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Faraday rotation (FR) has a nonlinear part which can be excited by a strong elliptically
polarized electromagnetic wave in a plasma, even in the absence of a static magnetic field.
It is due to the different dispersion rates of the strong left- and right-circular polarization
components of the wave (the corresponding refractive indices are denoted by n& and nz) and
induces weak nonuniformities in a magnetized plasma. As a result the study of the non-
linear characteristics requires the WKB type of nonlinearly correct first-harmonic field
solutions. This nonlinear evolution problem has been investigated in this paper. The new

results, depending on both the field intensity and the nonlinearly induced spatial inhomo-

geneity, are (1) the nonlinearly correct expressions for nt and nR, (2) the amplitude evolu-
tion equations in which the coefficients are slowly varying with respect to x (the Cartesian
coordinate parallel to the direction of propagation) and their WKB solution, (3) the expres-
sion for the nonlinearly correct FR angle, and (4) a numerical estimation on the interaction
of a plasma with a CO2 pulsed laser in which it has been shown that the nonlinear incre-
ment of FR is opposite in sign to the value found in the linearized approximation of the
field equations. The new results have been discussed in some special cases and some com-
ments are given on enlarging the scope of further work on the FR of strong waves.

I. INTRODUCTION

Faraday rotation (FR) is a magneto-optical effect
of birefringence. It occurs when the refractive in-
dices nt and ntt of the left- and right-circular polar-
ization components of a wave are different for the
same frequency; so the phase velocity (and also the
group velocity) is different for the two polarizations.
As a consequence, the direction of the resultant field
of the two circular polarizations is different from
that without the external biasing magnetic field and
has been experimentally observed in crystals and
plasmas. ' In plasmas the effect occurs because elec-
trons gyrate opposite to ions. Materials in a spon-
taneously magnetized state (e.g., ferrites) also exhibit
FR. Their original internal fields (related to Larnior
precession of electrons) may be considered as gen-
erating agents of the Faraday effects.

For strong electromagnetic waves in plasmas and
other media the FR is modified by the nonlinearly
induced precessional rotation (PR), which is actual-
ly the self-generating rotation of the reference frame
in which the field equations are described with
respect to the laboratory frame of the observer. The
foliiier reference frame has been called by Chakra-
borty (1977) the principal polarization reference
frame (PPRF). The FR of the standard theory is
derivable from the linearized field solutions. So it is
that which is obtained in the PPRF whereas in the
laboratory frame of the observer the FR is a com-

bination of this FR and nonlinearly induced FR
which is due to the self-induced nonlinear preces-
sional angle of rotation of the PPRF. Therefore, the
magnitude of the observed FR in the laboratory
frame will depend on the sense of rotatation of PR
and the FR in PPRF.

The recorded FR can even be in the opposite sense
to that predicted by the standard linear theory if the
latter is less than the magnitude of the nonlinearly
generated angle of PR of the PPRF and in the oppo-
site sense. In the end of Sec. III C an example illus-
trating this possibility is given. The referred PR of
the polarization ellipse is such that the eccentricity
of the ellipse remains constant due to conservation
of the photon angular momentum.

The well-known theory of FR is that for a plane-
polarized wave of very weak field intensity. In fact,
the infinitely small amplitude wave approximation
for the linearized solution of the field equations is
used in the theory. But this value of FR is consider-
ably modified for strong waves. Although there is
much application of effects on FR of strong waves,
we are not aware of any appropriate theoretical in-
vestigation on this modification. The most impor-
tant factor influencing the value of FR is the ap-
pearance of the nonlinearly induced effect of PR of
strong elliptically polarized waves in material media
including plasmas. But the self-induced PR ef-
fect was not a very familiar topic of theoretical
research until very recently; therefore, it seems that
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the theoretical investigation of the nonlinear modifi-
cation of the FR effect along the line motivated in
this paper has not been attempted earlier. Here, for
the first time, the expression for the nonlinearly
correct FR angle has been obtained when an intense
elliptically polarized electromagnetic wave prop-
agates parallel to the direction of a homogeneous ap-
plied magnetic field in a plasma slab.

An important aspect of the Faraday effect in plas-
mas is the induced magnetization ' (inverse Fara-
day effect) (IFE) produced by a circularly polarized
wave. It is a consequence of the gyration of plasma
electrons, which for left-circular polarization is
parallel and for right-circular polarization is anti-
parallel to the direction of wave propagation. The
theory developed in this paper will be useful for the
study of (a) nonlinearly correct evolution of FR, (b)
the complementary effect of nonlinear modification
of IFE, and (c) of nonlinear modification of syn-
chrotron radiation from plasmas.

We consider here the effects (a) and (b). However,
the important effect (c), namely, the nonlinear evo-
lution of synchrotron radiation due to the PR ef-
fects, should be considered elsewhere in the near fu-
ture.

In a plasma, strong electromagnetic radiation in-
duces several nonlinear effects including PR. In a
collisionally damped magnetized plasma slab, the
difference in the wave numbers Kl and Kz gives
rise to weak inhomogeneities even when the plasma
is assumed homogeneous before the application of
the strong field. Moreover, in a magnetized plasma
slab, the v t& B force can give the particles a constant
drift velocity'; this drift changes the constant part
of the density from its field-free value, and thus
modifies the electrostatic field through Poisson's
equation. The plasma density is therefore slowly
and continuously varying due to nonlinearities and
so the WKB approximation' ' has to be used.
With the help of the WKB solution the expression
for the nonlinearly induced inverse Faraday effect
(i.e., IFE; it is created inside the plasma due to pre-
cessing electromagnetic waves) can also be obtained.
In unmagnetized collision-free plasmas the non-
linearly developed nonuniformity vanishes, and so
the WKB solution is not necessary, but the enlisted
nonlinear effects, which include the intensity-
induced PR, the nonlinearly induced birefringence,
the nonlinear FR, and the IFE, do not vanish.

In the simple types of nonlinear wave interactions
in plasmas the nonlinear increment to FR (or the
PR) of the polarization ellipse of a wave and other
complementary effects of strong electromagnetic ra-
diation are generally smaller by many orders of
magnitude compared to those in material media, be-
cause they would vanish altogether for free electrons

in a plasma in the electronic dipole approximation. '

These nonlinear effects would hardly be accessible to
experimental observations at optical frequencies.
Actually, the nonlinear optical characteristics in
plasma processes obtained by Arons and Max and
others are small and imperceptible in laboratory
experiments even with powerful laser beams
(neodymium-glass laser, A, = 1.06 pm, power
flux- 10' W/cm ). In some subsequent investiga-
tions by us ' it has been shown that the nonlinear
effects (the PR and hence the nonlinear part of the
FR) can be much enhanced in a magnetized plasma
to detectably large values in some physically possible
near-resonant interactions and phase-matching con-
ditions. In a magnetized electron plasma the wave
frequency approaches the electron gyration frequen-
cy 0, (=e&0/mc) and thus the wave exchanges
maximum energy with the electrons leading to signi-
ficant nonlinear responses. " These responses have
also been shown to be enhanced for two-wave (in-
cluding standing-wave) interactions ' ' where the
beat frequency of two traveling waves approximates
or exactly equals the characteristic plasma frequen-
cy (i.e., coi —co2-co~). When the ion motion is also
considered in a magnetized plasma, another low-
frequency near-resonant interaction, occurring in the
neighborhood of co =0; (Q; is the ion cyclotron fre-
quency), was investigated where the PR and other
complementary effects are large enough to be detect-
able.

High-intensity laser fields induce relativistic and
other nonlinear effects in the motion of electrons.
Even for radiation intensity-10 W/cm the ion
motion remains well below the electron velocity and
so has negligible effect on propagation. The power
of the laser fields is restricted below the threshold
power limit for the suppression of self-focusing,
self-trapping, and SRS mechanisms. The threshold
power to initiate these effects depends mainly on the
plasma density, pulse duration, and laser frequen-
cy. ' In a dense plasma (number
density —5&10' /cm ), the threshold power (8,h)
for a C02 gas laser (wavelength A, = 10.6 pm,
co = 1.78 X 10' /sec) would be as high as —10'
W/cm . In a plasma slab below this threshold
power limit [i.e., when dimensionless amplitudes a
and p are less than unity where u,p=e(a, b)/mcoc
and the field amplitudes a, b, etc., are explained in
Sec. III] the nonlinear propagation of an intense ra-
diation has solutions which imply that the major
axis of the vibration ellipse of a wave undergoes
self-precession.

We find that a laser-plasma interaction for which
fluxes (P) of a C02 pulsed laser of as much as
3 && 10" W/cm would be suitable for the estimation
of precessional effects (since I' &~ W;h). In such a
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case a =P =1.4X10 5, which is very small com-
pared to unity and our cold-plasma results are appli-
cable. For a weak magnetic field of —10 Cs while
the FR in radians per cm of propagation of the wave
obtained from the linearized field solution is
-7.5X10, the corresponding increment due to
the nonlinear effects turns out to be ——10

The basic equations are given in Sec. II. We have
obtained here (in Sec. III) (1) the nonlinearly correct
expressions for the refractive indices nL and nz, (2)
the amplitude evolution equation in which the coef-
ficients are slowly varying with respect to the space
coordinate (parallel to the direction of wave propa-
gation and the applied homogeneous magnetic field)
and its WKB solution, (3) the expression for the
nonlinearly correct FR angle, and (4) a numerical es-
timation in the case of interaction of a plasma with
a CO& pulsed laser in which it has been shown that
the nonlinear increment to the FR angle is in the op-
posite sense to its value evaluated in the linearized
approximation. In Sec. IV we have discussed the re-
sults and their implications in some simple cases and
we have commented on enlarging the scope of fur-
ther work on the FR of strong waves in plasmas and
other media.

II. STATEMENT QF THE EQUATIONS

The plasma is cold and consists of a mixture of
electron fluid and immobile heavy ions providing
the neutralizing static uniform background of posi-
tive charges, therefore the macroscopic equations of
momentum transfer and conservation of charged
particles for electrons are used here. The medium is
assumed to be lossy (collision frequency v) and the
momentum loss in any direction is proportional to
the momentum vector per unit volume in that direc-
tion. All field components are written as the sum of

an exponential function for a plane wave and its
complex conjugate (c.c.). The thermal velocities are
assumed to be negligible (U,h «c) here.

The basic field equations are

+ V' (Nv)=0, (2.1)

+(v V') V

( 1 2/G 2)1/2

eE e(v XH)
EtlC

(2.2)

+
V' XE= ——

c t
(2.3)

(2.4)

V''E= —4me(N No), —V H=O, (2.S)

E~y+iE~ E+ H)y+iH) H+

U )y+lV )~ =U+
(2.6)

The subscript 2 is added to the fields of second or-
der and the subscript 3 to the fields of third order.
Differential equations for E+ and E correct up to
the third order are obtained from the field equations
(2.1) to (2.5). These are

where E is the electric field. H is the magnetic field,
v and N are the average velocity and number densi-

ty of electrons, v is the collision frequency of the
electrons, and No is the constant number density of
the ions.

The subscript 1 will be added to the fields of the
first (or the linear) approximation, subsequently in
this paper we will use the following complex com-
binations of the fields:

~ ~

2

E+ 8 E+ cop
2 2

+ E+ +(v iQ )—
C BX C

a'E
Bx

+(D+v iQ )—2
4meNo ~U+ ie U+U

D —Uz„+ H+ D-
C BX mC 2c

E d E co& E +(v+iQ)
C BX C

a'E
Bx

4m.eNo —U2x
C2

V U+ +(D+v+iQ)
2c

2V
(2.8)

where D—:8/Bt and overdots also denote time derivatives.
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III. NONLINEAR &KB SOLUTIONS
IN A MAGNETIZED PLASMA SLAB

For these solutions the electric field is assumed in
the form

To isolate the space and time parts of the field
variables we now put

E+ =ae +be, E =ae +be

(3.4)
eE+—=A+e ' '+8+e' ',
mac

eE —j~t+g e kit

merc
(3.1)

Since eE/mcoc is a dimensionless number (less than

unity for the laser-produced electric field), the spa-

tially dependent parts are A + Q+ and A,B
Then we can write

These will be used to evaluate the nonlinear terms in
the right-hand sides of (2.7) and (2.8). The non-
linearly developed first harmonic parts of these
fields will be determined by substituting (3.1) in the
right-hand sides of (2.7) and (2.8). Then we find
that the nonlinear equations for the fields of the left-
and right-circular polarizations reduce to the follow-
ing four second-order (normal form) ordinary dif-
ferential equations:

pe =A+(x)e ' ', L7e "=8+(x)e' ',
ae "=A (x)e ' ', Pe =8 (x)e' ', (3.2)

d A+
+XIA+ ——0,

X
(3.5a)

where the dimensionless amplitude parameters ~, p
a, P are given by

2B+
— +K g8+ ——0,

dX
(3.5b)

e (a,a, b, b)
mme

(3.3)
+KgA =0,

dX
(3.5c)

and &~ are the phases of the forward-going
waves of left- and right-circular polarizations and
the amPlitudes A+, A, 8+, 8 are functions of X.

I

2+
+%LB =0,

X2

where the nonlinear dispersions relations are

(3.5d)

2 2ELC
n,I —— =1— X X+ page + 2are "~

+' (1+Y+i»'[(1+Y)'+Z'] (1+Y+iZ)'[(1 Y)'+Z'—]

[(1+Y+iZ)(nL+n&) —2n~(Y+iZ)]
(4+2iZ —X')(1+Y+iZ)(1 —Y —iZ)

nL

1 —Y+iZ 1+Y+iZ+

and

i&0!vg ce+-
al(1+ Y+iZ) 1 —Y+iZ

EPL
lf3PvL ce nL+ ~(1+Y+iZ) 1+Y+iZ

1 —Y —iZ

nI

1+Y iZ— (3.6)

2 2Egc
CO

P13e '[(1—Y+iZ)(nL+n~ )+2(Y iZ)nL]—
(4+2iZ —X)(1—Y iZ)(1+ Y—iZ) —1 —Y+iZ 1+Y+iZ

taav&ce n
+

al (1—Y+ iz) 1 —Y iZ—n

1 —Y+iZ

x x Acxe 21313e

Y+'Z 2 (1—Y+iz) [(1—Y) +Z ] (1—Y+iZ) [(1+Y)2+Z~]

nl

I+ Y+iz

lj71
iIBPvL ce nL+

al(1 —Y+iz) 1+Y iZ— (3.7)
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in which vL and vz are, respectively, the imaginary
parts of Kl and Kz,

2
COp

PR ~R ~R~ PL ~L ~L~
CO

(3.8)

Y=Q/co, Z =vice, co» =4vrNpe Im,

and Np is the number density of electrons and v is
the collision frequency.

A. General solution

A E+
A ~: ~/z exp / Kl dx (3.10a)

tions of x though KL and K~ are constants, and the
nonlinear propagation problem becomes a problem
of wave process in slowly varying plasmas in this
case. Since the wave numbers are weakly inhomo-
geneous, the wave solutions should be of the order of
the WKB type, correct up to first order of deriva-
tives of K~ and KL.

The nonlinearly correct WKB solutions of
(3.5a)—(3.5d) are

For convenience we write
B~

+ 1/2 exp i —Kz dx
0

(3.10b)

Kl =Kg ~5KI, K~ ——Kg+5K',

Kg ——Kl ~5KI, Kg Kg ~5——Kg,
1/2

E

exp l Kg dx
0

(3.11a)

where K~ L, and Kz L are the values of Kz L and0 0

Kz L, respectively, in the linearized approximation
and so are constants, and 5K+ L and 5K+ L are the
nonlinear increments. Qbviously

~

5KL,
~

&&
~
Kl. ~,

i 5K„~&&
~

K~ ~, etc., and 5KI and 5K+ are slowly
varying functions of the space coordinate in the
direction of wave propagation (the x direction here),
in the presence of constant magnetic field in that
direction, in a collisionally damped plasma. So put-
ting nL nL + 5nL and——nz nz +——5nz into (3.6)
and (3.7) and ignoring 5nL, and 5nz we can evaluate
5nL, and 5n~ from (3.6) and (3.7). These quantities
are proportional to the intensity-dependent non-
linearly excited parts in the right-hand sides of (3.6)
and (3.7).

Since the nonlinear terms in the right-hand sides
of Eqs. (2.7) and (2.8) contain the fields of both
right- and left-circular polarizations, the difference
between the values of KI and Kz is responsible for
the appearance of factors like exp(ipse) and exp(ipL )

in the intensity-dependent nonlinearly excited parts
in the right-hand side of (3.6) and (3.7). Conse-
quently, KL and K~ become slowly varying func-

B
1/2EL

E

exp —/ KL dx
0

(3.11b)

where the amplitudes A ~ and 8+ are constants
correct up to the WKB approximation and the lim-
its of integration are 0 and 1 because the magnetized
plasma slab exists in 0 &x & l. Substituting these
solutions into (3.1) we obtain

IQ)c
p i8L g p i8~-
+e +e
~ 1/2 ~ 1/2+

L R

(3.12)

p i8
mesc A e

~ 1/2
R

0 —iBL

x'"
L

(3.13)

where
E

8, ,= f,Xx,dx
(3.14)

E

Hxl=f„EgL,d.x cot . —

Using the first relation of (2.6) we evaluate E» and
E, from (3.12) and (3.13) and find that

tang =

p —i8~ p i8~

~ 1/2 ~ 1/2
L R

p iBL
+e

K 1/2

p —i8~
~e

~ 1/2
R

(3.15)
p —i81 p i8~ p iBL

+e+ ~ 1/2 + 1/2
R EL

p —i'+e
~ 1/2

R

The wave vector which lies in the yz plane makes the angle P with they axis at the distance x from the ori-
gin along the direction of propagation (x axis). At x =0 we can write

KR ——KL ——E, ER ——EL ——K, (3.16)
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where K and K are given by

CgPC0& ( CO + l V )(K,K )c =to
CO +V

If, moreover, we put (t, =~t»p when x =0 we find that

(3.17)

tanPp ——

—i8 go i8

K 1/2 K ) /2
L

B e ' 3 e'
1/2 1/2E

e' 8 e+ +
~ 1/2 ~ 1/2

gP i8 8P i8-+e +e
~ 1/2 ~ 1/2+

where

8=Kx tot—, 8=Kx tot . — (3.19)

Hence, / =0 if 8" =8+, 3+ ——/I and P =m/2 if 8 = —8+, 3 = —/I+. Obviously Pp is the angle the
wave vector makes with the y axis at the origin and the net angle of rotation of the wave vector as the wave
travels the distance x inside the magnetized slab is (t —pp. This angle of rotation consists of two parts pt and

()I)„t where Pi is independent of the field intensity and so obtainable from the linearized solution of the field
equations (2.1) to (2.5); the nonlinear field-intensity-dependent part is P„t.These will be discussed in Sec. III C.

The nonlinearly correct evaluation of the angle of Faraday rotation is (I) —Pp. If we write

tan(P —Pp) =P/Q

we find that

P =2i
0 0 —i(8L+8}
+B B e

(KL K)'

p p —i(8L —8)3+B e
+

(K,K)'"
0 p —i(8~ +8)3+2 e

+
(Kil K) '/

p p t'(8L +8)
A+A e 0 0 i (8L —8)

+B e

(K,K)'"

0 0 —i (0~ —8)
B+e
(K,K)'"

~o BoB+e
+ (K„K)'"

o o —i(8g+8)
+B B e

(KIl K)'
(3.20)

o o —
& (8L —8)

+e

(K,K)"-"

0 0 —i(81 +8)B B+B B e

(K,K)'"
p () i(8~+8) p p i(8~ —8)

A+e /I 8+e p p i(8L —8)3+B e
+

(K,K)'"

o o i (8i+8)
+

(K,K)'"
0 0 —i(8~ +8)
+B B e

1/2(KilK)

0 0 —i (8~ —8)B+2 e
+ (3.21)

B. Solution in some simple cases

The linearized dispersion relations for the left- and right-circular polarization components, obtained from
Eqs. (3.6) and (3.7), are

02
KL C

n L
CO

02 2Kg c —1—
CO

X
1 —F+iZ

(3.22)

These are Eqs. (4.10.1) and (4.10.2) of Krall and Trivelpiece' and are not identical only when A&0; when
Q =0 we find that KL ——Kz and birefringence cannot develop in the linearized approximation.

In the absence of a static magnetic field and collisional loss the birefringence still occurs. This is evident
from the nonlinear dispersion relations (3.6) and (3.7) which reduce to
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4n a2 2 2 2

=nL =1—X+—2a +p-
ro 2 4 —X

Kgc2 2 X z ~ 4nP2 2

=nz ——1 —X+—a +2P-
CO 2 4—X

(3.23)

This case has been considered by Arons and Max.
In the absence of collisional loss we have pit ——0 and pL ——0 and the wave numbers Kit and EL are constant;

therefore the WKB solution is not necessary, and Eqs. (3.6) and (3.7) reduce to

P~ 2a~ a [(1+Y)(nL +nii ) 2n—z Y]

1+Y 2 (1+Y)' (1 Y')' (1—E')(4—X)
nL ng

1 —Y 1+Y+ (3.24)

X X a 2P
(1 —Y)' (1+Y')'

p [(1—Y)(nJi+nL)+2nt Yj

(1—Y )(4—X)
ElL ng

1 —Y 1+Y+ (3.25)

For an order-of-magnitude estimation in Sec. III C we would consider (3.24) and (3.25) for (1) a strong mag-
netic field at low wave frequencies so that co+0 can be replaced simply by +0 and (2) a weak magnetic field
at high wave frequencies so that (1+Y) ' approximately becomes 1+ Y and 1+ Y is replaced by unity.

Case I. Strong magnetic field at low frequencies. In this case
~

fl
~

&&co and therefore (3.24) and (3.25)
reduce to

nL ——1 ——+X X 2a&+p& a (nL —nii)
Y2 4

(3.26)

and

ng =1+ +X X
Y 2Y

a +2P
Y

p (nL nR)

4 —X (3.27)

Case 2. Weak magnetic field at high frequencies:

X z z a (nL, +nii)
nL ——1 —X(1—Y)+—2a +p—

2 4 —X
a (nL nii)—2 2 2

—2Y XP'+
4

(3.28)

p (nL +nii)
nR —1 —X(1+Y)+—a'+2p'—

2 4—X
p (nL nii)—2 2 2

+2Y Xa + (3.29)

C. Quantitative implications of the results

For an order-of-magnitude estimation the expres-
sions for the FR angle can be written simply as

r

(3.30)

mas from (3.23) we easily find that

Xco(a —P )l

Scv'1 —X
(3.31)

For case (1), a strong magnetic field at low wave fre-
quency, Eqs. (3.26) and (3.27) give

where l is the length of the slab. We can write P as
the sum Pi+/„i where Pi is the contribution to FR
fmm the linearized field solutions and is indepen-
dent of the field intensity; P„i is due to the
intensity-induced nonlinear effects. KL and IC~ are
solved approximately from (3.24) and (3.25) in the
different limiting cases.

In the case of unmagnetized and collisionless plas-

X
4c Y

r

Xco a —P
, nl

8 Y2 Y2
+

(a'+ p')(nL —nii )'
4 —X

Since Y »1, and nL —1 —X/2Y
nz —1+X/2Y, in this case we find that

(3.32)
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X3co(a +P )l Xco(a /—3 )/+
128cY (4—X) 8cY

Again, since X & I,

Xco(a —P )
nl—

(3.33)

(3.34)

= —10-', =7.5X10—'. (3.36)

It is interesting to note that in this case the non-
linearly correct FR is in the opposite sense to that of
the FR obtained from the linearized field solution.

VI. CGNCLUDING REMARKS

We have the following.
(a) Equations (3.6) and (3.7) give the nonlinearly

correct expressions for the refractive indices nL and
nz for the left- and right-circular polarization com-
ponents of the wave. In these formulas the space-
dependent factors are exp(ipL) and exp(ip~) which
vary slowly but continuously in lossy plasmas due to
the dependence of pL and pz on field intensity and
collision frequencies. However, in nonlossy plasmas
these factors vanish. For this reason the wave num-
bers Kl and K~ are also slowly varying quantities.
As a result the normal form ordinary second-order
differential equations for the variation of amplitudes
have slowly varying coefficients. The WKB solu-
tion, being appropriate for these equations, has been
used.

With the help of the WKB solution for the elec-

For case (2), weak magnetic field at high frequen-
cies, we find that

coXYl

2cV1 —X
(3.35)

f —.(a' —/1') —(a'+P') 62c 1 —X
The first term of p„lof (3.35) is obviously identical
with the p„lof (3.31). The general results may be
considered for a laser-plasma interaction. For in-
stance, in a dense plasma (No —5 X 10' /crn ) a
pulsed COz laser (wavelength 10.6 micrometer,
co =1.78X10' /sec) having an intensity as high as
3X 10" W/cm would be suitable for the estimation
of the nonlinear increment to FR. In such a case
a =P =1.4X10 (which is very small compared
to unity) and for a weak magnetic field (10 G),
0 =1.78X10' /sec, our cold-plasma results are ap-
plicable.

From Eq. (3.35) we get (in rad/cm)

tric field, an expression for the FR angle has been
obtained. From this expression the contribution of
the linearized solution of the field equation has been
separated and the intensity-dependent contribution
due to the nonlinear increment to the field variables
has also been obtained. These two parts have been
quantitatively determined and compared in some
simple cases. In the case of interaction of dense
magnetized plasmas with a CO& pulsed laser the
nonlinear contribution to the FR angle is shown
[vide Eq. (3.36)] to be in the opposite sense with
respect to the contribution from the linearized ap-
proximation of the field equations.

(b) The theory of FR has also been applied to
tokamaks. Submillimeter laser techniques for
measuring the poloidal magnetic field of tokamaks
produced by the driving current are being developed
today (cf. Lax ). Faraday rotation measurements
use the same submillimeter lasers used for the inter-
ferometers. The technique involves a rotating polar-
izer which modulates the beam at a frequency of the
order of 1000 Hz. This permits discrimination be-
tween the interferometer and FR signals. An
analyzer measures the angle of rotation of polariza-
tion. Very small angles can be measured to deter-
mine the poloidal field patterns and the current pro-
files.

(c) Heald and Wharton ' have pointed out that
FR measurements with waves beamed through con-
trolled fusion plasmas stimulated the development
of microwave diagnostics as a standard measuring
technique. The contemporary experiments involving
lasers or other coherent sources from the visible to
the millimeter-wave range use FR as one of the ex-
periments for diagnostic purposes in hot, dense,
magnetically confined fusion plasmas. The fields
being strong in these experiments, the earlier theory
should be replaced by the nonlinearly correct theory
developed in this paper, which shows the possibility
of even a rotation in the opposite sense owing to the
predominance of the nonlinear correction in some
cases.

(d) The generation of the induced magnetic field,
the so-called IFE, due to the PR of strong waves,
should be important in experiments with laser-
induced plasmas. Recently, some very useful experi-
mental research has been reported on the detection
of IFE. For enlarging the scope of research on the
nonlinearly induced FR, this research is summarized
and discussed here.

The theory of inverse Faraday effect in solids in-
duced by electromagnetic radiation was first
developed by Pershan et al. Pomeau and Queme-
da' have considered the magnetization induced in
plasmas by circularly polarized microwaves.
Deschamps et al. ' have observed such a magnetic
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field by using a pulsed microwave signal (3000
MHz) supplied by a klystron delivering a few
megawatts during 12 psec with a repetition frequen-
cy of 10 Hz. For circular polarization using signals
of maximum amplitude 3 V, induced magnetic field
( —10 6) has been observed by these authors.

Later Steiger and Woods, ' and Talin et al. ' have
studied IFE in plasmas induced by circularly polar-
ized electromagnetic radiation. Talin et al. ' have
pointed out the interesting possibility of experiments
on IFE in neutral gases where the induced magneti-
zation can be detected by the Zeeman shift of the
atomic lines of a noninterfering probe gas. These
authors have also noted the fact that in near-spectral
resonances, due to the existence of strongly
frequency-dependent susceptibility, the IFE is great-
ly enhanced and is strong enough to be detected. It
will therefore be interesting to study the nonlinearly
correct angular momentum using the WKB solution

in a magnetized plasma. The nonlinear increment to
the angular momentum would give rise to a spatially
(slowly) varying increment in the magnetization and
so in the nonlinearly induced IFE. This self-
generated magnetic field can be a possible source of
an externally given static magnetic field and for the
consequent experimentally observable effects.

(e) In laser-induced plasmas a large-scale inhomo-
geneity and an induced magnetization are inevitable
in addition to other complications. The theory
developed here for FR due to a nonlinearly induced
weak nonuniformity should be useful for the estima-
tion of this magnetization. Therefore, it seems that
a good possibility exists of enlarging the scope of the
study initiated here and bringing the theory close to
experimental investigations. In the future we hope
to channel the theoretical investigation in these
directions.
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