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The effects of a moving medium on the phase of a massive particle are studied theoretically. The
discussion explains a recently published Fizeau-type neutron-interferometer experiment. It is shown
explicitly that the physics of this experiment can be described either as a manifestation of a time-
dependent potential in the Schrodinger equation or as a verification of the Galilean-transformation
properties of Schrodinger waves. An intriguing consequence of these considerations is that for most
materials no Fizeau phase shift occurs if the boundaries of the moving medium are at rest. Howev-
er, we point out that such would not be the case in an experiment involving a medium whose poten-
tial is velocity dependent.

I. INTRODUCTION

In a recent paper, ' the results of an experiment were
presented on the effects of a moving medium on the phase
shifts observed in a neutron interferometer. The experi-
ment bore a close resemblance to the historic work of
Fizeau in which phase shifts in light waves were pro-
duced by water flowing in stationary tubes. However, in
the case of the neutron experiment, the observed phase
shifts were directly connected to the property that the
boundaries of the medium chosen, a rotating square
quartz rod, were moving. For light, the experiment with
moving boundaries had been performed by Zeeman. In
contrast to the original Fizeau experiment (or the later
work of Macek et al. , who used a rotating disk inside an
interferometer), the experiment with neutrons would have
given a null result had the motion been contained inside
stationary boundaries. This somewhat surprising con-
clusion, though not obvious, depends on the specific form
of the dispersion relation for neutrons in most materials,
as we will discuss in this paper. Our aim is to analyze the
phase shifts caused by the motion of a slab of material in-
side a two-beam interferometer, from several different
viewpoints.

In Sec. II we present the general result on the basis of a
global argument, using the relativistic invariance of phase
differences, and we derive its special form applicable to
slow neutrons. In Sec. III we show that this result follows
equally well from the motion of a finite-potential barrier
representing the material medium. In Sec. IV we consider
explicitly the Doppler-shifted waves as scattered by the
moving nuclei in the medium showing the microscopic
basis for the result of Sec. II. Section V examines various
heuristic arguments based on the effective distance trav-

cled or the effective time spent in the medium, and shows
that great care is required when specific particle or wave
kinematic models are used. Section VI discusses the rela-
tion of the neutron Fizeau phase shift to the transforma-
tion laws of wave vector and frequency. We conclude
with a proposal for a Fizeau-type experiment with reso-
nance neutrons, where a phase shift would be observed
even with stationary boundaries.

II. MOVING REFERENCE FRAME

We first present an argument based on the relativistic
invariance of phase differences at a space-time point, be-
cause the argument is equally valid for light and de Bro-
glie waves. Consider the arrangement shown in Fig. 1,
where a parallel-faced plate of thickness D and index of

FIG. 1. Phase plate of thickness D moving with velocity w in
one beam path of an interferometer. x-y coordinate system is at
rest but x=0 coincides with the plate entrance surface at t=O as
shown.
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refraction n (k) is inserted in one beam of either a photon
or a neutron interferometer. If initially the plate is at rest,
the relative phase of the two interfering beams (top beam
phase minus bottom beam phase) is

P(k) =D [[n (k)k —kr ]'~ —k

where k is the magnitude of the incident wave vector k
and k„(k~) is the component perpendicular (parallel) to
the plate surface. Suppose the plate is now set in motion
with a laboratory velocity w. Then in the rest frame of
the plate the relative phase will be P(k '), where k ' is the
incident wave vector in that frame and P is the function
(1). Since relative phase is a relativistically invariant
quantity, P(k ') must be the relative phase in every frame,
including the laboratory frame. Therefore, the phase shift
caused by the motion of the plate —the Fizeau effect—is

III. MOVING POTENTIAL

Now we will show, for the case of a wavelength-
independent potential, that the result of Eq. (5) can be ob-
tained without invoking relativity considerations. Consid-
er the two-dimensional Schrodinger equation with the fol-
lowing time-dependent potential:

V, for w„t &x &w„t+D
V(x,y, t) = .

0, elsewhere

which describes a constant potential barrier of height V,
moving with a velocity w, occupying the same space-time
region as the plate in Fig. 1. Assuming a wave incident
from the left with wave vector k and frequency co, the
solution of Schrodinger s equation with the above poten-
tial may be written in the form

bP=P(k ') —P(k) . (2)

The detailed evaluation of (2) depends first on how k ' is
related to k and second on the specific form of the func-
tion n (k).

From the Einsteinian transformation for energy
momentum, one finds that if a particle of rest mass mo
has a wave vector k in the laboratory frame, then the
wave vector in a frame moving at velocity w is

k '= k — (1—y) +y—k'+
c w

i( K r —At) . 1'
yqI

——Ce +Ee
(7)

for w„t &x & w„t +D

Put Fe—— , for w„t ~D (x .

Boundary conditions require that these wave functions
agree at the moving boundaries, which lead to

k2= k, c02=co,

(3) and

mk'=k ——w (3')

and the index of refraction is
1/2

(k
2m V(k)

Ak

where V(k) is the neutron optical potential of the medi-
um. It follows, from Eqs. {1),(3'), and (4), that the Fizeau
phase shift [Eq. (2)] is explicitly

where y—=[1—(w /c )] '/. The specific form of n(k)
can be stated only after specifying both the type of radia-
tion and the material of the plate. Equation (2) with (1)
and (3) is relativistically exact and applies equally well to
photons and neutrons.

For slow neutrons and low plate velocity as used in the
experiment, Eq. (3) reduces to the Galilean approximation

(K„—k„)w„=0—m, K„=kz,
and in addition, values for the Doppler-shifted reflected
wave vectors k~ and K&. These wave vectors and the
specific values of the amplitudes, which follow from the
continuity of the derivative of lt at the space-time boun-
daries, are not needed for finding the Fizeau phase shift.

Referring to 1{n in Eq. (7), we see that the phase of the
forward wave inside the potential region at position r and
time t is (K.r —Qt), whenever the phase at the equivalent
space-time point in the second beam of the interferometer
is (k. r —cot). Therefore, the relative phase of these beams
is

P(r, t)=(K—k) r (0 co)t . — —
Evaluating this at x =w„t +D and any y (i.e., at the back-
face of the moving barrier) and using Eqs. (8) we obtain

~y= [[(1—a)' —P ]'"+a—{1—P)'"]k„D, P{w) =(E„—k„)D, (10)

where we have introduced the dimensionless param-
eters a =mw„/Rk„, P=2m V(k)/A' k„, and P '

=2m V(k')/A k'.
%'e point out, that for most materials the neutron opti-

cal potential V(k) is independent of wavelength (P'=P) at
thermal or subthermal neutron energies. Assuming this to
be the case, we note for future reference that the Fizeau
phase shift to first order in P is

where the w dependence of P is implicitly contained in

K„. To evaluate (10) we must find K„(k,w, V). The
Schrodinger equation requires

Rk AK +V=RA, (11)
2m 2m

which together with Eq. (8) leads to a quadratic equation
for K~ whose solution is

aPk„DbP=—
2(1—a)

K„(k,w, V)= [a+[{I a) P]'~ Ik„, — —(12)
I

where we have used the dimensionless parameters a and p
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defined in Sec. II.
Since Eq. (10) is the relative phase of the upper and

lower interferometer beams while the plate is in motion,
we must subtract the relative phase while the plate is at
rest to find the phase shift produced by the motion alone:

Since phase differences are relativistically invariant, that
relative phase must be the same in the laboratory frame at
the same space-time point

bP(r, t)=hP'[r '(t)] .

bP=(()(w) —P(0) . ( 13) In laboratory-frame quantities this phase difference is

When Eqs. (10) and (12) are employed to explicitly evalu-
ate Eq. (13), the phase shift obtained agrees with the phase
shift determined using Eq. (5) for the case of a potential
independent of the wavelength of the neutron. This agree-
ment justifies the assumption [implicit in Eq. (6)] that the
height of such a potential barrier is independent of its
speed.

IV. MOVING SCATTERERS

hP(r, t) =ER —K.R
and the amplitude of the scattered wave [Eq. (14)] is

where

PPlK—= k ——w
fi

(16)

The feature that the phase shift b((), as given in Eq. (5),
vanishes for a wavelength-independent potential when the
plate velocity is parallel to the plate surface, deserves dis-
cussion. This feature is not surprising within the frame-
work of each of the derivations presented above, since they
employ macroscopic descriptions of the medium: an in-
dex of refraction function n (k) in Sec. II, and a potential
barrier of constant height V in Sec. III. However, when
one adopts a microscopic view of the medium the vanish-
ing of hP is not immediately understandable, for then the
radiation behind the plate is obtained as a superposition of
wavelets scattered from individual scattering centers.
Clearly, the radiation scattered from an individual scatter-
er is radically modified by the motion of the scatterer.
And yet the total radiation field behind the plate produced
by all moving scatterers acting in concert is not affected
by the motion when the scatterers move parallel to the
plate surface. Thus, in this section we wish to show expli-
citly how this comes about.

First, we must find the field produced by a single mov-
ing scatterer. Consider a scatterer of scattering length b
whose position in the laboratory frame at time t is a+ wt
and which is bathed in a laboratory plane wave

exp[i(k r rot)]. Then, in the —rest frame of the scatterer
the scattered radiation is the spherical wave

/r' —a/

Xexp[i( k ' a+
/

k '
/ /

r ' —a
/

) iso't], —

(14)

where the coordinate transformation between the moving
primed frame and the laboratory unprimed frame is

and

R=r —a —wt . (16')

Thus, finally, in the laboratory frame the scattered wave is
obtained as

i(KR —K. R )
(~ t) b

e i( k r a)t)~ —
R

(17)

y(~r t) ei( k r —a)t)

In this derivation of Eq. (17) we analyzed the scattering in
the rest frame of the scatterer and used relativity argu-
ments to obtain the scattered field in the laboratory frame.
This is analogous to the macroscopic relativistic discus-
sion in Sec. II. Nevertheless, the same result must be ob-
tainable via an argument made entirely within the labora-
tory frame. Such an argument is given in Appendix A.

Some features of the scattered wave are worth noting.
First, expression (17) cannot be obtained from Eq. (14) us-
ing just the transformation of Eq. (15), i.e., the wave func-
tion g(r, t) in the laboratory frame is not simply the wave
function g'(r ', t) in the moving frame evaluated at the
space-time point (r, t). Second, the scattered wave in the
laboratory frame is neither a spherical wave nor is its fre-
quency at a given position independent of time, a feature
related to Doppler shift.

The phase shift by a moving medium may now be ob-
tained by integrating Eq. (17) over all scattering centers of
the medium. For simplicity we assume that the scattering
centers are arranged in an infinitesimally thin slab. which
permits us to ignore multiple scattering. Let a again be
an arbitrary position inside the slab at t=O and let the slab
be bathed in the plane incident wave e'" ' "". Then,
from Eq. (17) the total radiation field at the space-time
point (r, t) is

r=r '+wt (15)

and the incident wave vector transforms according to Eq.
(3'). Consequently, in the moving frame the scattered
wave and the incident plane wave have a time-independent
phase difference

= —k'(r' —a)+ /k'/ fr' —af

ei (KR —K . R )

X 1 bNJ da— (18)

where N is the number of scattering centers per unit
volume. This integral is evaluated in Appendix B for co-
planar, but otherwise arbitrary k, w and plate surface nor-
mal. It gives for a plate of infinitesimal thickness 5D the
wave function at a normal distance x behind the plate at
time t=O as
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g(x) =e "
1 —2ni (19)

P(w)= —2m

Note, that the effect of the infinitesimal plate is to multi-
ply the original wave function by the expression in large
parentheses. The wave behind a slab with finite thickness
D can be obtained by repeated applications of this factor if
multiple scattering is still neglected. Now using the well-
known expression e"=li m„(1+x/n)", the wave func-
tion behind a finite plate is obtained as

g(x) =e " e (20)

Note that the phase of g depends on w only via K„[Eq.
(16)] and thus does not depend on w~. Therefore, the wave
field behind a plate moving parallel to its boundary is in-
dependent of its speed, despite the property that this wave
field is a superposition of individual wavelets, each one de-
pending strongly on the speed of the moving scatterers
[Eq. (17)].

Subtracting the phase shift due to a plate at rest from
the phase shift

to reach the back surface, where u is the speed of the neu-
tron while in the moving plate. One may conjecture that
the shift {S) is due simply to this extra material, and
hence, propose that the following equality may be true:

bP=(?)—(u v)A—D,
fi

(24)

b P = —,' aPkD—, (25)

in agreement with (5) to this order, apparently confirming
the conjecture.

The conceptual inadequacy of this argument becomes
clear when one attempts to rigorously derive Eq. (5) from
Eq. (24}. In the course of this effort one realizes that the
speed of the neutron inside the moving plate (u) is not the
same as the speed inside the plate at rest (uo), and that
neither u nor uo used in Eq. (24) gives the exact Eq. (5).
Moreover, the fact that u and up differ implies that Eq.
(24) is itself incomplete and this seems to suggest that it
should be replaced by

where v is the neutron speed in vacuum. The conjecture is
certainly consistent with the fact, as discussed in Sec. IV,
that (5) vanishes when the rear surface does not recede.
And, when evaluated to first order in a and P, Eq. (24)
does give

due to a moving plate, the Fizeau phase shift bP=(?)—(u —U)~+ —(u —uo)D . (24')

hP =P( w ) —P(0)= 2rrlVbD— mw„
(21)

is obtained. This is identical to the Fizeau phase shift of
Eq. (5') since a medium consisting of X scatterers per unit
volume each of coherent scattering length b has a mean
neutron optical potential

(22)

V. MOVING' PARTICLE

Having given several derivations of the phase shift of
Eq. (5), we can safely comment on some heuristic argu-
ments that have been brought to our attention. These ar-
guments, which appeal explicitly to the velocity of the
neutron as a particle, can be misleading unless done care-
fully, for one can fortuitously obtain approximately the
correct result via arguments that are conceptually inade-
quate. To simplify the discussion, we will assume here
that the incident wave vector k and the plate velocity w

are normal to the plate surface, so that k„=
~

k
~

and
w„= fw/.

One argument focuses on extra distance. That is, when
the plate of thickness D moves at speed w the neutron
must travel the extra distance

It can be shown that the terms to higher order in P and
therefore the exact expression of Eq. (5) are obtained if
one considers the effects of multiple scattering in the mov-
ing medium.

The additional term is the phase accumulated over the dis-
tance D due to the difference between u and up. Still, Eq.
(24') does not yield Eq. (5), but for small a and P twice the
correct result is obtained. In fact, in Eq. (24') the second
term alone is the exact Fizeau phase shift, but this term
does not depend at all on the extra thickness AD.

The reason we arrived at the wrong result is that Eq.
(24') is still incomplete since it does not reflect the fact
that the particle experiences a change AE =m (u —v)w of
its total energy upon entering the moving plate. This
causes a third contribution to Eq. (24')

(24")

since T =AD/w is the time spent by the neutron inside
the moving plate. This term now completely cancels the
original term which was the original focus of the conjec-
ture, leaving the correct result. Clearly, the energy change
involved in this argument corresponds to the frequency
change [Eq. (8}] found in Sec. III by imposing moving
boundary conditions on the Schrodinger wave function.

Another argument focuses on the extra time the neutron
spends inside the moving plate as compared to the plate at
rest. Whatever the details, one can dismiss this conjecture
by considering a modified arrangement with phase plates
of different thickness in each beam, one plate at rest and
the other one moving. By suitably choosing the
thicknesses of the plates, the time spent by the neutron in-
side the medium can be made equal for both beams. One
can show that, despite the equality of the travel times, the
two beams still differ in phase by

LU) =D w

u —w

Pl upbp= —
U 1—

v
D, (26)

up
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where D is the thickness of the plate at rest. This differ-
ence, though small, is conceptually significant.

Thus, though heuristic arguments of the kind discussed
in this section may give results in agreement with the ac-
curacy of present experiments, they can be shown to miss
conceptually interesting points unless done with proper
care. Similarly, the interpretation that the phase shift, ob-
served in the experiment using a rotating square quartz
rod, was due to an effective wedge seen by the neutron, ' is
only valid if all the individual effects discussed above are
taken into account.

VI. CONCLUDING COMMENTS

A remarkable consequence of the considerations
presented above is the fact that the wavelength of a neu-
tron in a moving plate is different from that in the same
plate at rest [Eq. (12)]. With suitable caution this may be
interpreted as a dependence of the index of refraction on
the velocity of the material. Equally remarkable is the
change of frequency that the particle experiences upon
entering the moving plate [Eq. (8)]. We also found that
the contribution of the frequency change to the Fizeau
phase shift is of the same order of magnitude as that due
to the wavelength change. Both the wavelength and fre-
quency changes could be found directly by using the
Galilean transformation properties of Schrodinger waves.
Hence, the experimental verification of the Fizeau phase
shift [Eq. (5)] may be viewed as a demonstration of these
transformation laws.

Another feature deserves comment. We found that the
neutron Fizeau phase shift b,P vanishes when the motion
of the plate is such that its boundaries are stationary.
However, b,P does not vanish for an analogous arrange-
ment with visible light in glass. This difference in
behavior is neither due entirely to the mass difference of
the radiation used in the two arrangements nor is it attri-
butable simply to the difference in relativities involved.
As a specific example to the contrary, one finds that b,P
vanishes for x rays in many materials. Similarly, we find
from Eqs. (5) and (22) that the neutron Fizeau phase shift
for the stationary boundary is

APPENDIX A

We calculate the field of a moving pointlike scatterer in
a plane neutron wave e'" ' "". The scattered field
obeys the equation

—2m'uo5(Q —co+ ( k —q ).w )e' "
@(q,Q) =

2mQ —lg

(A2)

where —ie with e&0 has been included in the denomina-
tor to ensure outgoing waves. Multiplying both sides of
Eq. (A2) by e'q'' "/(2m), and integrating over dq
and dQ, we obtain the scattered field

i(Q —K)-R
q(r r) u f Q e ei( k r rat) —

(A3)
(2m ) Q K —iE—

where Q= q —(m w/iii), K and R are as defined in Eq.
(16), and the dQ integral has already been performed.
Performing the remaining integration over d Q, we obtain

g(r, t) =—go i(KR —K R )

8 i( k - r —cot)

4m R (A4)

which, choosing uo ——4m.b, is identical to Eq. (17).

7 i%— —f(r, t)
2m Bt

2

u05( r —r, (t))e' " ' ' "", (Al)
2m

where uo is a length characteristic of the scatterer and
r, (t) is the position of the moving scatterer. Assuming
the scatterer moves at constant velocity r(t)= a+ wt,
multiplying both sides of Eq. (Al) by e ' q'' " and in-
tegrating over dr and dt, we find the momentum-space
wave function

mX ky d
(27)

if P«1 and
~

w
~

&&A'k/m. This phase shift does not
vanish if the scattering length b is a function of wave-
length or, equivalently, if the mean potential of the medi-
um is wavelength dependent. We propose that this can ex-
perimentally be tested at or near resonances, where the
scattering length can be strongly dependent on wave-
length. A measurement of the phase shift due to a Sm
plate at rest has recently demonstrated the feasibility of
neutron-interferometry experimentation at a resonance.
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FIG. 2. Geometry used to evaluate the scattering from a plate
of thickness 5D moving with velocity w.
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APPENDIX 8

We now derive the wave field behind a moving slab
from the superposition of wavelets scattered by individual
moving scatterers.

At time t=0, let the instantaneous position of the thin
scattering slab coincide with the x=O plane of a coordi-
nate system at rest in the laboratory and let the incident k
and the plate velocity w both lie in the x-y plane as shown
in Fig. 2. Let the position a of a scattering element be
given by the polar coordinates (a,g) also shown in Fig. 2,
so that the scattering volume element da is 6Da da dO,
where 6D is the thickness of the slab. Finally, for simpli-
city, choose t=O for the field-evaluation time and choose
a point x on the x axis for the field-evaluation position r.
With these choices and the definitions (16) and (16'), the
integral in Eq. (18) is

bN5De " f dR e' "
X

)& f d8exp[iICysinO(R2 —x2)'r ] .

(B&)

The integral over 0 gives a zeroth-order Bessel function

2trbNoDe " dR e' "J (X (R2 —x )' )
X

0 y

(B2)

The remaining integral gives

2~&& 6D e z, exp[+�(It.

'r K) ' —x]+(~2 ~2)1/2

2~ibN 5D
X (B4)

as the forward-scattered wave in the region x )0.

Physically, the upper signs correspond to a Doppler-
shifted backscattered wave present in the region x (0.
Choosing, therefore, the lower signs, we have
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