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Four-wave mixing in stochastic fields: Fluctuation-induced resonances

G. S. Agarwal' and C. V. Kunasz
Joint Institute for Laboratory Astrophysics, Uniuersi ty of Colorado and National Bureau of Standards,

Boulder, Colorado 80309
(Received 7 September 1982)

The effect of pump fluctuations on various coherent processes that arise in three-level

systems interacting with two external fields is examined. Such coherent processes include
the forward Hanle effect and various four-wave mixing effects such as the generation of
phase-conjugate signals. A general formulation that enables one to calculate the influence
of laser linewidth on the coherent signals produced in various directions is presented. En-
semble averages, over laser temporal fluctuations, of various physical quantities, such as
atomic polarization, are calculated. The spectrum of polarization fluctuations is shown to
consist of several new features which lead to coherent radiation in different directions de-

pending on the resonant frequencies in the polarization fluctuations. The influence of pump
linewidth on pressure-induced extra resonance (PIER) is treated in detail. The possibility of
producing a laser-fluctuation-induced coherent signal at one of the atomic frequencies is ex-
amined. This new signal, which is produced in a direction different from that of the PIER
signal, but has the same type of resonant character as PIER, is found to have significantly
different pressure dependence than the PIER signal. The results of our numerical computa-
tions are qualitatively explained in terms of the convolutions of products of third-order sus-

ceptibilities and pump field-correlation functions.

I. INTRODUCTION

The interaction of an atomic system with two dif-
ferent laser fields leads to a variety of important
phenomena, many of which fall under the general
class of four-wave mixing' effects. Other interesting
results of such interaction are seen in saturated ab-
sorption and Hanle studies, ' etc. Some of these ef-
fects, such as the forward Hanle effect and four-
wave mixing, are coherent effects in that various
atoms cooperate to produce a macroscopic polariza-
tion, whereas others, such as optical double reso-
nance and Raman gain spectroscopy, are of the in-
coherent type since they are basically single-atom ef-
fects. Many of these are now used as important
spectroscopic tools in the study of the characteristics
of atomic/molecular systems and hence it is desir-
able to examine how the statistical fluctuations ' of
the laser light can affect the results of the interac-
tion of the atom with fields. Previous calculations '
have shown the important effect of laser bandwidth
on the outcome of experiments involving single-
atom phenomena such as resonance fluorescence,
double resonance, and Raman scattering. The effect
of laser field fluctuations on coherent effects such as
those arising in the context of four-wave mixing and
the forward Hanle effect seems to have received very
little attention. The only problem that appears to
have been examined is that of resonant coherent

anti —Stokes-Raman scattering.
In the present study, we examine the effect of

laser bandwidth and statistics on the coherent ef-
fects in three-level systems with special emphasis on
the recently discovered collisionally induced coher-
ence ' effects in four-wave mixing. In Sec. II, we
present the basic equations for a three-level system
in the field of two lasers with frequencies co& and
co2. Each laser is assumed to be fluctuating and we
characterize each by its statistical properties. The
atom has both radiative and nonradiative sources of
relaxation. The model is very general and is capable
of describing a diversity of phenomena such as
four-wave mixing, phase conjugacy, " Hanle effects,
and saturated absorption. A simple expression for
the third-order nonlinear susceptibility for the
three-level model is also presented. In Sec. III we
derive equations that yield the ensemble average of
the density matrix elements and the quadratic forms
involving density matrix elements. Such ensemble
averages can be used to obtain the average value of
the atomic polarization and the fluctuations in po-
larization. In Sec. IV we compute the spectrum of
the polarization fluctuations which we then use to
derive the spectrum of the emitted coherent radia-
tion. We will, throughout this paper, use the termi-
nology coherent radiation for the radiation produced
by the cooperative interaction among various atoms,
even though the emitted radiation is not strictly
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coherent in that it would have statistical fluctua-
tions due to the laser temporal fluctuations. The
generation of coherent radiation depends on the
various phase-matching conditions. We first
separate out the PIER signal and treat the influence
of pump line width on PIER in detail. We then
show that a coherent signal can arise due to laser
temporal fluctuations. The new coherent signal
predicted here has an extraordinary pressure depen-
dence. In Sec. V we compare the results of our nu-
merical computations with those following from the
general form of third-order nonlinear susceptibility
and certain types of convolution integrals involving
the product of 7' ' and the higher-order pump corre-
lation functions. In particular, we present the ana-
lytic form of the pressure dependence of the
fluctuation-induced resonance (FIER). It is impor-
tant to note that it is possible to discriminate experi-
mentally between the PIER signal and the
fluctuation-induced contribution by the phase-
matching condition.

II. BASIC DYNAMICAL EQUATIONS
FOR FOUR-WAVE MIXING

IN A THREE-LEVEL MODEL

k r1 r
e=eiexp —i@1 t— —ice]t+i k1 r

+ E' pexp( —1&2t + / k 2' r ) +C.C. (2.1)

Keeping in view the recent experimental and the
theoretical activity related to the pressure-induced
resonances in four-wave mixing and the generation
of phase-conjugated signals, we discuss the response
equations for the behavior of a system of three-level
atoms in the presence of two fluctuating fields. In
Fig. 1, we schematically show various interactions
along with various incoherent processes. We write
the total electric field incident on the system in the
form

v]p vp] v) 2

l2)
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( 5I "52 "25

FIG. 1. Schematic representation of the energy levels

and the various coherent and incoherent transitions.

where the field of the laser at co1 is assumed to have
a fluctuating phase' 41( t) and U is the velocity of
the light in the medium. We will ignore the disper-
sion of the refractive index. The justification for
writing the field in the form (2.1) is given in the Ap-
pendix. The fluctuating phase is assumed to be a
Gaussian random variable with zero mean and with
the correlation function

41( t) =P1( t),

(p~( t)p~( t ') ) =&y, ~&( t —t ') .
(2.2)

Thus each laser is assumed to have a random fre-
quency modulation, i.e., a phase-diffusion model is
used for the laser at co1. In what follows, we assume
that the field e1 is a strong pump, whereas ez is
only a weak one. In the context of four-wave mix-
ing two photons are taken from the field e1 and one
from ez. Now taking the usual form of the radia-
tion matter interaction —d E, making the rotating
wave approximation and the transformation to ro-
tating frame so as to eliminate the fast periodic time
dependence from the equations of motion, we find
that the density matrix equations, for the pth atom
located at the position R&, can be written in the fol-
lowing matrix form:

&(p)
=M( tq)tr'&'+I( tq)+e " "[M+( tq)tr~l" +I+( tq)]+e " "[M ( t„)cr'"I+I ( tq)],

tp

6 =co1 —co2 (2.3)
A

where t& notv refers to the reduced time [t —(k ~.R„/v)], which depends on the position of the pth atom. In Eq.
(2.3) the elements of the eight-component vector o are related to the density matrix elements by

ICO ) 1 IC02f
&1=P13 02 P23 O3 01 04 02 05 P12 06 ~5

07 P11s 08 P22s P33 P11 P22 ~

(2.4)

and 8& denotes the phase factor [(tv 2/v)k &

—k2] R„. Other matrices in (23) are
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—I 1
—ih1
0
0
0

—lg2
0

—lg1

0
—r, —ia,

0
0
0

—lg1

0
0

—r, +l~,
0
0

lg2

lg1

0
0
0

—r,+l~,
lg1
0

—lg2
0
0

lg1
—I p

—i(51—A2)
0

0
—lg1

lg2
0
0

—I p+i(51 —hp)

—2lg1
—lg2

2lg 1

lg2
0
0

—V1

—2lg2

lg1
2lg 2

0
0

V12
—1 13

—lg2 lg2
+V21
—V23 —V23

6]—CO 13 CO 1 62—C023 CO 1 (2.5)

and the nonvanishing elements of M+ and M are

M+.36 —l A2s M+37 —2l A'j s M+3g —iA, 1, M+45 ——l A, 1, M+47 —l A 2

M+4g =2EA2s M+51 = —1 A2~ M+62 = l At' ~ M+71 = l lt'
& M+g2 = l A2

(2.6)

M 15
———ik2,

M 2g ———2ik2,

M 17
———2iA1, M 1g

———iA1, M 26
———iA1, M 27

———]A2,

M g4
——l A1, M 63 —l A2s M 73 l X1y M g4 1A2 .

(2.7)

The nonvanishing elements of the column matrices I, I+ are

I1 =lg1, I2 =lg2s I3 — lg1& I4 — lg2) I7 —+v]3& Ig —v23
(2.8)

I+3——lA, 1, I+4= —lk2, I 1 =lA1, I 2=lk2

In the above equations various field-matter couplings are
—i@1(t ) —i@1(t )

gl( tp, ) gle g2( tp) g2e g1 (d13 ~1)

A. 1
———(d13 &P), g2

———(d23 &1), A2
———(d23 &2) .

(2.9)

The parameter v;J gives the transition rate per unit time from the level
~ j) to

~

i ) due to all sources of relaxa-
tion such as spontaneous emission, collisions, etc.; for example, v1 will be equal to v31+v21. The decay con-
stants I"s of the off-diagonal elements are related to v's by

hr, =r( +-, (v, ~v„+v„), r, =r( +-, (v, +v„+v„i, r,=rI,'+-, (v, +v, i, (2.10)

where I 1'" represents the contribution to I due to phase-interrupting collisions. The impact approximation for
collision rates has been assumed.

If the frequency modulation of the field at co1 is ignored, then the steady-state solution of (2.3) to first order
in A, 's is

cr'&'=o' '+e " "cr'"+e " "o'+'+

'"=(+.S —M)-'(M

(2.11)

(2.12)

(2.13)

It may be noted that o' ' and o'+' are independent of the position of the pth atom. If p
'"' is the positive-

frequency part of the polarization produced by the pth atom, then the coherent contribution to the intensity
with a given polarization e and in the direction k can be shown to be proportional to

2~~(p) w —'
k R

& ~(~ (p) w)(~v ~) +
—i k .( R

&
—R v

k
P pv
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which in terms of density matrix elements becomes

Ik = g(d3i'e'pt3+d»'~PA )(d3i ~ *Pi3 +d32'~ pz3
pc%

= g(d3i ecrI"'+d» cog')(d 3i e o3"'+d'3q c o4"')e
pv

(2.14)

The factor

exp[iki (R„—R„)]

arises since the reduced times for the pth and the
vth atom differ by

A
(t ki R„—g„) ( t —k—i R,g„) .

Note that the magnitude of the vector k is deter-
mined by the frequency around which the oscilla-
tions of the dipole moment occur. The elements o,'"'
depend on the wave vectors and coordinates of
atoms. The four-wave mixing contributions arise
from terms in the density matrix that are of first or-
der in k, i.e., by the contribution (2.13). On substi-
tuting (2.13) in (2.14), we find a comphcated depen-
dence on atomic positions. This dependence cancels
for certain directions of observation and coherent
signals result. The four-wave signal in the direc-

0.
1 2 (O+ )12, O3,4~(0 )3,4.(p, ) (1) (v) (1)

However, if we were to use the replacements

( ) (1) (~) (1)

(2.15)

(2.16)

then (2.14) would yield a contribution in the direc-
tion k2 at frequency ~2. Such a contribution may
be used, for example, in studies of the forward
Hanle effect. Note that so far we have made no as-
sumption regarding the pump beam's (~1) intensity.
The hig¹intensity results are important in the gen-
eration of phase-conjugate signals in which case ac
Stark splitting has received considerable attention. "
The lowest-order contribution in the direction
(2k1 —k2) is easily evaluated. One finds that

tion 2k1 —k2 can be obtained from (2.14) if we use
the replacements

o —1=—lg2g1~2(r1+l ~1—l5) (r1+l ~1) '(I 2
—l62 —l5)

I 1+I"2—I p
X 1+ I p+i(61 —h2 —5)

—lg, ( —i5+ih, +r, )-](W +S), (2.17)

o'",= —ig, g, X', (r,+ia, —i5)-'(r, +in, )-'(r, —is, —i5)-'

r, +r,—r,
X . 1+ .—ig2( —i5+ih2+ r2) '( 3 +28),

I P+i(62 —61—5)

with

w =g, x', ( —is+, )-'[(r, +is, )-'(r, z, s)-i](2r, ;s),
a=g, x', ( —m+~, )-'[(r,+i~,)-'( —is —i~,+r, )-'](2r, —m) .

(2.19)

The coherent radiation in the direction 2k1 —k2 and
at frequency (2' 1

—co2) is now

I
d»'e'o+i+d» «+2 I'(1) .~ (1) 2

As is well known from the work of Bloembergen
and coworkers, 7 pressure-induced resonances arise
due to the nonvanishing of I 1+I 2

—I p. The term
in the curly bracket in (2.18) is the same as that of
Bloembergen et al. Let us now compare the magni-
tude of the peak at 61—52——5 with the contribution
from terms like A and 8:

I

8-g212(i42) '( —i5) '( —i5 —ih2) '( —i5)

=g2~Z ~~2(5+ ~2) -g2~2/42k,

for 51,52,5 g~r

whereas the peak amplitude (at 5=61—42) is ap-
proximately

(g,g, x', ia', a, ) I1+[(r,+r,—r,)zr, ]I .

Hence for good resolution of the peak at 51—h2 ——5,
one must have 51(&52. The contribution from 3
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terms can be eliminated by choosing the polariza-
tions of the fields properly. Similarly for a good
resolution of the peak at 4& —62 ———5, one must
choose detunings such that hi »52. Bloembergen
et al. have performed a detailed study of the
pressure-induced resonance 5i —52 ———5 under the
condition 6i »62.

III. ENSEMBLE AVERAGES
FOR DENSITY MATRIX ELEMENTS
AND THEIR QUADRATIC FORMS

OVER LASER FLUCTUATIONS

In this section we treat in detail the effect of laser
fluctuations on four-wave mixing. The fluctuations
of the laser are described by the model (2.2). Be-

I

cause of the fluctuations of 4;, the density matrix
elements become random functions and such ran-
dom functions have to be averaged, over laser fluc-
tuations, in order to obtain the mean dipole mo-
ments and other physical quantities. Since the in-

tensity (coherent part) is a quadratic function of the
density matrix elements, it is obvious that the aver-

age intensity will be obtained by averaging the qua-
dratic forms rather than by constructing quadratic
forms from the averaged density matrix elements.
The fluctuations can be handled using the technique
developed in Ref. 4 which essentially finds transfor-
mations that make the structure of the dynamical
equations for density matrix elements similar to the
equations for multiplicative stochastic processes.
We now introduce the set 1{i of elements f; defined

by

t (P, ) (P) +'@& t (u) (SC) +'
1 I (u) (u) '@

1 I (P) (P )

(p) (p) (p) (p) (p) (p) (p)
45 i75 P6 +6 P7 +7 {{'8 +8

The equation of motion (2.3) now leads to equations for the iji;, which in matrix form read as

g, I, (p)
=M/'i'+I+e " " ' "(M g'"'+I )

tp

(3.1)

+e " " ' " (M+/'"'+I+ )+i@i( t&)FQ'", ', (3.2)

where all the matrices M, I, M+, I+, M, and I are obtained from the corresponding matrices M( t), I( t),
+i+,.( t)

M+( t), I+( t), M (t), and I ( t) by letting e ' ~1. All the matrices are now time independent. The ma-
trix F has nonzero elements given by

Fii ——F22 ———F33 ——F44 ——1 .

If we now define

q'~"'=e'" ~q'~I e„=a,(t„),

(3.3)

(3.4)

then, on using the results from the theory of multiplicative processes (Ref. 4, Appendix B), one can show that
the ensemble average of 1{ over laser fluctuations obeys equations of the form

( „) ( „) ( m4„) est„—ie„( „+ ) (
iIn+1)4„)

+e
' "+' "(M+ (PI"'" ")+I+(e' " "))—y„(F+n)'(1{i'"i') . (3.5)

The above set of equations for (P'"') can now be
solved using perturbation techniques. For example,
up to first order in A, , one has

(3.6)

g-+=[~@„(F+I) M+i5]—
X(M (1{"'&+I ), (3.7)

which may be compared with the results (2.12) and

I

(2.13) in the absence of any laser temporal fluctua-
tions. It may be noted that results like (3.7) are
quite useful, for example, in studying the rate of en-

ergy absorption from a probe beam in the presence
of a pump beam, when both pump and probe are
fluctuating. This is because the energy absorption
depends linearly on the induced polarization, which
can be obtained from certain elements of i)'i.

As noted earlier, the coherent radiation is deter-
mined by the quadratic forms involving density ma-
trix elements; therefore we have to construct equa-
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tions for quantities like (g{"}|()("')where the indices

p, and v refer to any pair of two atoms. The phase
factor 8 depends on the location of a given atom.
Since we are only interested in the four-wave mixing
signal, we present our calculations only to second or-

der in )),. On writing down equations for It)'"' and
f&"' and on using the results from the theory of mul-

tiplicative stcchastic processes, we find up to second
order in il, with superscripts on ( ) denoting the or-
der of perturbation

(y{pc)j (&))(2) y +F )2(y{y)y(v))(2)

+ I (y(v) )(I)+gI (y{g4)y('v))(2)+e p(l ) e p(y(v)e p )(1)

p(i )
' p(y(v) p)({) y ' p ' yM( —)(y(p)y(v) ' gg)(1)

's(y+'sp y ~(+ )(y(p)y(v) '+p )(1)+

8~—+8„—q„p

.(Rq —R„) .
U

The phase factor q„& arises since the reduced time for the vth atom is different from that for the pth atom.
First-order terms like (gi'I"'e+-' )"' are already given by (3.7). First-order terms like (1()'"'pi'r"'e+-)'"are ob-
tained by equations similar to (3.8):

(y(P)j (~)e P)(1) y (P +F +1)2(y(P)y(v)e ) )())

(y(v)e'@p)(1)+I (y(p)y(v)e~+p)(1)+e+(p(1 ) e 'sp(y(v)e~'@y)(0)

ls(y(1 )
l{}p

(y(y })(0) y ls(p i{)pM{ ) (q (p)y(/} Iley
) (0)

(I~P
+ y e (s'gc+lspM(+)(y(p)y(~) )(0)+

8~~0„—q„p

(3.9)

Zeroth-order terms like ())(t';"}p&"}e ")' ', (It)I}'e ")' ' are all zero in the steady state, whereas expectation
values like (1(t~"'/II"')' ' are given by

(y(p)~(v))(0} (F +p )2(y(p)y(~))(0)+ I (y(v))(0)+ QM (y~P)t((~))(0)+ +~P (3.10)

0 8) and (3.9) we have assumed that the transit time
~ (gz —R„)/{)

~
is much smaller tllan the

time scales associated with the system. Hence the differences between t& and t„ in slowly varying quantities
are ignored. The typical time scales associated with the system will be of the order I",. ', y, &'. In vapors where

R& and R„are fandom, the transit time is generally much smaller than the observation time. This condition is
equivalent to I g&/„where I. is the cell length and I, is the coherence length, i.e., the length over which the
atoms cooperate. From the structure of equations like (3.8) and (3.9), one can show that in the steady state
(f~ II)p ) has the structure, 111 the llIIllt r +ao, —

( i{p) i(v) v(2) '(sp sv+&~)rely+ '(sp so+&~)rely

where ellipses denote either the terms oscillating at 5 or the terms that do not depend on the relative phase fac-
tor (8&—8„). %e will see in Sec. IV that the spatial structure of (3.11) in terms of the atomic positions is cru-
cial in the determination of the coherent signals that may be generated in various directions. %'e now simplify
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Eqs. (3.8)—(3.11) so that these can be used for numerical evaluation. The steady-state solution of (3.9) can be
shown to have the structure

where

[+i5+ye i(Fa+Fp+ I ) +yc2] Ual —g (Ma; Uip" +Mp; U+/') =-g+

(3.12)

(3.13)

and

(3.14)

The quantities U-p" are also determined by (3.13) but with an inhomogeneous term g -p" which is related to g -tI'

by

+V
gap gap a~p .

P,~V

Using now the structure of (3.12) and (3.11), we obtain, from (3.8), equations for 8'-+,

2 + + + +
Vcl( a+ p) ap QMai Ihip g pi ~ia ap

(3.15)

(3.16)

g+-p —(1~) qp+(I )pl(*+ g(M*);Up'"+ g(M+ )p; U;" . - (3.17)

We have now derived a set of equations for the en-

semble average of the density matrix elements and
their quadratic forms which describes the interac-
tion of two fluctuating pump beams with the medi-
um. These equations can be used to study a variety
of phenomena. For example, the forward-scattering
Hanle effect (where the probe beam has been
suppressed by a crossed analyzer) can be described
using the 8'+ elements whereas, as seen in Sec. IV,
the four-wave mixing is determined using the 8'
contributions in (3.11). In the analysis given above
the pump beam could be of arbitrary intensity.

IV. THE EFFECT
OF LASER TEMPORAL FLUCTUATIONS
ON PRESSURE-INDUCED RESONANCES

AND THE GENERATION
OF FLUCTUATION-INDUCED RESONANCES

In Sec. III we calculated the mean values of the
quadratic forms involving density matrix elements.
These forms can be used to obtain the intensity in
the direction (2ki —k2) U/co, where co represents a
typical frequency at which the system radiates.
Since the phase-matching conditions are crucial for
the production of a coherent signal, it is important
to know the frequencies at which the system radi-
ates. If lasers were strictly monochromatic, then the
system would radiate (coherently) only at 2' i

—co2

in the direction (2ki —k2) U/(2'& —co2). The flu
tuations of the field induce the system to radiate at
other frequencies as well. To see this, let us consider

the simplest possible situation involving linear sus-
ceptibilities, wherein the relationship between the in-
duced polarization and the impressed electric field,
at coI, is

P(N ) =X"'(N )E(N ) . (4.1)

which goes over to

I

&"'(aii)
I

~(co —~i)

in the limit of monochromatic incident fields. The
equation (4.2) shows at which additional frequencies
the system can radiate due to the fluctuations in the
incident field. In fact, the system radiates at all the
natural frequencies [determined by the poles of
X"'(co)] as well as at cgi. In the absence of laser
fluctuations only the coherent component at coI is
produced. Thus some fluctuations are needed to see
atomic frequency excitations. A similar situation
occurs in the context of four-wave mixing, details of
which will be discussed in the next section using
7' '. It may be noted that the recent four-wave mix-
ing experiments pick up the contributions at fre-
quencies in the immediate neighborhood of
(2' i

—co2). In order to relate our theory to such ex-
periments, we obviously have to calculate the details

On using the Wiener-Khintchine theorem and (4.1),
we find that the spectrum Sz(co) of polarization
fluctuations is related to the spectrum I (co) of the
applied field by

(4.2)
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of the spectrum in the direction (2k] —k2)
0/(2t0) —0)2) and in the neighborhood of (20) )

—0)2).
It turns out, however, that our calculations of the
complete spectrum show also the possibility of a
fluctuation-induced coherent signal which is pro-
duced in a direction different from (2k1 —k2)

u/(2~1 —e2).
In order to calculate the spectrum of polarization

fluctuations and thereby the spectrum of the emitted
radiation, it is convenient to rewrite (3.2) as a 9)&9
matrix equation with the ninth element of l( defined
as unity:

)f1'"'=Lp'"'+exp[(5t& i (8—„q„&—)+i@(t„)]K

+exp[ i 5—t„+i (8„q„&)—i C—)( t„)]K+g(")+i') ( t„)

fbi�

("), (4.3)

f o}L= oo K'-= oo f= oo}.
*

Note that for the purpose of the evaluation of the spectrum we have to know the time correlation function
(P'"'(t+r)Pg( t)). Equations for such correlation functions can be constructed using (4.3) and the results
from the theory of multiplicative stochastic processes:

dE~
(y(vlg) L(y(v)g) y f2(y(v)g)+&' p ' v &«pK (y(v)&' vg)gl

(4.5)

(P(")g)= lim (f(")(t+r)g(r)) .

Here we focus our attention on the steady-state results, though transient response can also be calculated by
similar methods. The equations for corre1ation functions can be solved to various orders in k. The results to
second order in A. will be presented below. Using (4.5), we obtain the set of equations, for various correlation
functions to different orders in A, ,

(y(v)e vg )(2) [I y (f+ l )2](y(v)& vg )(2)+K &
v ~ (y(v)& v+

pg )(1)
dt~

v 'r«p (y(v)e +iong)(l)

(y(v) 2 v+' p )(1) [L (f 2)2+g](y(v)e ' «+' p )(1) K e
' v 't«p (y(v) ' v+ '

p )(0)

i(g„—q„)z, („) i4„—i5t„~ (0) (4.8)

(y(v)&
' pg)(1) [L y (f2) y](y(v)& ' pg)(1)+K &

' v '&«p (y(v)&' vg)(0)
dt

i(8 —
Q ) g, ( )

—i4 —2Nt
(4.9)

(y(v)&' vg)(0) [L y (f +n)2](y(v)&'" vg )(0)
dt

A11 the relevant steady-state values have been computed in Sec. 'III. On denoting the Laplace transform of
)t1( t) by g(z), we find that (4.7) leads to

~(g( )e eg )(2) [Z L +y ( f+ l)2] —1

(g(v)e vg )(2)+K e ««gl [Z L +y (f+2)2 Q] )(l(t(v)e v jig )(1)

+K e"" '" '(Z L+y, )f2+i') '(y—(")e ''"g)")}, (4.11)
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where we have made use of the property [cf. Eq. (3.6)]

(f "'e "g)' '=0 for n&0.
If we now define the Laplace transform of the correlation functions by

S~(Z)= f dte ' lim (Pg"'(t+r)gg"'(r)),
0 'r~ oo

(4.12)

(4.13)

then we see, following the arguments similar to those in Sec. III [cf. Eq. (3.11)],that these transforms have the
structure

(4.14)

The term relevant for four-wave mixing is Spg '. In order to simplify (4.10), we express 9X9 matrices like
(Z —L )

' in terms of 8)(8 matrices (Z —M) —' using the relation

(Z —A) ' (Z —A) 8(Z —C)
0 C 0 (Z —C)

where C is a number. A lengthy calculation using (4.11)—(4.15) then leads to

(4.15)

S~ = g [Z M+y„—(F+1) ]gj'W~
j

+ g[Z M+y„—(F+I)']gj M,, [Z M+y„(—F+2)' i5],~ [Ug~—i +Itfg+(Z+4y„i5) —']
jrl

+ y [Z M+y, ](F—+ I)']pJ'(I )J(Z+4y, /
i5) 'q—g+, (4.16)

j
where Pg+ is given by Eq. (3.7). Let us now relate the Laplace transform S~ ' to the physical spectrum. As in-
dicated earlier, the time scale associated with the pth atom is t —(k ~ R&/v), whereas the time scale for the vth
atom is t —(ki.R„/v), so that the time scale associated with the vth atom relative to the pth atom will be
[k~.(R&—R„)/v]. Thus in the actual calculation of the time correlation function we should change r to

[r+[k).(R„—R„)/v]j .

Note also that all the calculations have been done in a rotating frame, which would lead to factors like

exp[ —itv, [t—(k, R„/v)] jexp[ito, [t—(k, R„/v)]j =exp[itv~k~ (R&—R„)/v] .

However, since one should not double count the
phase factors associated with k~.(R„—R„)/v as
these also occur in the equal-time expectation value
(3.11), one can show that the physical two-time
correlation can be obtained by just changing

~r+ [k, .(R„—R„)/v]

in the correlation function computed from (4.14)
+q

and by dropping the phase factors like e
Equation (4.16) is our final expression for the

steady-state correlation function. The appearance of
a large number of poles in (4.16) is significant. The
pole structure is determined by the eigenvalues of
the matrix M, the laser bandwidth and the parame-
ter 5=oui —co2. The spectrum of the polarization
fluctuations will be determined from a linear com-
bination of terms like (4.16), and thus such a spec-
trum will have peaks at

and

tv =tv)+ImP;

(4.17)

co =tv, +ImP;+5,
where the P s are the eigenvalues of the 8 X 8 matrix
M. The additional co& in (4.17) arises because the
calculations leading to (4.16) were done in the rotat-
ing frame [cf. Eq. (2.4)]. Thus the emitted radia-
tion, in principle, can have spectral peaks at
tv~+ImP;, and 2tv~ —t02+ImP; with the peak at
2'

~
—e2 corresponding to the usual four-wave mix-

ing signal in the absence of laser fluctuations.
Let us now present an explicit relation between

the spectrum of the emitted radiation and the polari-
zation fluctuations. The spectrum is related to the
two-time correlation function of the function

(p) ~ —ik ~ R~p ee
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[cf. (2.14)], where k is the direction of observation
and p

'"' is the positive-frequency part of the polari-
zation produced by the pth atom. Using the stand-
ard relations between Fourier transforms and La-
place transforms and keeping in view the discussion

[

following (4.17), one can show that the spectrum of
the radiation in the direction

[2kt —k, +[(co—2co, +cop)k, /u] ju/co =n—„
will be

S„- (co)=—Re[
~

d3t e
~

S'3~ '(z)+
~

d32 e
~

S42 '(z)+(13}e')(d3$ e )S4~ '(z)
CO

+(dn'&)(d31& )S32'(z)] Is=;(~ ~, )
.

The direction in which the coherent signal is produced depends, of course, on the resonance fiequencies in
S'll '. Such resonant frequencies are given by (4.17). The area under any of these peaks can be obtained by
evaluating the corresponding residue. For example, the total intensity in the direction no due to the spectral
peak at 0, produced by a pole z~ of S'

p '(z) such that Imz~ ——(0 —e &), will be

I„- =Re lim (z —zn)[
~
dst. e

~
S3t '(z)+

~
d32 f~'Ssp '( )+(.13t ei(d32 f )Ss( '(z)

"n

+(13' «)(d3t e ')S32 '(z)] .

If we choose Q=(2'~ —u2), then (4.19) will be the
usual four-wave mixing contribution. Note also that
if the 0's are widely separated, then the coherent
signals will be produced only for certain 0's. Thus
if in a given situation the incident wave vectors are
adjusted so that the phase-matching condition is sa-
tisfied for some 0, then the coherent signal will be
produced only for that particular value of Q.

Having presented the general formulation for
four-wave mixing effects in fluctuating fields, we
now present the results of our numerical computa-
tions. We will simplify the analysis by assuming
that the pump fields and the detunings are such that

yl y2

y/2m' = 10 MHz,

4023 —N
~

y y

a) )p/y=5. 1X10,

= —1.5&&10',

I't = I'3"+ ,r—

I

the saturation effects are not important. In order to
relate to the experiments on PIER, we use parame-
ters appropriate to those used in experiments on
sodium D lines:

10-20

r, =6,5&

I',= I f"+ 2'
I = I ["+y,

I (h I |h I )h

10-2 I

P 10-20

rp = 25.0y

IO 22
—50.0 50.00.0

30= [t'ai ~2+~12]/X

FIG. 2. The dependence of the PIER signal I~, when

col —co2 ———cu~q, on collisional linewidth I ~ and the laser
(at co I) linewidth y, ~, as a function of
6o=(u~ —~2+ ~~2)/yy, i values for the four curves are,
in increasing order (in units of the radiative linewidth y),
0, 1, 10, and 100 with the uppermost curve corresponding
to y, I ——0. The colhsional linewidth has been taken to be
I'~=6.5y. The actual 5s values for y, ~

——10y and 100y
are, respectively, 3 and 10 times those shown here.

IO-2I-
P

IO"22
- (00.O I 00.00.0

SO
"-[taP

I
—tale+ QP Ip ] /y'

FIG. 3. Same as in Fig. 2 but I ~ =25 y and 5o values
for y, ~

——10y and 100y are, respectively, 2 and 5 times

those shown here.
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10-20 10"14

10-'&

lp
—16

1O-2'
P

10-17

10-19

10-20

10-22
-200.0 200.00.0

30 = (cat
1 (dan+ caJlp) /7

FIG. 4. Same as in Fig. 2 but I ~ =50y and 60 values

for y, ~
——100 are 2.5 times those shown here. The curves

corresponding to y, ~
——0 and y are almost indistinguish-

able for such large values of I ~.

1
p-21

—100.0
I

0.0
~o= ~c"1 ~2+~iz~~7

100.0

FIG. 6. Same as in Fig. 5, but for a moderate value of
laser linewidth y, »

——10y. Here 50 values for I"~=6.5y,
25y, and 50y are, respectively, 1.5, 2, and 3 times those
sho~n here.

and we assume that there are no state-changing col-
lisions.

%e first examine the signal at 2' i —cu2 and study
the behavior of the pressure-induced extia resonance
at u i —m2 ———mi2 as a function of pressure and the
pump linewidth. %'e denote this signal by Iz and
show the results of numerical computations in Figs.
2—4. Since we are doing these computations by
ignoring saturation effects, the only poles that con-
tribute to the signal at 2'

&
—co2 with

coi2 = —(coi —a)2) correspond to Imz =5 =(coi —ro2)
and Imz- —mi2-(ui —m2). %e have checked that
in the absence of any collisions (1 z

——0), Iz does not
show any resonant character at coi —~2 ———~~2
even though the pump (laser at ~&) has been as-
sumed to have finite linewidth. As is seen from
Figs. 2—4, the signal Iz broadens with peak values
diminishing as the pump linewidth increases. For

1O '4

lO '5

large values of y, i, the resonant character becomes
much less pronounced.

As mentioned earlier and as one can see from
(4.19), laser temporal fluctuations can induce
coherent signals at the atomic excitation frequencies.
The question which now arises is can such a signal
also exhibit the resonance at co~ —u2 ———m&2? A
careful analysis of the denominators that appear in
(4.16) shows that such a resonance is indeed possible
if we choose Q=co23. %e denote such a resonant
signal by IF. It is easily seen that Iz arises from the
poles in (4.16) such that Imz-hq, i.e., from eigen-
values p; of the M matrix such that Imp; —b,2, or

Imp;-b, z
—5-hz+r0t2-6t .

%e will henceforth refer to such a resonance as
"Quctuation-induced extra resonance" (FIER). In
Figs. 5—7 the behavior of the PIER signal is
displayed for various values of laser bandwidth and
collisional parameters y, &

and Iz. In the limit

y, i~0, IF vanishes. Signals I~ broaden with an in-

1O '6 1O '4

10 17

IF 10

lp -19

lp 20

lo

10-22
—15.0 0.0

30= t~l 'us+~12&~7

FIG. 5. The dependence of the PIER signal IF when
co~ —e2 ———co~2 on I~ and y, ~. Here y, l ——yand I p values
are in increasing order I r =0, 6.5y, 25y, and 50y with the
topmost curve corresponding to I ~ =0. The 50 values for
I'~=6.5y, 25y, and 50y are, respectively, 3, 8, and 15
times those shown here.

1 p -16

lo 17

10-18

lo '9

10-20

lp-21
-500.0

I

0.0
30= &~1 n'2+~12&~7

500.0

FIG. 7. Same as in Fig. 5, but for a large value of the
laser linewidth y, ~

——100y. Here 50 values corresponding
to I ~ =50y are 1.5 times those shown here.
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crease in I z. For moderate values of y, &, the peak
height of IF increases with y, ~. The FIER peak
height always decreases sharply with pressure,
whereas the PIER peak height is roughly indepen-
dent of pressure for Izyyy. It is interesting to
note, for example, from a comparison of Figs. 2 and
5, that the FIER contribution is much bigger than
the PIER contribution for moderate values of pres-
sure. It should be borne in mind that the PIER and
FIER signals are produced in different directions
since the phase-matching conditions for the two are
different:

n=(2k3 —k3)u/i 2r03 —co3 i
(PIER)

=[2k ~
—k2+ k ~(A@23 2'

~
+—F3)/u]/

~
ru23

(FIER) (4.20)
I

and hence either the PIER or the PIER signal can
be seen.

V. APPLICATION OF
THE THIRD-ORDER SUSCEPTIBILITY

X"'(~.,~„—~, ) TO THE STUDY
OF THE EFFECT OF LASER BANDWIDTH

ON FOUR-WAVE MIXING SIGNALS

In Sec. IV, we have seen how fluctuations can in-
duce extra resonances which were also shown to
have a different type of behavior than the PIER sig-
nal when the buffer gas pressure is increased. In or-
der to understand some of these features, it is in-
structive to examine the general form of the third-
order nonlinear susceptibility. The general form of
X' ' contains a large number of terms; ho~ever, a
number of these drop out since we work with the
Hamiltonian in the rotating wave approximation. In
this case the X' ' of Bloembergen et al. simplifies to

(3) W'~jJ
~pajjy( rop~~ rah~ roc ) = g (d3kdk3d3jdj 3)

kj (QPj3 —CO&)(COk3 —Q)z)( —CO +CO )

Pr~j cxjj,p1'[1+K3(cub —co,cij —Cu )]
+ ' +

(J3 —~&)(~k3—b)( —~b+~ ) (a)k3 —m )(a)J-3 —m, )(mb —m, )

Peal [I+K2(qua —co„ujb —co, )]
7

(~k3 ~b )(~j3 ~a )(~a

where ajjpy stands for (d3k) (dk3)„(d3j)~(dj3)r and the &equencies cokj are complex, i.e., cokj appearing in (5.1)
ale equal to QPkj+/I kj, with I kj representing the decay of the off-diagonal element pkj. In Eq. (5.1), E2 stands
for

i(I kj
—I k —I )0]

K2(Q ]~02 )= s Np =COg +COb —67~
(kj ~2 )( 3k + rp )

(5.2)

As emphasized by Bloembergen et al. , the terms involving E2 vanish if the system has only radiative relaxa-
tion. %e will now show how the above X' ' can be used to get results similar to those obtained in Sec. IV for
the PIER and PIER signals.

It has been shown elsewhere that the spectrum of the polarization Auctuations is related to the fourth-order
correlation function of the field at co] and second-order correlation function of the field at u2. If one further
assumes that the field at co

&
is Gaussian, then its fourth-order correlation function can be expressed in terms of

the product of second-order correlations. Assuming further, for simplicity+ that the field at co2 is a mono-
chromatic field, then the spectrum of the emitted radiation in the direction k can be sho~n to be proportional
to

S(co ) = 18 g f dcu f dcobX; jI&(co,cob, —c03)Xj p &
(6) cob,ac02)E;e ja— '

~ (Q) )I PPs(b )$(QP Q)t2 Q)b +A)2 )g2

n (co, )or, +n(cob )cob
)& exp —i(R&—R„) k+ k2 —k

~

The factors involving atomic positions appear for reasons given in the Appendix. The multiplying factor 18 on
the right-hand side of (5.3) is due to a numerical factor of 2 which arises from the Gaussian nature of the field
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at co1 and a factor of 9 which depends on the way susceptibilities are defined. The integrated spectrum I will
be

1= +18f d, f d bX,"p ( „b, —2)X" ct ( „b,— 2)e;e,'r, (,)rpIt( b)E2
T

n (e, )co, +n(cob )cob
Xexp —i(R& —R„) k+ k2 —k1

C
(5.4)

For the Lorentzian spectrum of the field at co1 we have

Vc 1~1a~ 1a'r, (~.)=
~[(~a ~1) +rc1]

(5.5)

Note that in the above we have assumed the field at ~1 to be Gaussian, an assumption which is different from
that of the model used in Secs. II—IV. One would, however, expect that the lowest-order results for four-wave
mixing would be qualitatively similar for the two models, as far as the effect of laser bandwidth is concerned.
Even in the rotating wave approximation 7' ' contains a large number of terms which lead to a large number of
spectral peaks in S(co ), as also discussed in Sec. IV, unless the laser at co

~
is also monochromatic. We concen-

trate our attention on those terms from 7' ' that are important in describing a given class of phenomena.

A. Pressure-induced extra resonance

Let us first examine how the fluctuations change the PIER signal. Picking the term corresponding to PIER
from 7' ', and for the moment concentrating our attention only on this term, we can write the PIER contribu-
tion S'&'(co) to the spectrum as

Sp(co )=Tp(~ )(II dipole matrix elements)N

with

(r,—r, —I,)' 1TP(~)=y f f d~.d~b~(~ ~g ~b+~P)
N [(co, —co ) +I,] [(co —co ) +I ]

1 1
X 2 2 2 2

( —.+ )+Io ( —.)+I

(5.6)

1+ (~,] m. +N—, /r, )(N—„~,+m, +cr,)[(N„m. ) c—r, ][N—,3 ~b+/r, ]

Yc1 Vc1
X 2 2 2~[1'.i+(~.—~i) 1 ~lr. i+(~b ~i) ]2

n (co, )co, +n(cob)cob
Xexp —i(R&—R„) k+ k2 —k1 (5.7)

Here, for simplicity, we have dropped the tensorial indices. The four-wave mixing contribution can only arise
from values of co, and cob in the integrand in the neighborhood of co1. So we look for poles in the vicinity
co, -co1, ~b -co1, and then the phase-matching condition for the PIER signal becomes k =2k1 —k2,

~

k
(
=n(2'�

&

—co&) )
2'�

&

—c02
~

/c .

(5.8)

It should be remembered that since we are looking for the PIER signal near co12 ——(co1 —co2), resonances like
[(c02& —co, +co2) + I o]

' in the integrand should be properly treated. Taking out all the slowly varying terms
from the integrand, we find that the area Tp of the peak at co =2co1 —co2 is

2(I 1+I 2
—I 0) [1+(y,i/21 0)]

Tp ~~2
(13 2) (23 1) (21 2 23) ( V 1+I 0) +(21 1+2)2 2 2 2



FOUR-%AVE MIXING IN STOCHASTIC FIELDS: . . .

Equation (5.8) shows the effect of the laser fluctuations on one of the contributions to PIER. The overall
kinematical factor 2 arises due to the assumed Gaussian nature of the field at m&, i.e., due to (I )=2(I) .
Note that the laser l&newidth makes the character of the numerator in (5.8) a little more complicated; for exam-
ple, the weight factor, instead of being [I+(y,~/10)], is [1+(y, ~/210)]. There is another contribution to
PIER that arises due to the interference between the background term and the PIER term. In fact, 7 as far
as the behavior of the PIER signal (resonance at m ~

—coq ———co ~2) is concerned, can be approximated by

1 11+—(I O
—I') —I 2)

(r0 i3 —~2)(~z3 —~ i )(~i
—~z —~u ) (N2l —N, +N2 —SI 0)

1

(cori —Ns+c02) —II o

Then the full contribution to PIER can be shown to be

2
2 Z 2

(N13 —N2) (N23 —N l ) (2N 1
—N2 —N23)

(Ii+1'2—10) ye]
X 1+ (I')+I 2+ I'c)+ (I"(+12+310)

(N21 —Nl +N2) +I 0 0
(5.9)

If y~=0, then (5.9) leads to the standard expression. Note that, there ls no simple substltutlon rule hke
I's~l 0+y, ~

that would enable one to obtain a result like (5.9) from the result in the absence of laser band-
width effects. Equation (5.9) also agrees with the result' obtained recently from an effective two-level descrip-
tion of PIER. The peak height behaves as

r

I (+I 2 —1
I0

I 1+I~ y 1 I 1+I2+1+ +3
0 0 0

which in the limit of large pressure Kp ~~y, reduces
to

yc l
@K' 1+

KP

1I l = ~ y+KPs Ip= ~ y+KP s

(5.10)

where p is the pressure and y
' gives the hfetime of

states
~
I) and ~2). Sincethepeak height of PIER

It has to be remembered that this result holds only
for the Gaussian model of the 1aser Auctuations and
is in contrast to the behavior exhibited by the
phase-diffusion model of the laser.

B. Fluctuation-induced extra resonance (PIER)

2y (y. i«S») 4y
~p 2[1+(y/ay)] sy

and for large values of pressure Kp &py, the peak
height goes as

5 ye 1

2 KP

suggesting that the effect of hnewidth could be si.g-
nificant if y, l -Kp. The area under the peak is then

(I,+I,—I 0)~
(1 0+y, ))

x (I')+I'2+1'0)+ (I )+I g+310)ye 1

2 0

%C next show that due to laser fluctuations one
can see the resonance at N 12

——N z
—N l in four-wave

mixing experiments. The four-%'avc signal ls Qot at
a combination 2N& —N2 of the impressed external
fields at Nl and N2 but at one of the natural frequen-
cies of the system. Specifically, such a signal is at
thc flequcncy N=N23. Slncc thc Qcw lcsonancc at
N» ——N, —N, arises due to laser Auctuations, we will
term this thc Auctuatlon "induced cxtl a rcsonancc.
Of course, such a resonance will not contribute to
the usual four-wave mixing experiments since in the
usual experiments, one looks at the signal at
2N, —N, , and the frequencies N» and 2Nl —N, could
differ considerably and in addition the phase-
matching conditions for the two signals are dif-
fcrcnt. For example, ln Na cxpcrlIncnts %'herc Nl,
say, is near N23 and N2 near N)3, then (2N2 —Nl) and
N23 %vould differ by 17 cm . %c will show that
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the new resonance will have very different pressure
dependence than the PIER. This new term arises
from (N23 N) (N]3 Nb) '( —Nb+N2) ' in X

Denoting the contribution of such a term to S(N) by
TF(N), we have

TF(cv)= g 2

„„(N23—N ) +I 2

f d
Yc 1 yc 1

n'[y, l+(co, —col) ] N m[y, 1+(cv+cv2 —cv —col) ]

1 1
X

(C0 CV ) [(CV13 CV CV2+CV ) +r, ]2 2

~ (Ng )Ng +(N +N2 Ng )~(N +N2 Ng )
Xexp —i(R —R„) k+ k2 —k

&V
C

(5.11)

which shows a spectral peak at N =N23. The phase-matching condition for this spectral peak is

—+

n (cv23)(cv23/c)k+ k2 ——k 1 [n (col)cv 1 +(cv23+cv2 —c01)n(C023+cv2 cv 1 )/c] .

Such a spectral peak exists only in the presence of laser fluctuations, since in the limit y, &~0, the integral in
(5.11) leads to a single spectral peak at N =2N

&

—N2. The area TF under the spectral peak at N =N» will be

(»(~)rc] 1
TF dNg

lr[y. l+(co. —cv»'] (cv23 —cv. )'

1

2[y I+(cv23+cv2 cvo —cvl) ] (cv13—cv23 —cv2+cv ) +rl2 2 (5.12)

Expression (5.12) obviously leads to a resonant contribution at N &2
——N2 —N ~, due to the pole of the integrand

at N~-N~..

Xc 1 [1+(yc 1 «1)]
F 2 2 2 + ''',

r2 ( —cv, ) ( —2co, +,) [(,—,—,) +(r,+y„) ]

where the ellipses represents other nonresonant terms. The peak height of the FIER goes as

(5.13)

Vc 1 1

I ](I ]+y, ))
'

which for large pressure (lcp »y) goes as (y„)/(lcp) [1 + (y, 1/sp)], while the width

-[(y, l)+(y/2)+ lcp]~zp[1+(y, 1/lcp)] .

The area under the FIER peak is y, ]/I &I 2-y, ]/(~p) . The pressure dependence of the FIER signal is in dis-
tinct contrast to that of the PIER signal. Our numerical results, presented in Sec. IV, are in agreement with
such a pressure dependence. On comparing (5.9) and (5.13), we see that

TFc'"/T~"
p I2

—1 r, (r, +y„) r, +r, —1
2)

TI,+I, y„ I,+I,
I-, +'+ 2r, r, + (5.14)

Since generally I ~/(N~3 —N2) &&1, it is clear from
(5.14) that TF would dominate over TI. As noted
earlier [following Eqs. (5.7) and (5.11); see also Eq.
(4.20) which is a special case of these phase-
matching conditions when n(cv)=n, v=c/n] the
phase-matching conditions for the two signals are

I

different and hence it is possible to discriminate be-
tween the two signals experimentally.

We have thus shown how many of the results of
numerical work in Sec. IV can be qualitatively un-
derstood in terms of the general form of the non-
linear susceptibility X' (Np N Nb N, ). The quan-
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titative results can only be obtained by using the full
expression for P' ' and by evaluating the integral in
(5.3) exactly.
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APPENDIX: STRUCTURE OF A PLANE WAVE
WITH FLUCTUATING ENVELOPE

In this appendix we discuss the structure of a
plane wave whose envelope is a stochastic function.
The structure should be consistent with Maxwell's
equations. Consider a plane wave

(A1)

whose field envelope e is a slowly varying function
of space and time and is fluctuating. Then, on mak-
ing the Fourier decomposition of E and using the
Maxwell equations, we find that E must have the
form

E= f dkv e(kv)exp( ikv [t —[n(—kv)k r/c]].), e (kv)=e( —kv), (A2)

where n (co) is the refractive index of the medium at frequency co. We have thus expressed the field as a super-
position of plane waves all propagating in the direction k but having different frequencies. Clearly the wave

equation [']i +n (kv)kv /c ]E=O for E is satisfied. e(kv) is now a stochastic variable and hence the correlation
function of E can be written as

(E(R„,t)E(R„,t+r)) = f f dkv]dkv2(e(kv])e(kv2))

X exp( ikv] [t—[n(kv—])k R&/c]] )exp( ikv2[t+—r [n(koan)k R—„/c]]),
(A3)

which, on using the Wiener-Khintchine theorem

(e(kv] )E(kv2) ) =5(kv] +kv2)r(kv] )

and n( —co) =n*(cu), reduces to

iE (R„,t)Et](R t~r)) = f dkv I t](kv)exp[ikvr+[ikvn(kv)k/c] (R„—R„)],
where we have also assumed that n {co) is real. In particular for equal time (~=0), we get

tE (R&,t)Et](R„,t)) = f dkv I (t]k)vexp[i knv( ok)(k/c) (R„—R„)] .

(A4)

(A5)

The phase factors that appear in (5.3) are due to the structure (A5) of the equal-time correlation function of the
field. The results can be further simplified if the dispersion of n(co) can be ignored. In such a case it is clear
from the foregoing that for the phase-diffusion model of the laser, we should write the field in the form

E= @exp[ ikv][t ——(k, .r/v)] iC]][t (k—, r/v—)]]+c.c. , v=-
n

where 4&(x) represents a function of variable x. This is the form we have used in our analysis in Sec. II.

(A6)
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