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Remarks on the renormalization group in statistical fluid dynamics
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A variant of the renormalization group is applied to the problem of randomly forced fluids stud-
ied by Forster, Nelson, and Stephen [Phys. Rev. A 16, 732 (1977)] and others. Amplitude factors
(thought to be nonuniversal by some authors) are evaluated and shown to have universal values.
Comparisons with closures are made. The possibility of a breakdown of self-similarity and/or
universality due to intermittency effects is discussed.

INTRODUCTION

Forster, Nelson, and Stephen' and others have
shown that certain problems in statistical Auid dynamics
which involve strong nonlinearities are amenable to
renormalization-group (RG) techniques. Such machinery
has been worked out when the turbulence at scales smaller
than a given scale l acts on scales larger than (or
equivalent to) l like an eddy viscosity; this reduces the ef-
fective coupling constant (based on the renormalized eddy
viscosity) to a value that allows perturbation calculations
(in particular, of the eddy viscosity acting on even larger
scales). For the procedure to bootstrap, the effective cou-
pling must eventually (i.e., at increasingly large scales) be
driven to zero ("trivial" case) or to a nonvanishing small
value ("nontrivial" case). This technique can be applied to
three-dimensional incompressible flow subject to random
forcing with a power-law spectrum

F(k) =2Dk

Here F(k) is the amount of energy injected per wave num-
ber. When e is positive and small, the resulting energy
spectrum for the Auid is

E(k) ~k'

Note that a simple dimensional argument produces the
result (2), which may be also obtained within low-order
self-consistent closure approximations such as the direct
interaction approximation (DIA} (see, e.g. , p. 745 and
Note 33 in Ref. 1 or Ref. 6). Kraichnan even argues that
(i) the RG method is in no way superior to closure, and (ii)
one cannot rule out a breakdown (due to intermittency ef-
fects) of the self-similar RG solution that is reminiscent of
the breakdown of the self-similar Kolmogorov solution.

We found that some progress can be made on these is-
sues by deriving more quantitative information than pro-
vided by (2). Indeed, previous calculations made no at-
tempt to obtain the constant in front of the power law; in
a different physical context (e.g., critical phenomena), it
often happens that such constants are nonuniversal. '

Here, however, constraints like Galilean invariance make
the problem more restricted; thus the constant is calcul-
able and universal, at least with respect to the small scale
dynamics. This calculation will be done hereafter, using
an RG procedure with variable ultraviolet (uv) cutoff,

which is somewhat simpler than the Wilson-type tech-
nique used by Forster et al. {in particular, no rescaling is
needed).

THE PROBLEM

We start with the forced three-dimensional Navier-
Stokes equation for an incompressible fluid; in Fourier
space it reads

ok )~r(k ~)

= ft(k, co) —,'iPt „(k)(—2n.)

X f, d qdfl V (q, Q)V„(k —q, co —0);R3~R

here vo is the molecular viscosity, and

PIm pg {k ) =km Ply ( k ) +ky Plm ( k )

Plm ( k ) ~1m —klkm ~k

(3)

(4a)

(4b)

The only nonvanishing cumulant of the zero mean station-
ary Cxaussian force f is the two-point correlation

(f (k,co)f„(k ',co')) = P „(k)(2n.) 5(k+k')
X5(co+co' )[F(k)/4ttk ]j,

PROCEDURE AND RENORMALIZED VISCOSITY

Let us consider an "artificial" problem with an 0(1) ul-
traviolet cutoff. It is known that by a suitable modifica-
tion (renormalization) of the viscosity in (3), this new
problem (with cutoff) becomes equivalent (up to irrelevant
terms in the e j,0 limit) to the original one {for wave num-
bers less than the cutoff, of course). For this it is con-
venient to first consider an infinitesimal change from a
cutoff A to A —5A, which is equivalent to an infinitesimal

where F(k}, the energy injection spectrum, follows the
power law (1), with e& —1; this is the generalization of
model 8 of Forster et al. studied in Refs. 2 (model "R"),
3, and 5; the borderline e= —1 corresponds to model 2 of
Ref. 1. The purpose here is to calculate the statistical
properties of the solution of (3) at a fixed wave number
and a fixed viscosity vo & 0 when @&0.'
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increase 6v of the viscosity v. One starts from the prob-
lem with cutoff A and viscosity v; one uses the standard
method of perturbatively calculating the Fourier ampli-
tudes in the wave-number shell [A —5A, A] and substitut-
ing into the equation for the modes k & A —6A. The ex-
pansion parameter is the Reynolds number (reduced cou-
pling constant)

R(A)=D' v A (6)

which measures the relative strength of the nonlinear and
viscous terms near the cutoff A; this number must be
small for the expansion to be valid. The eliminated modes
generate an additional eddy viscosity 6v with

6v Hg 2(A) 6A
V A

where

1

10m

(7)

v (A) —v (Ap) =3HDe (A —'Ap ) . (10)

In (10), one may take the Ap~ oo limit (e is positive), in
which the viscosity v(Ap) tends to the prescribed molecu-
lar value vp. If we finally only retain the dominant term
in the e&0 limit, we find the renormalized viscosity at
wave number A,

v(A) =(3H)' D ' e ' A

in the limit eLO. It is now possible to make a finite change
in the cutoff from A to a large value Ap. This requires the
use of a cutoff-dependent viscosity v(A) which is de-
creased as A is increased. From (7) and (6), v(A) must
satisfy the differential RG equation

d v(A)
dA

Integrating we obtain

~( A ) ( 8~)—1/2(D // ) 1/26 1/2A —&/2

D(A)=(Do/vo)v(A) .

(16a)

(16b)

Relation (16b) is of a fluctuation-dissipation type which
introduces a dependence upon the molecular viscosity vp,
thus the large scale amplitudes are not universal. Of
course, whatever the model, lack of universality also
occurs in the trivial or marginal cases (e (0}where no fin-
ite limit is obtained when the cutoff Ap goes to infinity; at
the crossover of model R, the calculation gives

E(k)=D '(3H) ' 'k[1 (A /k)] (17)

where a small-scale influence comes through the loga-
rithm correction.

(etO). We see that the amplitude in front of the power law
k' ' has been obtained explicitly in terms of e and D.

Our result is universal in the sense that —under the as-
sumptions made —it does not depend on the molecular
(bare) viscosity and on the small scale forcing. Similar
universality holds in some of the nontrivial regimes of the
passive scalar problem, ' namely, those in which all the in-
teractions are sufficiently "local" (see also Ref. 11). Re-
call that in connection with turbulence, local is generally
used to mean "between comparable scales. " Presumably,
the reason why amplitudes are universal (in the above
sense) for nontrivial Navier-Stokes —type problems is that
the number of relevant renormalized couplings is equal to
the number of reduced couplings with nontrivial asymp-
totic value. This number is 1 for Navier-Stokes (NS) and
2 for NS plus passive scalar, where viscosity and diffusivi-
ty are renormalized and the reduced couplings are the
Reynolds and the Prandtl number. In contrast, for model
A of Ref. 1, on the nontrivial side ( e =2 —d ~ 0), there are
two renormalized couplings (viscosity and forcing) but
still one reduced coupling (Reynolds number). A calcula-
tion similar to the above one gives the renormalized
viscosity and forcing

which is large in the sense that it involves e to a negative
power. Equivalently, the renormalized Reynolds number

Z (A)=(3II)-'"~'" (12)

is small, making the procedure self-consistent.

ENERGY SPECTRUM

Let us denote the energy spectrum at wave number k,
for viscosity v, forcing strength D and cutoff A, by
E(k;v, D, A). Because of the above-stated equivalence, we
have

2Dk'-'
E(k;v(A), D, A)=

2v(A)k
(14)

where k & A =0 (1). Using (11), (13), and (14), we find

E(k.~ D A = )=D'"(3H)-' ' ' 'k'-"'

E(k;vo, » Ao= ~)=E(k'v(A) D A)

provided that v(A) and vo are related by (10). In the et0
limit the renormalized Reynolds number is small and we
may calculate E(k;v(A), D, A) perturbatively, i.e., by the
linear approximation

COMPARISON WITH CI.OSURES

The result (15) is identically reproduced by the direct in-
teraction approximation. ' For Markovian closures such
as the eddy-damped quasinormal Markovian approxima-
tion (EDQNM)' or the test-field model (TFM), ' the situ-
ation is somewhat different because the latter have adjust-
able constants. Such constants can be unequivocally deter-
mined to be compatible with the RG calculation. The RG
result also suggests an improvement for closures of the
Obukhov-Heisenberg type' (see also Ref. 15). In such
closures the energy flux through wave number k is con-
structed from an eddy viscosity v, (k), the latter being
self-consistently determined in terms of the energy spec-
trum, e.g. , as

v, (k) =~ [E(k)/k]'" .

The RG result with its correct e dependence can be repro-
duced by making the constant A dependent on the local
exponent of the spectrum. A suitable choice is

—1/2

(k}(3H) /2k 1
E(k)

Bk k
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The role of barely local interactions versus local interac-
tions was discussed by Kraichnan. For small positive e,
the dynamics of the regime described by the RG involves
"barely local" interactions, i.e., interactions over a range
of wave numbers whose logarithm is 0 (1/e }. Kraichnan
warns about the possibility that local interactions, which
are nowhere included in the RG analysis, might upset the
result. However, we observe that the characteristic
dynamical time for the barely local interactions is

iki [k2 (k) ]
—1 ~l/2(3II) —1/2[k 3E l ki)

—1/2

(20)
which is smaller by a factor e' than the local eddy turn-
over time. Hence for small e, barely local interactions
dominate over local ones and the RG result can hardly be
upset by the inclusion of local interactions. It seems,
therefore, unlikely that a local spontaneous buildup of in-
termittent fluctuations can lead to a breakdown of the
self-similar RG result.

We found, however, that under certain circumstances
intermittency can upset the universality of the result. This
is related to Landau's objection to the universality of the
Kolmogorov constant for the inertial range spectrum

E( ik=C „K(e) / k /, voto, k~~ . (21)

Here (e) denotes, as usual, the mean energy input, which
has nothing to do with our previous e (crossover parame-
ter). Landau s objection to the universality of CK,~ (which
is discussed, e.g., in Sec. 25 of Ref. 15) goes roughly as fol-
lows. Assume that the energy input is modulated by a
random constant m ~0 (e.g., by having a collection of
identical wind tunnels with different upstream velocities).
For a given realization we have

E (k i=C~„m/ ( e ) / k

which may be of interest in connection with subgrid-scale
modeling. '

INTERMITTENCY

Hence, superaveraging over all the realizations, we have

(E l k) ),„„,„=C„., (m '/3), „„,(~) '/'k -'/3 . (23)

Alternatively, one can calculate the energy spectrum using
the superaveraged energy input to obtain

(Elki),„,„-C„„(m),'/', „(e)'/'k (24)

which is inconsistent with (23) unless m is sharp. This
Landau argument appears much less academic if we think
not of several wind tunnels but of distant points of a single
wind tunnel in which the upstream velocity at the grid
fluctuates over distances large when compared to the
mesh. This kind of objection has led Kolmogorov to
develop his intermittent version of the inertial range
theory. '

Turning to the RG result (15)„ the interesting observa-
tion is that the forcing strength D appears with the —', ex-
ponent in the energy spectrum and thus that the Landau
objection applies in the same form. However, this time,
the constant must be universal. In fact, the RG analysis
becomes unapplicable when one includes in the forcing a
modulation factor v m lto give an m factor in the forcing
spectrum). The reason is as follows. The renormalization
5v of the viscosity, following from a modification 5A in
the cutoff, is actually a random quantity with a mean and
fluctuations. If we assume that the force has only short-
range correlations, ' then the fluctuations of 5v at. wave
number k are weaker than the mean by a factor
(k/A) . This follows by counting the number X of re-
gions of diameter -A ' in a region of diameter -k
and applying a I /v N statistical factor. If, however, there
are long-range correlations, such as result from the in-
clusion of the &m random modulation, then the above
analysis becomes invalid. Indeed, the fluctuations in 6v
are now as big as the mean and the RG calculation breaks
down. We conclude that the Landau-type nonuniversality
can occur only if we consider forces with long-range
correlations (in the above sense).
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