liouvillian self-
energtes" of quantum-mechamcal many-body sys-
tems. These self-energies will be expressed as func-
tionals of certain initial statistical ensemble averages
(to be denoted by angular brackets). There is a fun-
damental change of emphasis from that of standard
thermal-equilibrium theory, ' in which one focuses
on diagrammatic procedures for evaluation of
thermal-equilibrium averages (to be denoted by an-

gular brackets with the subscripts "eq"). On the
contrary, we shall be concerned primarily with alge-
braic procedures for systematic analysis of the prop-
agation of dynamic correlations and their contribu-
tions to self-energies, starting from initial mean
values (the statistical ensemble averages) which are
presumed known and are not restricted to equilibri-
um. In most applications, the relevant initial aver-
ages will be distribution functions of direct physical
significance whose forms may be inferred from ob-
servation and/or physical arguments. Such an ap-
proach provides, for example, a first-principles
method for using spectral line shapes as a diagnostic
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of the nonequilibrium state of a dense gas or plasma.
We shall see, furthermore, that this method some-
times has calculational advantages even in the case
of thei iridal equilibrium. The theory developed
herein can be regarded as a generalization of a previ-
ous Liouvillian self-energy approach based on sum-
mation of a selected subset of Liouvillian Green's-
function diagrams.

In Sec. II a hierarchy of coupled equations of
motion for Liouvillian Green's functions is derived
from operator-basis expansions, in Liouville space,
of the Heisenberg equations of motion for appropri-
ate excitation or transition operators, and these are
converted into coupled algebraic equations by La-
place transformation to the plane of complex energy
z. The self-energy functions X (z) of these excita-
tions or transitions are defined in Sec. III and their
general properties and connection with transition-
energy shifts and widths are discussed. In Sec. IV a
perturbation expansion for X (z) is derived by inver-
sion of that for the Liouvillian Green's function,
and the general term is interpreted in terms of a sub-

traction of reducible parts. A separation into
resonant and nonresonant contributions is intro-
duced in Sec. V, the consequences of this separation
are investigated, and a connection is established be-
tween the first-order resonant contribution and the
statistical Hartree-Pock approximation. The
transition-energy shift and width are evaluated
through second order in Sec. VI, a connection with
Weisskopf-Wigner theory is noted, and the mecha-
nism of cancellation of spurious self-energy poles is
investigated. In Sec. VII the self-energy function
X (z) is contrasted with a self-energy superoperator
W(z) defined in analogy with van Hove's separation
of the resolvent; it is noted that off-diagonal contri-
butions to X (z), which are not included in 5 (z),
are essential for a correct evaluation of environmen-
tal contributions to the shift and width. The appli-
cation of this general approach to the theory of
spectral line shift, width, and shape, as well as illus-
trative calculations for a two-level atom immersed
in an equilibrium or nonequilibrium electromagnetic
radiation bath, are carried out in the following pa-
per.

EI. LIOUVILLIAN GREEN'S-FUNCTION
EQUATIONS OF MOTION

Let A be the creation operator for some kind of
excitation or transition of a quantum-mechanical
system, and let A = (A ) be the corresponding an-
nihilation (deexcitation or inverse transition) opera-
tor. Here a is any set of quantum numbers.
satisfies the Heisenberg equation of motion,

iB,A (t) =[A (t),H] =MA (t), (1)

where 8, denotes the partial or total time derivative
depending upon whether A ~ does or does not de-
pend on other continuous variables besides the time,
and where the total Hamiltonian H includes both
the intrasystem interactions and the interaction of
the system with its environment.

Equation (1) defines the Liouvillian superoperator
The persistence amplitude of the excitation

is the Green's function

(g c„B„)= g c„(8„),
n n

(4)

where the c„are c numbers (scalars) and the B„are
operators. The notation of Eqs. (1)—(4) is intendedA fto be quite general; in particular, the A~ and A are
not restricted to single-particle operators, and the
density operator p need not be one for an equilibri-
um ensemble.

We assume the existence of a linearly indepen-
dent' operator basis such that the evolution of A (t)
may be expanded in terms of this basis:

WA =[A,H ]=gc(a
~
n)B„

and hence, with (1),

i B,A (t) = g c (a
~
n)B„(t),

where H is assumed to be time independent. Equa-
tion (5) defines the c-matrix elements c(a n) which
implicitly contain all the dynamics of the system.
More generally,

id, B„(t)=gc(n
~

m)B (t), (7)
m

where

WB„=gc(n
~

m)B (8)

The c(n
~

m) are the matrix elements of the Liouvil-
lian with respect to the operator basis jB„]. In any
given application the most convenient choice of
basis will usually be obvious; one simply evaluates
the commutators (5) and (8), thus finding which

g(a, t
~
a,0)= i (—A (t)A ), t &0

where the averaging operation indicated by the an-
gular brackets embodies the statistical aspects of the
interaction of the system with its environment. In
standard quantum statistical mechanics,

( 0 ) =Tr(Op),

where p is the initial (t =0) statistical ensemble
density operator. The only property of the averag-
ing operation which will be used here is its assumed
linearity with respect to the quantities averaged,
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with

g(n, t
~
a, O)= i (B„—(t)A ), t &0 (10)

and more generally differentiation of (10) gives, for
t&0,

iB,g(n, t
~

a,O)= gc(n
~
m)g(m, t

~

a, O) .

Equations (9) and (ll) are a coupled hierarchy of
equations of motion for the corresponding Green's
functions g.

It is expedient to transform to the complex-energy
plane by Laplace transformation:

f(z)= f f(tie'*'dt, (12)

where z is a complex-energy variable, initially as-
sumed to be in the upper energy half-plane. f(t) is
assumed to increase less rapidly than exponentially
(if at all) as t~ oo, so that f(z) is defined and, in
fact, analytic in the upper z half-plane. Laplace
transformation of (9) and (11) yields the hierarchy
for the energy Green's function:

zg(n, z
~

a ) —g c (n
~

m)g(m, z
~

a ) =ig(n, O
~

a, O),

where the initial values g (n, O
~
a,O) are the limit of

(10) for t~O+. The Laplace transform of (9) is in-
cluded with the understanding that when n =a,
B„=B~:—A~.

It is convenient to separate the Liouvillian into a
diagonal part Wo and a perturbation W', according
to

WB„=e„B„+g'c ( n
~

m )B~:—W0B„+W'B„,

(14)

where e„=c(n
~

n). The B„are eigenoperators of
Wo with real' eigenvalues e„:

MOB„=e„B„.
As has frequently been remarked, the Liouvillian

operators are generated by commutation with the
given Hamiltonian H. It should be noted that one is
not limited to orthonormal operator bases; hence the
matrix c(n

~

m) is not, in general, Hermitian. In
fact, the formalism which will be developed makes
no explicit" use of any particular metric in Liouville
space.

Differentiation of (2) gives, for f. )0,

iB,g(B, i
~
a, O) = g c(a

~
n)g (n, t

~
a, O),

formalism deals directly with transition energies, i.e.,
differences of energy levels, and the e„are unper-
turbed transition energies. Equation (13) separates
in accordance with (14) into

(z —e„)g(n,z
~

a) =ig(n, O
~

a, O)

+ g'c(n
~
m)g(m, z

~

a) .

III. DEFINITION AND GENERAL PROPERTIES
OF SELF-ENERGY FUNCTIONS

In this section the Green's functions will be
rewritten in such a way as to manifest the function
X (z), the proper self-energy of the excitation or

A. ftransition created by the operator A in (2). Let us
begin by rewriting Eqs. (16) for n =a and n&a as

(z —e )g(a, z
~

a ) =ig(a, O
~

a, O)

+ g'c (a
~

n )g(n, z
~

a ),

(z —e„)g(n,z
~

a ) =ig (n, O
~
a, O)

+ g'c(n
~
m)g(m, z

~

a), n~a .

(17)

In the limit of no interaction the c (a
~

n) and
c (n

~

m) (with n&m) all vanish, and one obtains the
free Green's functions

go(a, z
~

a ) = (z —e ) 'ig (a,O
~

a, O),

go(n, z
~

a ) =(z —e„) 'ig(n, O
~
a,O) .

When the interaction is turned on, one expects
several qualitative changes in the Green's functions
to ensue. The nature of these changes depends on
whether or not the system is a dissipative one in the
sense of van Hove. ' Let us suppose that it is. In
such a system (assumed macroscopic or unbounded
in space) some or all of the labels n are continuous,
the corresponding poles z =e„merge into a cut
along the real axis, and hence g(a, z

~

a) acquires
such a cut. '" Under the assumption that
g(a, t

~

a, O) and more generally the g(n, t
~
a, O) in-

crease less rapidly than exponentially (if at all) as
t~ co, their Laplace transforms g(a, z

~

a ) and
g(n, z

~
a) will be analytic in the upper half-plane.

For a dissipative system, the analytic continuation
of g(a, z

~

a) into the lower half-plane will have a
complex pole z which approaches e as the interac-
tion is turned off, i.e., as the c's in Eq. (17) approach
zero. More generally, the g(n, z

~

a) are expected to
be analytic in the upper z half-plane, to possess a cut
along the real axis, and to have analytic continua-
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tions into the lower z half-plane with complex poles
z„which approach e'„as the interaction is turned
off. However, we shall be concerned primarily with
the evaluation of z, since it is this pole which deter-
mines the energy shift and width of the excitation

A. fcreated by A in Eq. (2).
This expected analytic behavior of g(a, z

~

a )

motivates the following change of dependent vari-
able from g(a, z

~

a ) to X (z):

ig (a, O
~
a, O)ga, z a

z —X —X (z)
(19)

Like g(a, z
~

a ), X (z) is expected to be analytic in
the upper half-plane but to possess a cut on the real
axis in the case of a dissipative system. If the ana-
lytic continuation of g(a, z

~

a ) has a pole at z =z,
then that of X (z) will be such that z is a solution
of the equation

z —e —X (z )=0, (20)

+cz(z —z ) + . (21)

then it follows from (19) that g(a, z
~

a) has a pole
at z =z, with residue

it being understood that X (z) therein is defined by
analytic continuation from the upper half-plane.
Equation (20) is the usual equation satisfied by a
proper self-energy; hence X (z) is the proper self-
energy function of the ath excitation. For the sake
of brevity, this proper self-energy will hereafter be
called simply the self-energy. It is a generalization
of the concept of a particle or quasiparticle proper
self-energy to the case that 3 in (2) is the creation
operator for an arbitrary excitation of the system.

need not be a single-particle operator, and there
is no restriction on its algebraic (commutation, etc. )

properties. From the physical point of view, it can
describe any kind of excitation or fiuctuation of the
system. Note also that even in the case that A is a
single-particle creation operator, the Careen's func-
tions g are more general than standard temperature-
time Green's functions, being defined also for a
nonequilibrium ensemble. The corresponding X~ (z)
is, therefore, also more general. It should be noted
that even in the equilibrium case, the definition (19)
of X (z) makes unnecessary the usual analytic con-
tinuation to imaginary temperature from a discrete
set of points on the P = 1/k~ T axis. '

The choice of ig (a, O
~
a,O) as the coefficient in

Eq. (19) is a matter of convenience, motivated by the
noninteracting limit (18). We are not assuming that
the interacting Careen's function has residue
ig (a, O

~
a, O) at its pole z . In fact, if the Taylor ex-

pansion of X about z =z is

X (z)=z —e +ci(z —z )

X (co+ig)=X „(co)+iX;(co), (22)

where X „and X; are, respectively, the real and im-
aginary parts of the expression on the left-hand side,
defined on the upper side of its cut along the real
axis. The perturbed transition energy co is then de-
fined to be the solution of'

co —e —X „(co )=0
so that the transition-energy shift b, is

=co —e =X „(co ) .

The width y is defined as

y = —X;(co ).
If X is slowly varying in the sense that

dX

Jz co +E7j
L

(23)

(24)

(25)

then the analytically continued self-energy may be
approximated by X (co +i') in (20), leading to

za =&a+~a 'ya ~ (27)

with 6 and y the real and negative imaginary
parts of X (co +ig ), Eqs. (24) and (25).

IV. PERTURBATION EXPANSION AND
IRREDUCIBLE CONTRIBUTIONS

A natural procedure for determination of succes-
sive approximations to the self-energy would be to
generalize (19) to

ig (n, O
~
a, O)

g n, z a
z —e„—X„(z)

and to rewrite the hierarchy (17) in terms of the new
unknowns X (z) and X„(z). However, the hierar-
chy thus obtained is highly nonlinear in terms of
these new unknowns, so that its iteration solution
becomes rapidly intractable with increasing order.

(1 —c)) 'ig(a, O
~
a, O) .

The transition-energy shifts and widths can be de-
fined in the usual way in terms of the real and ima-
ginary parts of the solution z~ of Eq. (20), in which
it is to be understood that X (z) is to be evaluated
initially for z in the upper half-plane, and then
analytically continued into the lower half-plane over
its real-axis cut. Such analytic continuation can be
circumvented by defining the shift and width in
terms of the real and imaginary parts of X (co+i' ),
in the standard way. Here co is a real energy vari-
able and g =0+. Write
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In this section an alternative method for determina-
tion of successive approximations to X (z) will be
described, based on inversion of the perturbation
series for g(a, z

l
a) so as to obtain one for X (z).

This procedure maintains linearity of the equations,
so that it is easy to identify the general term in the
series.

Note first that iteration of the hierarchy (17) leads
to a perturbation expansion of g(a, z

l
a ),

g(a, z
l
a)=g' '(a, z

l
a)+g "(a,z

l
a)+ .

-(m)(
l

) (29)

where g' ' is the term of mth order in the interac-
tion, i.e., in the off-diagonal c-matrix elements. The
general term in the series is

g~ '(a, z la)= c(a ln1)c(n) ln2) . c(n~-) ln~)g(n~ ola o)
(z —e„) (z —e„) (30)

where the sums over the nj include n =a (except in the casej =1) but exclude nJ+1 nj. T——he series (29) has
the well-known difficulty that the poles of its individual telllls are at the unperturbed e'„, whereas g(a, z

l
a ) it

self has a pole at the perturbed (complex) energy z, and the g(n, z
l
a) also have perturbed poles. Hence the

series (29) cannot converge near the real axis. Let us suppose, however, that z is far above the real axis, where
the series converges. Then one may validly use the series in deriving another series for the self-energy, which
will be found to be well behaved as z approaches the real axis from above.

Suppose that X (z) likewise possesses a perturbation expansion

X (z)=X' '(z)+X"'(z)+ . = g X' '(z),
m=1

substitute this into (19), and make use of the expansion

[z —e —X (z)] '=(z —e ) '[1—(z —e ) 'X (z)]

(32)

where

[Xl,(z)] =
m), . . . , m) ——1

(m& ) (m, )' (z) & (z) (33)

Comparing the series thus obtained with (29) and equating terms of equal order, one finds

(, )
(z —e~) g "(a,z

l
a)r.")(z)=

ig(a, O
l
a, O)

() (z —e )g '(azla)&"'( )=
ig(a, O

l
a,O)

(z —e )g '(a,zla)
y (3)( )

ig(a, O
l
a, O)

and in general,

)2M )(a
&.( '(z) =

ig(a, O
l
a, O)

[y())( )]2

2y (1)( )y (2)( )

Z —E'~

[y (1)(z)]3

(z —e )

m —1

(l + . +l =m)
1

(l ) ) (l„)
X ' (z) X " (z) .

(34)

(35)

The substraction terms constitute a subtraction of
reducible parts, ' i.e., subtraction of parts expressible
in terms of products of X' ' with rn'(n2.
(35) may be denoted symbolically by

'(z) = [g ' '(a, z
l a)];,„, (36)

ig(a, O
l
a, O)

where "irr" denotes the irreducible part. Gne ex-
pects that in particular cases this irreducibility cri-
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terion will select a subset of diagrammatic contribu-
tions. However, in order to retain full generality,
the notation (36) is defined in the general ease as im-
plying the subtractions (35). We shall see later how
the cancellations occur in a few examples.

However, in order to interpret this properly it is
very important to distinguish between resonant and
nonresonant contributions. This distinction arises
because there may be an infinite set of operator-basis
elements B„which are degenerate with A in zeroth
order, in the sense that

W~B„=e B„, nC&
Here e is the Wo eigenvalue of A [Eq. (15) with
n =a and B„=B =A~] and W~ is the set of labels
(quantum numbers) of the set of all B„which are de-
generate with A . As an example, suppose that A

and A are single-particle (Bose or Fermi) annihila-
tion and creation operators, and suppose that Ho is
diagonal in single-particle occupation-number opera-
tors N; (the usual choice). Then

W0N, =[N;,H()]=0, (39)

which implies (38) if B„differs from A~ only by a
product of occupation-number operators:

B.=A N(Nz ' (40)

For other choices of the A and of Ho, the defini-
tion of the B„and of the set W will be more com-
plicated, but such degeneracy phenomena are of very
general occurrence. It should be noted that the fact
that we are working in Liouville space (not Hilbert
space) is crucial here. In Liouville space basis ele-
ments of the foiili (40) are linearly independent of
A~ and make separate contributions to the time evo-
lution governed by exp( i Wt) (w—here
W =Wo+ W'), whereas in Hilbert space states of
the form . NzN)A ~ l P;„d) are proportional to
A ~ l g;„d) if

l P;„d) is an independent-particle state.
Basis elements of the form (40) bring in the proper-
ties of the environment, as can be seen from the
identity

V. RESONANT ANI3 NONRESONANT
CONTRIBUTIONS

Explicit expressions for the leading X~™can be
found by substitution of the successive terms
g'",g' ', . . . [Eq. (30)]. The first-order expression
appears trivial:

~(i)( ) ~, c (a
l n)g (n, o

l
a,o) (37)

(z —e„)g(a,o
l
a,o)

(B„A ~ ) =(A~N)Nz . A t )

=f f . . (A.A. )+

Here f; is the distribution function (N; ) whose
evaluation brings in the properties of the environ-
ment through the statistical density operator )o, Eq.
(3). The factorized teriri exhibited in (44) is the first
term in the Ursell expansion of the given statistical
average, and the other terins in (41) involve statisti-
cal correlations. The importance of contributions of
the form (40) and (41) has been noted previously, 7

but the treatment here is much more general.
The resonant contributions to (37) are those with

n HW; the nonresonant ones are all the others.
For the resonant contributions e„=e, and so the
energy denominator cancels the prefactor z —e;
thus

( ) g (
l

)g(nola o)
g(a, o

l
a, o)

c (a
l
n)g (n, o

l a, o)
(z —e„)g(a,o

l
a, o)

(i) . (i) . . . g (n, o
I a, o)—lp~ = c(a rl)

g(a, o
l
a, o)

(43)

the resonant contribution alone. Note the depen-
dence on the initial conditions (properties of the en-
vironment) through the factors

g (n, O
l
a,O) (BnA a )

(A At) (44)

In order to understand better the physical signifi-
cance of the approximation (43), it is helpful to con-
sider the simple example of a system of identical
particles with Hamiltonian

H =Hp+H '

= pe a a + z g a~a p(aP lH ly5)asar .
a a,P, y5

(45)

(42)

The nonresonant contribution is small compared to
the resonant one for z near e, the region of interest.
In fact, substituting (42) into (20), one finds that the
nonresonant contribution makes only a second-order
contribution' to the position of the pole z~, the
solution of (20). To first order one has with (27)
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Then A~ =a~ and the only nonzero off-diagonal c-
matrix elements c (a

f

n) are for the case

+n + p~5Qy (46)
c(~ fn)=(~PfH yn),

where it has been assumed, without loss of generali-
ty, that the interaction matrix elements satisfy

(Pa H 5y) =(aP
f

H y5) . (47)

There are two classes' of these B„which give
nHW by the mechanism (40), namely, the diago-
nal direct terms

y=a, 5=P, B„=a~a&a~,

and the diagonal exchange terms'

6 =a, y =P, B„=a~a~a& ——+a ~a~a

(48)

(49)

where the upper sign is for bosons and the lower one
for fermions. Then (43) and (44) imply y' "=0
[since the expression on the right-hand side of (50) is
clearly real] and

The expression (51) is just the statistical Hartree-
Fock contribution to the single-particle self-energy,
which was found previously to be the lowest-order
contribution in a Liouvillian-diagram approach to
the evaluation of self-energies.

The approximation (51) to (50) can be shown to be
asymptotically exact in the macroscopic limit Q —+ oo

(A=volume of system) under rather general condi-
tions which include the following special cases: (a) a
spatially uniform system in thermal equilibrium
(canonical or grand-canonical ensemble p); (b) a
nonequilibrium ensemble whose departure from
equilibrium is spatially uniform but possibly large;
(c) a nonequilibrium ensemble whose departure from
equilibrium is localized (of finite range and nonuni-
form) but possibly locally large. The proofs, which
are outlined in Appendix A, assume that the indices
a,P, . . . include particle momentum (wave vector)
plus possible internal quantum numbers. Then
under assumptions (a), (b), or (c), one can show that

(a p~apa a t ) =(a pap)(a a )+O(II ')

(53)

+(aP
f
H

f
Pa)] t . (50)(aa )

If one retains only the first term in the Ursell expan-
sion (41) of (a ~a&a a ), then one finds

5"'= g [(aP
f

H
f
aP)+(aP

f

H
f
Pa) jfp,

(51)

where f~ is the single-particle distribution function

(52)

except for an asymptotically negligible (for 0~ oo )

set of P values; here II is the volume of the system.
Note that the limit 0~ ao (for fixed density) is the
same limit in which cuts leading to dissipative
behavior appear on the real z axis. The property (53)
is closely related to Kraichnan's principle of "weak
statistical dependence". ' It follows from (53) that
(51) is an asymptotically exact expression for (50) in
cases (a), (b), or (c) above. In case the ensemble is
one not satisfying condition (a), (b), or (c), Eq. (51)
will, in general, be only an approximation to the
correct first-order expression (50). In such a case
(50) is a generalization of the Hartree-Pock self-
energy including effects of statistical correlations in
(a papa a ).

Let us now return to the general case, and investigate the second-order corrections 6' ' and y' ' to the shift
A~ and width y~ defined by (24). These come both from X~ ' and from the nonresonant term in X~", i.e., the
second term in (42). Using Eq. (34) for X' ' and (30) for g ', one has

+, c(a
f
n)c(n

f
m)g(m, O

f
a, O)

(z —e„)(z—e )g(a, O
f

o. , O)

[y(&)( )]2
(54)

Separating the resonant and nonresonant contributions to the summation as in (42) and substituting (42) for
X ",one finds
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&.'"(z)= (z —~.)-' g'
n EP' mEP

,(a
l
„),(„

l
m)

g(m 0
I
a o),(a

l
„),(a

l
m)

g(" o
I a, O)g(m, O

nE~a mg~a

c(a
l
n)c(n

l
m)g(m, 0 la, o)

(z —e )g (a,o
l
a, o)

2c (a
l
n)c (a

l m)g (n, o
l a,o)g (m, O

l a, o)
(z —e )g (a,o

l
a, o)

+ c (a
l

n)c (n
l
m)g (m, o

l
a,o)

(z —e„)g(a,o
l a,o)

+(z —~. ) g
ngW mph

c(a
l
n)c(n

l
m)g(m, o

l
a, o)

(z —e„)(z—e )g (a,o
l
a,o)

c(a ln)c(a lm)g(n, ola, o)g(m, ola, o)
(z —e„)(z—e )g (a,o

l
a,o)

(55)

In evaluating b, iy —to second order, one needs to add to this the second-order contribution from the non-
resonant (second) term in (42). It is clear that one obtains this contribution, correct to second order when
z =z, by replacing (z —e ) in the second term of (42) by its first-order approximation

(56)

Then with (43) one finds for the nonresonant contribution

c (a
l
n)c (a

l
m)g(n, o

l
a, o)g (m, o

l
a, o)

a za 2(z —e )g (a,0 la, o)
(57)

where the superscript (2) denotes that this is the
second-order contribution from X"', arising because
(43) has eventually to be evaluated at
z —e =z —@~=X (z ). Note that the expression
(57) is exactly the same as the contribution appear-
ing in the corresponding term of (55), but prefixed
there by the factor —2. Hence (57) combines with
that term to change the prefactor —2 to —1.

The first term in (55) appears to have a pole at
z =e, a result which would be strange if it were
true. However, the two terms in the large
parentheses can be shown to cancel asymptotically
in the macroscopic limit Q~oo (at fixed density)
under the same conditions assumed in Appendix A;
see the paragraph after Eq. (52). In that case the
pole disappears in the macroscopic limit, the same
limit in which dissipative behavior appears. The ar-
gument is given in Appendix B. It will be assumed

in the remainder of this paper that the interactions
and choice of ensemble are such that such cancella-
tions do occur, i.e., it will be assumed that the pole
term in (55) vanishes in the macroscopic limit.
X (z) will be assumed to possess a cut (typical of a
dissipative system) but no pole on the real axis.

A similar analysis (Appendix B) of the second
term in (55) shows that, although cancellations of
terms of 0 (0 ) does occur when this term is com-
bined with (57), the remainder is 0 (1) (i.e., finite as
Q ~ oo ) and hence gives a contribution to

iy' ' wh—ich is not, in general, negligible. The
third line of (SS) is likewise found to be O(1). Fi-
nally, the last line of (55) gives only a third-order
contribution. The contributions of the terms re-
tained are given correct to second order by replacing
z by e +5+i', where 5~0 and g ~Q+. Then one
has, through second order,

~a Wa =~a &1'a +~a —il'a + ' ' '~ (1) ~ (1) (2) ~ (2)

g(n, o
l a, o) ~ ~ c(a

l
n)c(n

l m)g(m, o
l a,o)

g(a, o
l a, o) „/5 ~~ (e —E„+5+i/ )g( oal a,o)

nGW mph

c(a
l n)c(n

l m)g(m, o
l a, o)

(e —e +5+i' )g(a, o
l
a,o)

c (a
l
n)c (a

l m)g (n, o
l a, o)g (m, o

l a, o)
(e.—~ +s+ig )g'(a, o

l
a, o)

(58)
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where b,"' iy—"' has been substituted from (43). Using the identity

1= H ——ivr5(x),
X +l'Q X

one can write the terna in (58) coming from nonresonant intermediate and resonant final states (i.e., n KW
and m H W ) as (see note added in proof)

{60)

and the bottom line of (58) can be similarly rewrit-
ten. The symbolic principal-part symbol H and
Dirac 6 function acquire concrete meaning in each
specific case after the symbolic summations are
written in detail as summations over discrete and in-
tegrations over continuous quantum numbers, one of
which can be chosen to be the transition energy e„.

The single term m =a in (60) gives the general-
ized Weisskopf-Wigner (WW) self-energy shift and
width

ww . ww y c(~
~

n)c(n
~

a)
a ~)'a

ngW &n —&na

—17T C A Pl C Pl CL 6~ —6~

(61)

We shall see in the following paper that this term
yields the usual expressions for the natural linewidth
and shift for an atom interacting with the quantized
electromagnetic field, including the nonrelativistic
approximation to the Lamb shift. It can be regard-
ed as the zero-temperature, zero-density (of the en-
vironment) limit of (60) since the statistical ensem-
ble average (denoted by angular brackets) reduces to
a vacuum expectation value in those limits. The
vacuum expectation value of the off-diagonal opera-
tors 8 A is zero, and hence the g(m, O

~

a,O) vanish
in the aforementioned limits for m &a. These
m&a in (60) therefore give environmental correc-
tions to the natural line shift and width, as do the
other terms in (58).

Cancellations similar to those exhibited in second
order are expected to also occur in higher orders.
When the resonant and nonresonant contributions to
each X ' ' are separated as was done for the cases
m =1 and m =2, one finds terms proportional to
(z —e) ' ", (z —e) ' ', . . ., (z —e), and
(z —e ). The coefficients of the pole terms
(z —e.)-™-1},(z —e.)-' -", . . . , and (z —e.)-'
are expected to exhibit cancellations such that the

l

coefficients of each such term are O(Q '), vanish-
ing in the macroscopic limit Q~ oo, as was shown
for the case m =2. The disappearance of these pole
terms in the macroscopic limit is a necessary condi-
tion for validity of the expansion (31) upon which
our analysis is based. For the applications we have
in mind, the second-order expressions are adequate,
so we shall not attempt a proof for general m & 3
here. '

VII. SELF-ENERGY FUNCTION VERSUS
SELF-ENERGY QPERATOR

The self-energy function X (z) should not be con-
fused with the self-energy operator W(z), here a su-
peroperator in Liouville space. The latter is defined
in terms of the decomposition of the Liouvillian
propagator S(z)=(z —W) ' into a diagonal part
M(z) and an off-diagonal part ~(z):

S(z)=&(z)+~(z), (62)

in analogy with van Hove*s decomposition' of the
resolvent (z H) . The—self-energy superoperator
W(z) is related to &(z) by

&(z) = [z —Wp —W(z)] (63)

The formal solution of (1) is

{t)=e ™A
and hence by (2) and (12)

g(a, z
~

a)=([(z—W) '3 ]A )

=([$(z)~.]Z) .

The contribution of &(z) to g is then

([u( 4 ]a")=
z —e —s (z)

(64)

(66)

where use has been made of the fact that A is an
eigenoperator of Wo with eigenvalue e [Eq. {15)]
and hence 3 is also an eigenoperator of M(z), the
part of $(z) diagonal with respect to eigenoperators
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Then van Hove's decomposition'

(z H) '=D—(z)+N(z) (69)

is directly relevant to determination of the self-
Af

energy in the case where the A and A are single-
particle annihilation and creation operators and Hp
is a single-particle Hamiltonian diagonal in the
occupation-number operators A A . In this connec-
tion, note that

l gp) is not an eigenstate of Hp,
hence not of D~,~, but rather it is an eigenstate of
H =Hp+H '. Contrast this with the Liouville-space
decomposition (62), in which case A is an eigeno-
perator of Wp, hence of &(z) and W(z) [Eq. (63)]
but p is, in general, not an eigenoperator of either
&(z) or S(z).

The situation is different for quantum-mechanical
Liouville space (considered here) than for classical
Liouville space. In the latter case, the meaning of
diagonality is different and the van Hove decompo-
sition of the resolvent is relevant to determination of
the self-energy.

Returning to the general quantum-mechanical
Liouville-space case, not that the off-diagonal term
~(z) in (62) also contributes to g(a, z

l
a), i.e.,

([~(z)A.]A.')~0 (70)

since the statistical density operator P in (3) is
not diagonal (does not commute with Hp. It is clear
from the previous discussion that the average (70),
in general, makes an important contribution to the
self-energy X~(z). In fact, the off-diagonal contri-
butions give all of the environmental effects, as not-

of Wp, with an eigenvalue which may be denoted by
s~(z):

W(z)A =s (z)A (67)

Although (66) has a superficial resemblance to (19),
it is clear that s (z) cannot be identified with the
self-energy X (z). In fact, s (z) is clearly indepen-
dent of the environment, since the statistical ensem-
ble averaging operation does not enter at all into the
definition of W(z), hence not into Eq. (67). Since a
physically reasonable definition of the self-energy
does depend on the environment, the conclusion is
inescapable that (63) and hence the function s (z) do
not, in general, have any simple relationship to the
self-energy X (z).

The situation here is quite different from the
zero-temperature case, where the average denoted by
angular brackets stands for an expectation value
(Pp l. . .

l gp) in the exact ground state of the full
Hamiltonian H=Hp+H', in which case

[g(~ z
I ~)]r=p=(0p lA (z II+&p) 'A

l 0p& .

(68)

ed previously.

VIII. DISCUSSION

A general procedure for determination of Liouvil-
lian Green's functions and their associated proper
transition self-energies has been developed for dissi-
pative quantum-mechanical systems. The method is
based on operator-basis expansions in Liouville
space. Explicit expressions for transition-energy
shifts and widths have been given to second order in
the perturbation Liouvillian, and contact has been
established with the statistical Hartree-Fock approx-
imation and the Weisskopf-Wigner theory of decay-
ing states. The definition and procedure for evalua-
tion of the self-energy are not restricted to systems
at or near equilibrium, and are therefore well adapt-
ed to investigation of nonequilibrium environmental
effects on spectral line shifts, widths, and shapes.
Application of this general approach to such prob-
lems, and illustrative calculations for a two-level
atom immersed in an equilibrium or nonequilibrium
radiation bath, are carried out in the following pa-
per.

Note added in proof The c.ontinuum limit (sums
replaced by integrals) should be taken before the
limits 5 ~0, ri ~0+. Then the term 5 in
5(e~ —e„+5) allows elimination of the restriction
nEW .
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APPENDIX A: ASYMPTOTIC STATISTICAL
INDEPENDENCE OF OCCUPATION NUMBERS

(apapa a )=fpf +O(Q ') (A2)

except on an asymptotically negligible set of /3

values. Here f is the single-particle distribution
function of the interacting system in the given
equilibrium or nonequilibrium ensemble, Eq. (52).

We wish to verify Eq. (53) for certain classes of
equilibrium and nonequilibrium systems. Using the
Bose commutation or Fermi anticommutation rela-
tion for the a~ and a operators, one has

(apapa a ) =fp+ (apa13a a (A 1)

from which it follows that (53) will be satisfied pro-
vided that
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Consider first the case in which the system is in
thermal equilibrium. Thus p will be taken to be the
grand-canonical-ensemble density operator and

f =(a a )=Tr(a a p)=
BE

(AS)

p=z 'exp[ —(H —pN)/k~ T],
Z =Tr exp[ —(H pN—) lkg T], (A3)

(a~a~apap) =f~fp —ksT
E~ Ep

(A6)

where H is the identical particle Hamiltonian (45)
and N is the number operator g a a . Let F be
the grand-canonical free energy

F= —k~TlnZ .

Then it follows from (45) that

Thus (A2) is established if this second derivative can
be shown to be O(Q ') except on an asymptotically
negligible ' set of P values.

Decompose H pN —into a free-particle part
Hp pN an—d interaction part H ' in the usual way,
Hp and H ' being given by (45). The grand-
canonical free energy has the usual perturbation ex-
pansion

where

co
( 1)n

nn=1 (k& T) & ~1 & ~2 & & r„&& 0—1

dr, dr„, (H'(r, )
. H'(r„, )H (0)) (A7)

Fp —— k~ T ln Tr e—xp[ —(Hp —pN )]
=+kz Tgln I 1+exp[ —(E —p)/k~ T)], (A8)

with upper signs for bosons and lower signs for fermions.

Tr I Oexp[ (H p pN )—Ikz T]—I(o),=
Tr exp[ —(Hp pN ) Ikz T—)

(A9)

(A10)

It will be shown that under conditions which will be stated in the course of the demonstration, the contribu-
tions of each of the terms in (A7) to B F/BE BEp is of order 0 ' except on a set of p values (for fixed a)
which is asymptotically negligible.

The proof is trivial in zeroth order; by (A8) one has

B Fp

and the additional subscript "c" on the angular brackets denotes the connected part, obtained by discarding
disconnected diagrams. Finally, H '(r ) is the usual imaginary-time Heisenberg operator,

H (r ) =exp[r(Hp pN)]H ex—p[ —r(Hp —pN)]

BE BE'p

The first-order contribution to (A7) is

(A 1 1)

(A12)F, =(H'), .

Since (H )p is evaluated in a diagonal (with respect to occupation-number operators) ensemble, only the diag-
onal part of H ' contributes to (A12):

F& ———, g [(aP
~

H
~
aI3) + (a/3

~

H
~
13a ) ](a apapa

a,P

= —, X[(~13IH
l
~&)+(~13 IH

I &~))[f.'"fp"+~.p(f'")')
a, P

where

f' '=(a a )p ——jexP[(E —P)/kT]+1I

(A13)

(A14)
Now suppose that the system is a spatially uniform one in the sense that the single-particle states annihilated
and created by the a and a are momentum eigenstates quantized according to periodic boundary conditions
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in a macroscopic volume Q. Then the matrix elements (a/3
I
H

I
y5) are O(Q ') and it is obvious that

B'F,
=O(Q '), a+P .

BE' BEp'
(A15)

On the contrary, if a =p then the second derivative reduces to B F/BE, which is of order unity and hence

not negligible. The case p =a is, however, of measure zero in the sense that it gives an asymptotically negli-

gible O(Q ') contribution to 6'", Eq. (50).
In second order, one has by (A7), (A10), and (45)

(~13
I
H

I

r&)(~'O'
I
H

I

y'&')
a,P, y, 5 a', P', y', 5'

(kT) —1 At A)A A Af Af A
X JI d~exP[(E +Ep —Er —Es)r](a apasara apasa& )o, .

I

(A16)

e, "=Tre
where

W= Wo+ W',

(A17)

In counting factors of the volume 0 it should be
noted that only three of the summations in (45) are
independent, assuming translationally invariant in-
teractions and hence momentum conservation.
Hence there are initially six independent momentum
summations in (A16). However, the conditions that
only connected diagrams are to be kept and that only
diagonal terms contribute reduces the number of in-
dependent summations to three, so that F2 is pro-
portional to the volume (recall that each interaction
matrix element is of order (0 '), the usual result
for connected-diagram statistical-mechanical pertur-
bation theory. But if cr&f3 the number of free sum-
mations is reduced by two more when one computes
B'F2/BE BEp, leaving one free momentum summa-
tion and a contribution O(Q ') to this derivative.
It is now obvious how the argument generalizes to
nth order: Each diagrammatic contribution to F„
has (n +1) or fewer momentum summations and n

factors of 0 ' from the interaction matrix ele-

ments, so F„=O(Q); the order in Q is reduced by
two in the evaluation of B F„/BE Bep if a&p, giv-
ing an asymptotically negligible O(Q ') contribu-
tion. This completes the demonstration of (53) in
the thermal-equilibrium case, assuming that the sys-
tem is spatially uniform and that (A7) is a meaning-
ful asymptotic series for the free energy. This latter
assumption fails in some cases, e.g., for a supercon-
ductor, for which a z a z and a k a z are strongly
correlated, so that the assumption cr&P does not
guarantee negligibility of B F/BE BEp. However, a
modified form of statistical-momentum perturba-
tion theory is known to be valid for a superconduc-
tor. The a and a would then, however, have to be
taken to be the usual bogolons, and (45) replaced by
the Hamiltonian in that representation.

The argument can be generalized to a nonequili-
brium ensemble of the form

Wo ——+Wa a~,

W'= —, g a ap(crP
I

W y5)asar,
a, P,y, 5

(A18)

H,„,= ga (a
I H,„, I P)ap (A19)

a,P

added to H. The assumption of spatial localization
implies that (a

I
H,„, I

P) is the Fourier transform of
a finite-range potential, . and is therefore of order
0 '. It can be shown that inclusion of the extra
term (A19) in H ' does not invalidate the conclusion
(53). Note, however, that the perturbation expansion
fails in case H„, has bound states. Therefore that
case must be excluded.

Other cases in which (53) is valid could be dis-
cussed, but the cases considered here are sufficient
to illustrate the types of situations in which (53) is
expected to be valid. In cases where it is not, the
first-order expression (50) remains valid but is not
necessarily well approximated by (51).

where the W are O(1), the (aP
I

W
I
y5) are

O(fl '), and the a,a are the same operators in
terms of which Ho is diagonal (so Wo commutes
with Ho). However, W need not commute with H,
and so this defines a class of nonequilibrium ensem-
bles with spatially uniform departure from equilibri-
urn. This assumption of spatial uniformity is impli-
cit in the assumptions on the orders (with respect to
0) of W and (a13I W

I
y5) and in the assumption

that the single-particle states annihilated and created
by the a and a are still momentum eigenstates.
The proof of (53) then goes through just as in the
equilibrium case, with E~ replaced by W~, kz T for-
mally replaced by unity, and f being a nonequili-
brium distribution function.

Consider, finally, the case of a spatially localized
departure from equilibrium. The situation is then
qualitatively similar to use of an equilibrium ensem-
ble (A3), but with a spatially localized external per-
turbation
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APPENDIX B: CANCELLATION OF POLE TERM AND RELATED CONSEQUENCES
QF IRREDUCIBII.ITY

The object of this appendix is to demonstrate the mechanism of the cancellation of the pole teria in Eq. (55)
and related cancellations. Consider first the case where the Hamiltonian is that of Eq. (45) and A is a single-
particle annihilator a . The B„ for which n HW and c(ct

~

n)&0 are exhibited in Eqs. (48) and (49). The B
occuring in the second term in the large parentheses in the first line of (55) are of the same form. Qn the other
hand, the B~ contributing to the first term in the large parentheses are not of this form; they are, rather, those
B EW for which c(n

~

m)&0 when also nEW and c(a
~

n)&0. To find these B, compute the commuta-
tor of such a B„with H ', Eq. (45). Using Eq. (48), one finds

[B„,H'] = [apapa, H'] =apap[a, H']+ [apap, H']a

=apap g'c(c
l

i)B + 2 g [(~I3'IH
I

y'&') (&'&—IH
l
y'&')]apapasara

I P', y', 5'

[(tz'P'fH fP&') (ct'P' fH f5'P)]a apasapa
a'P'5'

(81)

This gives rise to two classes of such B with m EW: (a) the terms B =apapB& for which i~~; (b) the
ter~~ «r which I3', y', 5' and ct', p', 5' are restricted to values such that apap. a, ,a, or a apas ap is diagonal
The terms of type (b) are seen to cancel between the contributions with a plus sign and those with a minus sign,
leaving only the type-(a) contributions. Renaming 1~m in the latter and combining with the other term in the
first line of (55), one finds that the first line of (55) reduces to

(z —~. )
' g [(~13

I
H

I
~P )+(~P

I
H

I
P~ ) ][(~y

I

H
I
~y )+(~y

I
H

I
y~ )]

(apaparara~a~ )
(aa)

(apapa a )(ara a a )

(a a")' (82)

The proof of (A2) is easily generalized to show that

fpf (a a )+O(
(83)

whereas direct application of (A 1) and (A2) yields

(apapa a ) =fp(a a )+O(Q ')

(arara a )=fr(a a )gO(Q ) .

The last factor enclosed in large parentheses in (82)
is thus O(A '). The two matrix-element factors
are each O(Q '), whereas the summation over f3
and y gives a factor 0 for A, ~oo when converted
to integrations, assuming as in the proof of (53) that
each P,y. . . index includes a wave vector as one of
the state labels. Hence the expression (82) is
O(A ') and vanishes in the macroscopic limit, the
result which was to be proved. The proof can be

generalized to nonequilibrium ensembles of the types
discussed in Appendix A, as in the proof of Eq.
(A2).

Next consider the second line of (55), the terms
with n EW and m FW . As in the proof just dis-
cussed, it is important to realize that the B contri-
buting to the first term in the large parentheses are
not the same as those contributing to the second
term. Those contributing to the first term are those
B with m EW for which c(n

~

M)&0 when
n EW and c(a

~

n )&0. According to (81) these
B fall into two classes: (a) the terms B =apapB&
for which i EW; (b) all the other terms in (81), for
which likewise m EW for general choices of the
indices P', y', 5' and ct ', /3', y'. The class-(a) contribu-
tions yield, after renaming 1~m and combining
with (57) and the second term in the second line of
(55), the following expression:

c(ct
~

n)c(ct m) (apap

e~. ' —~ (a a.')
(apapa a ) (B a

(w wt )2
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where B„=apapa, so that the sum over n is really
a sum over P. In analogy with (A2) and (A6), one
ca.n prove

aB a.'
(apapB a ) = (apap ) (8~a~ ) k—p T

E'p

=(apap)(B a )+O(Q ') .

(86)

Thus the first term in (86) cancels the second in
(85), so that the expression (85) reduces to

kaT, c(a
~

n)c(a
~

m) (Bm~n)

e~. asap

(87)
To determine the order with respect to 0 we need a
more explicit expression. The B, c(a

~
n), and

c (a
~

m ) are given by (46)—(49). Qne finds thus that
the expression (87) is

kgT

(a~a~) p p r s
, a(aptasarat)

[(aP
/

H
/

aP)+(aP
/

H
/
Pa )](aP'

/

H
/

y'5')(z —er —es +up )

(88)

By commutation one has

(ap as ar a~ ) =+ (a ap as az ) [1+O(Q ')], (89)

where the factor O(Q ) is an abbreviation for Kronecker 5 functions 5 z and 6 s, which, indeed, give contri-
butions only of relative order 0 when the summations (88) are carried out. It follows from (A3), (A4), and
(45) that

a(~p ~H ~)"s )

Fo and F~ [Eqs. (A8) and (A13)] contribute nothing since the product a apasar is off diagonal because
m EW . The first nonzero contribution comes from F2, Eq. (A16), differentiation of which yields

aFz
a(ap'

~

H
~

)"5') (~iPi IHIXi&i)

+exp[(&a +&p' —&r —&s )w] (asap as az a ap as a ~ )o, I .

(810)

The mean values are calculated in the unperturbed
ensemble (A9) and can be evaluated by standard
methods. Here we do not need the detailed expres-
sions, but only the number of independent momen-
tum summations. The restriction to connected dia-
grams means that there must be at least one
Matsubara's-theorem contraction between the prod-
uct a.'apasay and the product a.'ap asay. By
number conservation there must then be at least two
such contractions. When the remaining unpaired
operators are paired and account taken of the fact
that the interaction matrix elements conserve
momentum, one finds that no free momentum sum-
mations remain in (810), which is therefore O(Q )

since the interaction matrix elements are. Similar

I

arguments apply to the contributions from F3, . . . ,
implying that the mean value (89') is O(Q '). Its
derivative with respect to ep is nonzero only on a
finite (0-independent) set of values of p', y', and 6'
(for given, fixed P). The number of independent
momentum summations in (88) is then two
(remembering the momentum conservation con-
straint also), so that the expression (88) is 0 (0 '),
vanishing in the macroscopic limit. The same then
holds for (85).

This leaves the class-(b) contributions [see discus-
sion before (85)] to the second line of (55) to be in-
vestigated. With (81) one finds for the sum of these
contributions
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[(PP'
l
H

l
y'5')+(P'P

l
a

l

y'5')]
new p r s (z —~a ~y' ~s'+~p+~p ) (a a )a

[(~'P' I lPs )+(~ P la la P)]
a

Q~Qp Qg QpQQ& j'

(aa) (811)

where B„=apapa so that the summation over n is
again a sum over P. In analogy with (A3)—(A6) and
(89') one finds

QpQp a~ Q& QaQa

(aiba~

a(pp lal
(812)

and hence, by the previous argument, these mean
values are O(A ') when the indices conserve
momentum, and otherwise zero. There are thus
three independent momentum summations in (811)

(factor fl ), two interaction matrix elements (factor
0 ), and a factor II ' from (812), so that the ex-
pression (811) is finite and volume independent ' in
the limit Q~ oo. The final conclusion, then, is that
the second term in (55), when combined with (57),
makes a nonvanishing contribution to b, ' ' iy' ' in-
the same limit.

The expression in the third line of (55) can be
analyzed similarly. Noting that B„=apasa &with
n EW and finding the (necessarily diagonal) terms
B with m CW in [B„,II'], one finds eventually,
using (Al) and (A2),

c(tz
l
n )c (n

l
m )g (m, O

l
tz, O)

(z —e„)g(a, O
l
a, O)

(~P l~ I
1'&)[(1'& IH I

~P)+(7'& l~ IP~)l
p s (z —Er —Es+Ep)

(813)

apart from terms of order 0 '. This expression is
0 (1) since only two of the momentum summations
are independent, due to the momentum-conservation
selection rule on the matrix elements.

These arguments can be extended to nonequilibri-

um ensembles of the types considered in Appendix
A. The extension to arbitrary order in the interac-
tion would probably be facilitated by use of di-
agrammatic methods.
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LIOUVILLIAN GREEN'S FUNCTIONS AND SELF-ENERGIES. . . 1071

the ensemble at time t =0, and the initial condition on
the Heisenberg equation of motion (1) ls 3 (0)=A

~o A set of operators is linearly independent if and only if
no linear combination of these operators (with c-
number coefficients) is the zero operator.

~tThe existence of the trace metric (A, B ) =Tr(A B ) is
used implicitly, in that it implies that W is a Hermitian
superoperator and hence has real eigenvalues.

~21t is assumed here that MOB„=[B„,HO], where the un-
perturbed Harniltonian Ho is Hermitian; then the e„
will be real.

~3L. van Hove, Physica (Utrecht) 21, 901 (1955).
~4This occurs already in the first approximation, obtained

by substitution of go(n, z
~
a) into the sum in the first

equation (17).
~5This is similar to the separation into "correlation part"

(irreducible) and "vaccum part" (reducible) of the
"Brussels School" approach. See, e.g. , Balescu, Ref. 6.

' This will contribute both to the second-order shift 6' '

and the second-order width y' ' [see Eq. (27)] since the
nonresonant term has a cut.

~71n addition to B„ofthe type (40), there are also others
of the form (46) with n EW because they satisfy
the constraint ez+ eq —ep ——e as well as
k + k~ ——k~+ k~. These, however, give only a contri-
bution to (43) which vanishes as 0~ oo', see the discus-
sion of Eq. (810).in Appendix B.

sThe case p=a should be excluded to avoid double
counting [duplication of (48)]. However, this is a set of
measure zero in a macroscopic system.

~9R. Kraichnan, Phys. Rev. 112, 1054 (1958); 112, 1056
(1958).
In the case where the environment is pure radiation as
discussed in the following paper (Ref. 8), the c(u

~

n )

vanish for n EW, but this is not the case when the en-
vironment contains matter.

~It is not difficult to show that the coefficient of
(z —e ) ' " is O(A ') for arbitrary m, under the
conditions assumed in Appendices A and B. However,
the proof has not yet been carried out for the poles of
lower order.

22In the special case of thermal equilibrium (canonical or
grand-canonical ensemble), P is an eigenoperator of
S(z) with eigenvalue zero.

See, e.g., S. Teitler and R. F. Wallis, J. Math. Phys. 1,
372 (1960).

The same conclusion follows for a canonical ensemble,
but as usual the calculations are easier in a grand-
canonical ensemble.

25The precise meaning of this phrase will become clear
from the details of the proof.
See, e.g., C. Bloch and C. De Dominicis, Nucl. Phys. 7,
459 (1958), Eq. (30).

z7Then a stands for the wave vector k, or for ( k, v ),
where v is a set of internal quantum numbers.

2sThe sum over p then remains and gives a factor of the
volume cancelling the 0 ' from the matrix element
when one makes the asymptotic replacement
y-„-tz ~-'n f s'~.
We are excluding the case of a Bose-
Einstein —condensed system, which requires separate
investigation.

3oThis is where the assumption of a spatially uniform sys-
tem enters.

3'Cancellation between the two summations in (Bll) is
certainly not possible for all values of the summation
indices.


