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Gauss s principle of least constraint is used to develop nonequilibrium molecular-dynamics algo-
rithms for systems subject to constraints. The treatment not only includes "nonholonomic"
constraints —those involving velocities —but it also provides a basis for simulating nonequilibrium
steady states. We describe two applications of this new use of Gauss's principle. The first of these
examples, the isothermal molecular dynamics of a three-particle chain, can be treated analytically.
The second, the steady-state diffusion of a Lennard-Jones liquid, near its triple point, is studied nu-
merically. The measured diffusion coefficient agrees with independent estimates from equilibrium
fluctuation theory and from Hamiltonian external fields.

I. INTRODUCTION

Many-body systems have been simulated by solving
Newton's equations of motion, ever since the development
of computers. Early constant-energy Newtonian dynamic
studies were concerned with the nature of equilibrium, and
the approach to it. But, to drive realistic nonequilibrium
systems undergoing shear or compressional fIows or heat
flows, a new kind of nonequilibrium molecular dynamics
was needed.

About ten years ago, nonequilibrium molecular-
dynamics (NEMD) simulations using heat reservoirs and
moving boundaries began to be developed, but on a case-
by-case basis, without an underlying basic formalism.
Very recently, Hoover and Evans discovered that Karl
Friedrich Gauss, in 1829, had enunciated a fundamental
dynamical principle (Gauss called it the most fundamental
principle) which can fruitfully be applied to a wide range
of irreversible phenomena and used to generate NEMD al-
gorithms. VVe describe and illustrate our new treatment of
Gauss's principle of least constraint.

In dynamical problems "holonomic" constraints are
used to restrict coordinates only. Such constraints are
used to fix bond lengths or angles at average values, there-
by avoiding small-amplitude high-frequency motions.
The equations of motion for a system with these geometric
constraints were written by Ryckaert, Ciccotti, and
Berendsen, using Lagrange multipliers. Their numerical
method satisfies the constraint equations continuously.
Here we point out that this same technique' can be gen-
eralized to the nonholonomic (velocity dependent) case -in

which the constraint forces can do work on the system.
These constrained equations can be found directly from
Gauss's principle of least constraint.

This simple extension of the kinds of constraints con-
sidered permits us to describe homogeneous nonequilibri-
um steady states. In characterizing such a state at least
two constraints are used. The first "driving" constraint
sets the value of the thermodynamic force or Aux and the
second "stabilizing" constraint fixes a thermodynamic

variable in order to maintain a steady nonequilibrium
state. Typically the driving constraint is a strain rate or
heat Aux, and the stabilizing constraint corresponds to
constant energy or constant temperature.

A steady irreversible process produces entropy, through
irreversible heating or mixing, and must therefore incorpo-
rate a compensating mechanism for extracting heat or
separating molecular species. Heat is ordinarily removed,
by conduction, at isothermal boundaries. However, by
using stabilizing constraints to maintain a steady state we
can avoid the need for physical boundaries and substan-
tially reduce the dependence of our results on system size.
The techniques described here are remarkably flexible,
permitting steady states to be maintained either by ther-
modynamic forces or by the conjugate thermodynamic
fluxes.

Because these constraints are novel, we illustrate them
first with a familiar system, simple enough for complete
analysis: the three-particle Hooke's-law chain. We then
apply the same techniques to a complicated many-body
problem, the simulation of steady diffusive flow in a
model liquid.

II. GAUSS'S PRINCIPLE QF LEAST
CONSTRAINT (REF. 6)

It is not widely appreciated that just over 150 years ago
Gauss formulated a mechanics more general than
Newton's. Gauss's formulation applies to systems which
are subject to constraints, either holonomic or nonholo-
nomic. Gauss stated that the trajectories actually followed
would deviate as little as possible, in a least-squares sense,
from the unconstrained Newtonian trajectories.

If the constraints do no work on the system then it is
possible to prove that Newton's and Gauss's formulations
are equivalent. The equivalence holds also in the nonho-
lonomic case with linear homogeneous work-performing
constraints. But in the general case the "proofs" of
Gauss s principle of least constraint require the addition
of postulates or assumptions to Newton's equations of
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In either case the acceleration r is constrained to lie on the
constant-g hypersurface by a. restriction of the general
form

n (r, r', t).r+m(r, r, t) =0 (2)

where the explicit functional forms of n and u can be ob-
tained from the imposed constraint g according to Eqs. (1)
above.

The explicit forms of n (r, r, t) and u (r, r', t ) are not
essential in the general treatment outlined in Eqs. (3)—(6)
below. At all times the dynamical state of the system r, r
is confined to the hypersurface which satisfies Eq. (2). If
the constraints (1) were absent, then the unconstrained
motion of the system calculated from

mr„=F
could leave the constraint hypersurface. Gauss's formula-
tion prevents such a violation by adding an acceleration
normal to the surface

r', =r„A[n (r,—r', t)/m] (4)

with k chosen to satisfy the restriction (2), and thereby (1)

A, =(n r„+to)/[n (nlm)].
This added acceleration can be expressed in terms of a
constraint force F, :

r', =(F+F,)/m =F/m —A,(n/m) (6)

where the instantaneous value of the Lagrange multiplier
A, is chosen to satisfy the constraint (1) according to Eq.
(5).

There are many different ways to project unconstrained
accelerations back onto the constrained hypersurface.
Gauss's principle of least constraint states that the actual
constrained motion should be obtained by the normal pro-
jection technique just described. An alternative descrip-
tion of this simple principle is the statement that the
mean-square value of the constraint force divided by the
particle mass (F, /m ) should be minimized.

motion. Here we follow Appell' and Ray, simply ac-
cepting without proof the validity of Gauss's principle.

To reduce Gauss's principle to a form suitable for nu-
merical work, we first introduce constraints into the equa-
tions of motion. It is necessary to treat holonomic con-
straints g (r, t) =0 and nonholonomic constraints
g(r, r , t)='0 separately. In the holonomic case, two dif-
ferentiations with respect to time give the relation restrict-
ing the acceleration r

~ 2 8r g+2r g+r' g+ g=0 .
Br BrBt Qr2 Bt2

In the nonholonomic case only a single time differentia-
tion is required

x, =F/m —gx

g =g(Fx ) gmx

The collective variable g plays the role of a friction
coefficient, but it takes on both positive and negative
values as time goes on, as required to keep temperature
constant. The set of Eqs. (9) cannot be solved analytically,
but numerical solutions show that the system is stable and
well behaved and that the time-averaged potential energy
approaches the equipartition value as the number of
masses in the chain increases.

The two-particle chain is uninteresting, because the
fixed-kinetic-energy constraint allows no accelerations-
the two particles move to infinity at constant speeds. The
constrained three-particle chain with fixed center of mass
is the simplest interesting problem, because all velocities
change with time and cover a broad range of dynamical
states (see Fig. 1). We consider the three-particle problem
here in detail. We use displacement coordinates (measured
relative to a minimum-energy configuration) and periodic
boundaries. We have the restrictions

x) +x2+x3 =0
0

x) +x2+x3 =0
2 '2 2x ) +x2+x 3

——2Eg;„/m

(10a)

(10b)

(10c)

a chain interacts with its neighbors through a Hooke s-law
potential. The equations of motion have the form

mx; =~(x;+)—2x;+x; )),
where x;+ ~

and x; &
are the coordinates of the particles

adjacent to that at x;. Because this problem is linear, the
various "normal-mode" solutions can be superposed to
rnatch any initial conditions {the set of x; and x;), and to
follow the constant-energy dynamical development of the
chain in time.

In nonequilibriurn problems it is convenient to specify
isothermal conditions to extract irreversibly generated
heat. For that reason we consider here E'sothermal, as op-
posed to equilibrium isoenergetic, dynamics for the linear
.chain. The isothermal restriction complicates the micro-
scopic dynamics by imposing a collective constraint, cou-
pling together the previously independent normal modes.
But on the other hand, the macroscopic, thermodynamic
behavior of the chain is simplified by preventing tempera-
ture fluctuations. Our definition of temperature is based
on the ideal-gas thermometer; that is, temperature is pro-
portional to the kinetic energy. Thus the constant-
temperature constraint has the form

g(r, r, t)=g(mx /2) —Eq;„=0

The constraint is nonholonomic, because it includes veloci-
ties, and is also nonlinear. The functions n and w corre-
sponding to the isothermal constraint (8) are, respectively,
mx and 0. Gauss's principle leads to the constrained ac-
celerations

III. APPLICATION TO AN ISOTHERMAL
LINEAR CHAIN (REF. 1 j.)

The harmonic one-dimensional chain is a familiar pro-
totype for ordered crystalline solids. Each particle in such

The dynamical state of the three-mass system
[x ] x3 @x3,x ~,x2,x 3 ] can then be described by three in-
dependent variables: x&, x2, and x&, for instance. The
remaining coordinates and velocities follow from the con-
stants of the motion (10).
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FIG. 1. Two stereo views of the motion of a three-particle isothermal chain. Discrete points x &, x2, mx 1 corresponding to a numer-

ical solution of Eqs. (11)of the text are plotted. The corresponding Newtonian chain would describe an ellipse in this space.

r cosO=V 3(x, +x2)

r sinO=x I
—x2

(12)

In polar form the problem reduces to one-dimensional (ra-

dial) motion in an effective potential which includes the
angular momentum. This transformed description of the
problem establishes that the isothermal chain dynamics
consists of nonlinear oscillations between the two turning
points of the effective potential

v ff(r) =A exp(Br )/r

where the constants A and B depend upon the initial con-
ditions.

A typical series of representative points (xl, x2, mxl),
from a numerical solution of equations (11), is displayed
in Fig. 1. The motion is relatively complex, compared to

The isothermal equations of motion then become

~x 1 3/CX I $1tlx I

mx~ = —3ax2 —gmxq

g= —3~[xIx ) +x2x2+ (x ( +x2)(x I +x2) ]/2Ek;„

The problem can be simplified, analytically, by introduc-

ing plane polar coordinates r and 0 in place of the particle
coordinates xl and x2..

the Newtonian solution, which is an ellipse in the same
space.

Gauss s principle provides a unique solution to the iso-
thermal initial-value problem. As noted above there are
many other motions which preserve the kinetic energy.
For instance, consider the Lagrangian equations of motion
involving the nonphysical momentum p~

p„=mx (1+A, )

p~ = —3Kx
(14)

These equations, with the constraint (10) governing the
time development of A, , are identical to the constrained
Gaussian set (11) if the Lagrange multiplier vanishes, so
that p„ is equal to mx. Then the Lagrangian and Gauss-
ian values of x' differ. In any other case, Eqs. (14) lead to
different values of x from the same initial conditions. Be-
cause p„ is not a physical momentum the initial conditions
Ix,xj are insufficient to specify a well-posed problem.
Once a particular initial choice of A, has been made, the
motion can again be studied in polar coordinates, with an
effective potential which is the reciprocal of a sixth-order
polynomial in r. The resulting Lagrangian dynamics, Eq.
(14), resembles qualitatively the Gaussian dynamics of
Fig. 1. The two approaches can be made to coincide by



NONEQUILIBRIUM MOLECULAR DYNAMICS VIA GAUSS'S. . . 1019

continuously forcing the Lagrange multiplier in Eq. (14)
to vanish.

0.10

IV. HAMILTONIAN ALGORITHM
FOR SELF-DIFFUSION

To complement the periodic and homogeneous treat-
ments of momentum' and heat flows' we develop here a
Hamiltonian method for determining the self-diffusion
coefficient D. D can alternatively be calculated from the
equilibrium Green-Kubo expression

Green-Kubo

0.05 "—H p.

D

0
0 10 20

Is (m/tz )"

I

30 40

LENNAR D-JONES
DIFFUSION COEFFICIENT

50

D = f (x(0)x(t) ),qdt

H0 ——g(mr /2)+ggp
has added to it a perturbing external field at time 0

H =H0 —gqxE, t )0

The external field E stimulates a current density J

(16)

Many calculations have been based on this method, start-
ing with the hard-sphere calculations of Alder and Wain-
wright. ' An alternative approach introduces an external
field into the Hamiltonian which couples to a particle
property q; analogous to electric charge. We call this
property "color" rather than "charge" to emphasize that it
does not enter into interparticle interactions. The many-
body Hamiltonian

FIG. 2. Self-diffusion coefficient for a Lennard-Jones liquid
at a reduced density Xs'/V=0. 85 and reduced temperature
kT/e= 1.08, Calculations according to Gaussian dynamics and
using Hamiltonian external fields are indicated by G and H,
respectively. Green-Kubo calculation, from Ref. 18, is probably
an overestimate, as explained in Sec. VI of the text.

V. GAUSSIAN ALGORITHM
FOR SELF-DIFFUSION

The diffusion problem can be treated directly using
Gauss's principle of least constraint. A driving constraint
gd provides a constant current, and a stabilizing constraint
g, provides constant y and z temperatures

gd =g(qx) —I =0

g, =pm(y +z )/2 NkT=O—
(21)

analogous to an electric current density. For simplicity we
choose q; equal to —1 for i (n /2 and q; equal to + 1 for
the remaining particles. The linear-response theory' es-
tablishes that the limiting small-field nonequilibrium
current density can be written in terms of an equilibrium
color conductivity memory function o.:

o(t) =( V/kT)(&(0)J(t) ),q

Fy ~s mg

mz =F,—k, mi

(22)

The multipliers can be identified explicitly by multiplying
the equations of motion (22) by (q/m), y, and i, and sum-

ming over all particles

The equations of motion include contributions from the
two Lagrange parameters used to satisfy these constraints

mx =F„—kdq

The current-density autocorrelation function is simply
related to the velocity autocorrelation function in Eq. (15).
This is because (x ) is —x i /(N —1) for j =2, 3, . . . , N,
which can be used to show that the steady color conduc-
tivity is proportional to the self-diffusion coefficient D

o =f o(t)dt =N'D/[(N —1)VkT]

g(qx) = =0=+(qF„/m) (A,&/m )g—q
dt (23)

g(myy'+ mzz ) =0=g(yF» +zF, )

—A,,gm(y'+z') .

Thus the self-diffusion coefficient can be determined by
carrying out a series of constant-field simulations and ex-
trapolating the resulting conductivities to the zero-field
limit. See Fig. 2.

The work done by the external field would normally
cause the system to heat up at a rate proportional to E in
the small-field limit. This heating can be eliminated by
carrying out the calculation at fixed temperature. In the
numerical work described in Sec. VI we do this by rescal-
ing the y and z components of the velocity distribution to
maintain the corresponding second moments at fixed
values. ' '

Ad g(qF„) g(q )——

A,, =g(yF»+zF, ) gm(y +z )

The forces of constraint associated with the current densi-

ty and the temperature do work on the system at the rates

Pd ——g(qF„)g(qx ) g(q')

P, = —g(yF»+zF, ) (25)

(20)
Thus the Lagrange multipliers are functions of time which
depend only upon the particle colors, velocities, and forces
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The angular brackets in Eq. (26) indicate long-time
steady-state averages. For short times Pd tends to exceed
—P, by the rate at which energy is being stored in the sys-
tem through its developing nonequilibrium distribution
function.

Although this nonequilibrium diffusion problem is a
relatively simple one, it is clear that Gauss's principle
makes it possible to formulate many problems in a con-
venient way. The principle is particularly valuable in es-
tablishing nonequilibrium steady states suitable for
theoretical analysis.

VI. SIMULATION RESULTS

Levesque and Verlet' determined the self-diffusion
coefficient for a dense liquid composed of 864 particles in-
teracting with the Lennard-Jones potential

$=4@[(s/r) ' (s /r) —j (27)

They used the Green-Kubo formula [Eq. (15)) and con-
sidered a temperature 1.08@/k and number density
(1V/V)=0. 85/s close to the liquid triple point. In our
108-particle calculations, at this same thermodynamic-
state point, we truncate the potential at r =2.5s.

Calculations using the Hamiltonian algorithm described
in Sec. IV have been carried out by Snook, Evans, and Is-
bister. ' For comparison with those results we have solved
the Gaussian equations of motion (using a fifth-order
predictor-corrector "Gear" integration) with a time step of
0.002(m /e) ' s. The constraints maintained constant
current and temperature to an accuracy of plus or minus
0.05%%ug in 10000 time steps. Typical run lengths were
15 000 steps.

Figure 2 shows the diffusion coefficient [related to the
color conductivity by Eq. (20)] as a function of current. It
is noteworthy that the two nonequilibrium methods are
self-consistent within the statistical uncertainties. The
equilibrium Green-Kubo conductivity, which appears to
exceed the nonequilibrium conductivities, is probably
slightly overestimated. The intermediate-time negati ve
velocity correlation function was truncated in carrying out
the Green-Kubo calculation according to Eq. (15).

The Gaussian method is more efficient than the Hamil-
tonian one because the transition time required to reach
steady-state conditions is substantially reduced. In the
Hamiltonian simulation approximately 10000 time steps
are necessary to attain the steady state from an initial
equilibrium state. The accuracy with which the con-
straints are satisfied, and the balance between the work

respectively.
The color conductivity can be determined either from

the driving power Pd associated with maintaining the
current or with the stabilizing power P, used to keep the
temperature constant:

(26)

done and heat rejected, are convenient checks on the nu-
merical work.

VII. CONCLUSION

In classical mechanics, constraints are used to simplify
the analysis of dynamical systems. These constraints can
be removed entirely if a full analysis is made of the in-
teraction of the system and its surroundings. Constraints
are used to replace the (possibly very complex) dynamics
of the surroundings by their net effect (through the forces
of constraint) on the system of interest. Gauss's principle
of least constraint provides us with a systematic means for
correctly formulating the equations of motion in such con-
strained systems.

Gauss s principle is ideal for developing nonequilibrium
computer simulations. It allows us to project out of the
motion the degrees of freedom corresponding to external
reservoirs, replacing these thermodynamic baths by forces
of constraint. We believe that the fundamental properties
of nonequilibrium steady states can best be determined in
this way.

There are several indications that Gauss's principle, as
an extension of Newtonian mechanics, is consistent with
statistical mechanics and kinetic theory. First, the iso-
thermal dynamics is consistent with the Gibbs canonical
ensemble. A set of systems initially distributed canoni-
cally in the phase space remains distributed canonically,
despite the changes in the energies of the systems making
up the ensemble. Second, the isothermal dynamics, ap-
plied to a low-density shear-flow problem, predicts exactly
the same shear and normal stresses as those derived from
the Burnett-level solution of the Boltzmann equation.
Finally, equilibrium configurational properties, calculated
using the isothermal equations of motion, can be shown to
agree with the same properties calculated using the canon-
ical ensemble of Gibbs.

Here we have stressed the application of Gaussian
dynamics to nonequilibrium steady states. It is evident
that similar calculations can be applied to nonsteady prob-
lems and to systems in other ensembles, such as constant
pressure. '
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