
PHYSICAL REVIEW A VOLUME 27, NUMBER 2 FEBRUARY 1983

Stimulated radiative corrections in hydrogen in the presence of a strong laser field
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The stimulated radiative corrections (or ac-Stark shift, or light shift. . .) of the energy
levels of a hydrogenic atom irradiated by an intense, nonresonant, monomode laser field,

are evaluated within the framework of the time-dependent perturbation theory, up to and

including fourth order. The calculation is performed by using a Sturmian representation of
the Coulomb Green s function. Whenever it is possible, comparison is made with other re-

sults, and several limiting cases are considered. If the laser frequency co ~0, one recovers

the results of the dc-Stark effect. If 2' becomes larger than the ionization energy of the

atomic state considered, the fourth-order level shift acquires an imaginary part which may
be connected, via an extension of the optical theorem, to the two-photon ionization cross
section. We point out also the difficulties encountered, when trying to get sensible esti-

mates from partial summation of the infinite sums entering the perturbative expression of
the fourth-order amplitudes. Finally, the order of magnitude of these various corrections is
discussed.

I. INTRODUCTION

Following the early works on multiphoton pro-
cesses it became apparent that the modifications of
the atomic spectrum, in the presence of an intense
laser field, play an essential role in explaining the
observed behavior of multiphoton cross sections.
As a consequence, in the later years, the theme
"atoms in strong fields" has been extremely popular
among atomic and laser physicists. In the presence
of the strong external field the atomic levels are dis-

placed, i.e., shifted and broadened, respectively. '

The magnitude of these corrections can be obtained,
at least in principle, from the location into the com-

plex plane, of the poles of the resolvent (z —H)
associated to the Hamiltonian H of the coupled sys-

tern atom and field. As, in general, this task cannot
be achieved exactly, one has to resort to approxima-
tion methods which may be, broadly speaking, clas-
sified into two categories according to whether they
are perturbative or not. At very high intensity, i.e.,
when the laser intensity I becomes comparable to a
characteristic atomic field strength intensity Io,
nonperturbative approaches become relevant. Let
us recall that these methods either rely on unitary
transformations, ' or assume the atomic potential
is a small perturbation with respect to the radiation
field. ' However, in addition to the fundamental
difficulties raised by some of them, the quantita-
tive predictions of such theories have not been veri-
fied yet.

Another method, which has proven especially at-
tractive for describing resonant or quasiresonant
processes, i.e., when a few-level atomic model is
well adapted, is the so-called "dressed-atom" ap-
proach which can be considered within either a ful-

ly quantum, or semiclassical (Floquet ) framework.
Note that this latter method has recently been suc-
cessfully extended to more realistic atomic models,
including in particular the continuous spectrum,
and applied to the quantitative description of the
ionization of atomic hydrogen in a very intense
field. '

In nonresonant conditions, standard perturbative
calculations provide nevertheless reliable estimates
for interpreting most multiphoton experiments. "
Moreover, it can be shown that the perturbative
series itself may be formally resummed and reex-
pressed in closed form, in terms of operator-
continued-fractions expansions, providing in some
sense an analytic continuation of the series expan-
sion beyond its domain of validity. ' ' Although
this had been recognized for a long time, ' there has
recently been a considerable body of work on the
subject. ' ' ' Note that it would be extremely in-
teresting to compare the predictions of such "ex-
tended" perturbative theories with nonperturbative
ones in the limit of very intense fields. Unfor-
tunately, practical computations performed on real-
istic models meet with considerable difficulties,
which has impeded making the connection between
the two approaches.
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Up to now, most perturbative calculations of
these stimulated radiative corrections (or ac-Stark
shifts, or light shifts, or dynamic polarizability, ... )

were limited to the second order, i.e., the first non-

vanishing term in the expansion. "-"Now, the ad-

vent of a variety of laser-aided high-resolution spec-

troscopies has permitted accurate measurements of
such level displacements. ' Recently, rneasure-
ments have also been performed in atomic hydro-

gen, and the possibility of observing higher-order
effects has arisen. Consequently, it seemed of in-

terest to carry out accurate higher-order perturba-

tive calculations which could provide some refer-

ence marks for future discussions. More precisely,
we present in this paper a perturbative calculation
of the stimulated radiative corrections, including

the fourth-order contributions, experienced by a
nonrelativistic H atom irradiated by a nonresonant

monomode laser. As by-products, we have gotten
several interesting results related to the behavior of
atoms in strong fields.

The organization of the paper is as follows. Sec-
tion II is dedicated to the explicit derivation, within

the framework of the time-dependent perturbation

theory, of the various terms contributing, order by
order, to the energy shifts. In Sec. III we present

the computational method we have set up. By us-

ing the Sturmian representation of the Coulomb
Green's function, we have been able to express each
high-order perturbative amplitude as a series expan-

sion in one (or several) variables. In order to im-

prove the efficiency of the computation we have in-

troduced Pade-related (e-algorithm) methods for ac-
celerating the convergence of the series. By the

way, we have shown the usefulness of those
methods when applied to the summation of multi-

ple series. Oui numerical results aic plcscnted in

Sec. IV, in which several limiting cases are also con-
sidered. In particular, when the laser frequency
m~ 0 connection is made with the dc-Stark effect.
On the contrary, as ~ increases and two-photon ion-

ization becomes possible one gets a generalization of
the optical theorem, extended to multiphoton for-
ward scattering. %C show also that approximate
computations, performed by retaining only a limit-
ed subset of discrete atomic states, i.e., on omitting
the continuous spectrum contribution, can lead to
misleading results in fourth-order calculations.
This behavior is in sharp contrast with second-order
calculations in which sensible estimates can be ob-
tained even if truncated atomic basis sets are used.
Finally we conclude, in Sec. V, with a brief discus-
sion of our results.

II. PERTURSATIVE EXPANSIOW A.XD
FOURTH-ORDER LEVEL SHIFT

Most of the material of this section is directly in-

spired from the standard QED formalism as ex-

posed, for instance, in Heitler's treatise. A more
specific account may be found in Ref. 29. One con-
siders hereafter a nonrelativistic atom irradiated by
an intense monomode electromagnetic field. The
Hamiltonian H of the system is accordingly written

0=Hp+ V,

where &p =&at++rad Here 0„ is the atomic
Hamiltonian with stationary eigenstates

~

n ) and

eigenenergies E„:H„~n ) =E„~n ). H„d is the
Hamiltonian of the electromagnetic field. In the
case of a monomode laser of frequency co, one has

H„„ i
X)=(X+—,

'
) i X), (2)

where X is the occupation number of the laser
mode. As Xg&1 one has

H„d
~

$)=NFL@
~

N) .

%ithin the dipole approximation, it is convenient to
write the interaction Hamiltonian V in the electric
dipole form

V= —eE.r,
where the electric field operator E is, in Gaussian
unrationalized units,

1 /2
27T'Rco

(
~ t ~g

i

Here P is the normalization volume, a and a are
the usual annihilation and creation operators, and e
is a unit polarization vector. Note that, for compu-
tational purposes, we have preferred to use the E.r
electric dipole form of the interaction Hamiltonian,
instead of the A.p+A Coulomb gauge representa-
tion. Although the equivalence between the two
representations may be inferred from the general in-

variance properties of the S matrix under the corre-
sponding gauge transformation„several papers
have recently been published on that matter. ' This
led us to verify that, in the problem considered here,
strictly equivalent results are obtained by using ei-

ther of the two forms. Note also that, if one uses

the A p+A form, the A term has to be con-
sistently included at each step of the perturbation
expansion and gives rise to nonvanishing contribu-
tions. Although this fact is well known in the case
of two-photon elastic (Rayleigh) scattering, it does
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not seem to have been recognized in the case of
higher-order processes.

The radiative shift of the atomic level
~

n ), in the
presence of the monomode laser field, may be ob-
tained by expressing the probability amplitude A; (t),
t &0, of the state

~

i ) =
~

n ) 8
~

N ), as a contour
integral in the complex E plane:

associated to the Hamiltonian H =Hp+ V. Then, it
is convenient to rewrite

G;(z) =[z E—; —R;(z)]

where R;(z) is the diagonal element of the so-called
level-shift operator R (z), which, in turn, is the solu-
tion of the equation

A;(t)=lim . f dEe ' ' "G;(E ie), —(6)
1

e~p 2fll

where

G;(z) = (i
~

(z Ho —V) —'
~

i )

is the diagonal matrix element of the resolvent 6(z)
I

R(z)P; = V+ V R(z) P;
z p

with P;= ~i)(i
~

and Q;=l P;. R—;(z) is usually
perturbatively expanded in powers of V, and one
gets in our case

z Hp z Hp z Hp z Hp
(sa)

=- R '(z) +R '(z) + (8b)

At lower intensities and in nonresonant cases, ' one can limit oneself to the second-order contribution,
which, after replacing z by E;, reduces to

2

E —Ei

where VJ ——(i
~

V ~j ), Ho
~
j)=E&

~
j), and the generalized sum S J runs over the complete (discrete + con-

tinuous) spectrum of Ho, the state ~i ) being consistently excluded. Note that, after substituting z =E;, the
small imaginary quantity is has disappeared in the denominator.

If one wishes to obtain the fourth-order contribution it is not enough to make the replacement z=E; into
R '(z): One has, in addition, to take into account the fact that R '(z) is z dependent. This can be done in

several ways. For instance, one can use a Taylor expansion of R '{z) for z=E;.

dR'"(E )

l

This leads to the following expansion for 6;, correct up to fourth order:

6;(z)= i
dR,"'

1—
dE;

R (2)(E )+R,(4)(E; )+
z —E; ——

1 —dRi /dE
(10)

Since

(1—dR '/dE; ) '=1+dR '/dE; + .

one easily verifies that the total fourth-order contribution to the level shift becomes

(2)
(4) Vi3V32 V2i V (2) dAE;

1.2, 3 (E; —E3)(E;—E2)(E; —E) )
'

dE;

This result could have been obtained more directly, without replacing in 6;(z), by using a Lagrange expansion
of R;(z) in the neighborhood of z=E; {Ref.38):
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which leads in a straightforward fashion to (9) and (11). It is interesting to note the formal equivalence of
these results with the usual Rayleigh-Schrodinger expressions of the second- and fourth-order energy correc-
tions in stationary perturbation theory.

In the foregoing we have used expansions (Taylor or Lagrange) valid in the neighborhood of z=E;. One
can show that, if one considers the expansion of 6; in terms of R; in the integral (6),

(t)= lim — dE e ' ' . + — — . Rs-(E —Ie) —. +;E]g 1 1 . 1

e~o 27Tl E—E; —ie E—E; —ie ' E—E; —ie

this is equivalent to neglecting the contributions of the poles z+E; contained in R;(z). This is certainly not
correct in a time-dependent approach, since every pole does contribute to the probability amplitude A;(I,). In
fact, if those contributions are properly taken into account, one gets

'(E; —E )f/A

1
1

and a similar expression for hE '. Now, for large values of t, one has

elf P
lim =——i@5(z)= limf~ cc Z Z g~ 0 2+17/

Thus, by taking into account the poles of 6;(z) one obtains, in the limit of large times r,

hE; =lim 8(2) ~

0 & E; —E~+iq
(2)

5E; = lim(4) +DE,.(2) dhE;

q 0 &, 2, 3 (E; —E3+ig)(E —E2+~g)(E —E& +I,g)
'

dE;
(16b}

Note the presence of the small imaginary part iq in
the denominators which permits us to treat the case
of transitions involving the continuous spectrum.

Since the state of the field can be considered as
unaffected by the presence of the small atomic sys-
tem, it appears that these corrections are, in fact,
the radiative shifts of the atomic state

~
n ):

hE; =~„.This assumption is consistent with the
condition X && 1.

Then, by factorizing out the field-dependent
quantities, one easily gets the intensity dependence
of the second-order atomic level shift hE„' '. For
instance, by introducing the laser intensity I and the
characteristic atomic field strength intensity

Io —— iEoi =7.016X10' W/ctn
4m.

where Eo ——e/ao is the atomic unit of electric field
strength intensity, one has

lt 2I 5

Here ~„"(~)is an atomic matrix element which, in
the case of a laser beam linearly polarized along the
Oz axis, reads

FIG. 1. Diagrams contributing to the second-order
(a) and fourth-order (b) stimulated radiative corrections
in the electric dipole gauge. The diagrams denoted I
and II (b) are referred to as proper diagrams in the text.
Those numbered III to VI, in which the system can re-
turn in the initial state after two interactions, are re-
ferred to as improper diagrams.
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1

E„—E„—%co

{18)

and

E =(N iE iN)= = I
c

E2

2EO
(20)

where (z)„„,=(n
i
z

i
n~ ) and

i
n~ ) =

i
nlm ) and

i
n

~ ) =
i n~ 1~m ~ ) are the atomic kets in the initial

and intermediate virtual states, respectively. The
infinite sum runs over the complete (discrete +
continuous) atomic spectrum and we have dropped,
for notational convenience, the small imaginary
part ig in the denominators. Note the two terms
inside the bracket may be associated, respectively,
to the two diagrams displayed in Fig. 1(a).

As this point will be considered later, it is in-

teresting to express hE„' ' in terms of the average of
the square of the electric field operator, Eq. (4).
One has '

v„' '(co)

z„(co) .(, 4) (21)6E4"
Here ~„' '(m) is an atomic fourth-order matrix ele-

ment, which, in the case of a laser beam linearly po-
larized along the Oz axis, reads explicitly

The field dependence of hE„' ' may be similarly
expressed in terms either of the laser intensity or of
the average value of the fourth power of the electric
field operator, and one has

2

~E(4)= I
2IO

'"( )= s s() () () () 1

1

(E E ~)(E E 2~)(E E ~)

+ S S S
1l3 fl2+ll Pl ]

(z)„„(z)„„{z)„„(z)„„
E —E (E„—E„+fico)(E„—E„+fico ) (E„—E„—~ )(E„—E„+~)

1+ (E„—E„,—Ace )(E„—E„,—~ )

r„"'(co) S —
i (z)„„, i
', +

n,
""' (E„E„+%co) —(E„E„—~)— (22)

The first term corresponds to the contribution of
the so-called proper diagrams, ' ' numbered I and
II in Fig. 1(b). Other terms may be associated to
the four improper diagrams, ' ' corresponding to
processes in which the system can return in the ini-

tial state after two interactions with the field.
These diagrams are numbered III to VI in Fig. 1(b).
The evaluation of the infinite sums which appear in
those expressions will be presented in the next sec-
tion.

III. COMPUTATIONAL PROCEDURE

In the case of a nonrelativistic hydrogenic atom,
the infinite sums, entering Eqs. (18) and (22), may

i

be evaluated exactly, either by solving a system of
inhomogeneous differential equations, or by using
compact representations of the Coulomb CTreen's

function. Here we have used the latter tech-
nique and more precisely the so-called Sturmian
representation, which has proven to be extremely
useful in n&ultiphoton calculations. ' ' The main

advantage encountered in using this representation
lies in the fact that the infinite sums running over
the physical (discrete + continuous) atomic spec-
trum are replaced by sums over the (discrete) Stur-
mian spectrum. ' One is thus faced with the
standard problem of the numerical computation of
infinite (possibly multiple) series. These series are
usually convergent, but, as we shall show, in some
cases of physical interest, they may diverge. Thus
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we have found it useful to accelerate their conver-

gence with the help of the so-called e-algorithm,
which is closely connected to the Pade approxi-
m ants.

Before going further and presenting the computa-
tional procedure we have used, we should em-

phasize that we have not introduced the concept of
quasienergy spectrum of the atom in the presence of
the strong electromagnetic field. As a matter of
fact, it has been pointed out by several authors that
the external field mixes atomic states with the same
principal quantum number and the same parity.
As a consequence, the atomic wave functions
should be expressed as linear combinations of un-

perturbed wave functions, which obviously renders
the computation much more intricate. However, by
comparing with our own results, we have verified
that the magnitude of the corrections so introduced
remains relatively small (see below). Moreover it
may be demonstrated that the shift of the
barycenter of a given level is unaffected by such a
transformation, and, as the level shifts themselves
are small corrections, we are confident that our re-
sults are very good approximations, This is obvi-

ously the case in fourth-order calculations, in which
the quasienergy formalism would lead to unneces-

sary complications.

A. Second-order amplitude

The reduced atomic second-order amplitude, Eq.
(18), is conveniently rewritten in terms of the
Coulomb Green's function

i
n)( ni

n, E—E„
(23)

r'„I' (ro) = (nlm
i
z[G(E„+co)

+G(E„—co)]z
i
nlm) .

Note that hereafter atomic units will be used.
After factorizing the angular part one has

2 2I» —m
~„I' (a))=

~ (21+1)(2I +1)

(24)

X [TP'(ro)+ TP'( —co)], (25)

where A, =l —l, l +1; 1&
——sup(l, A. ) and the second-

order radial amplitudes TI '(+co) are

Tq '(+co)=(nl
i
rGg(E„+ro)r

i
nl) .

(,r i
nl ) =Z„,(r) =C„,e-"""IP', ( n+1+ I;»—+2;2r rn)

I+&„—i 2 1 (n+I
(21 +I)( (n —1 —I)'

(27b)

being radial hydrogenic wave functions.

G~(E) is the radial component of the Coulomb Green's function for angular momentum A, , whose expan-

sion over the Coulomb Sturmian basis reads

~ ~(por')~. ~(pa~)('iG, (E)i.&= g " ",Po=e 2E,
v=X+&

~„g(po~) =X„g(p(})e ' r /F1( —V+A. +1;2A,+2;2por), (29a)

( ) (2 )1+1 I (&+&)(
(2A, +1)! (~—g 1)!

being the radial Coulomb Sturmian functions for angular momentum A, and energy E= —po/2 & 0.
Thus, T~ '(+co) may be rewritten as

TF'(+~)=C„'I g [&„,dPo )1'(I &Po ) [~(n, l, I—« I~,~Po )1
v=A. +1

(30)
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where po = [—2(E„+to)]'~2 and the quantity denoted J is an integral of the following general form:

CK)

3 t)(. I)(,
—r(p +p j

I

J(v, kpo I
v', k',po)= f dr r + + e ' &F&(A+1 —v;2K+2;2por) &F&(A,'+1 —v', 2g'+2;2por)

0 (31)

(32)

where J is now a combination of hypergeometric polynomials times algebraic factors, and

(2X, +1)!2, 2k +2
2po, (po —po)

J(v, k,po I

v', A, ',po) =( —1)

In the particular case A, '=k+1 we are concerned with, those integrals can be evaluated in closed form via a
generalization of Gordon's formula, ' and may be conveniently factorized as follows

t V+V
po —poJ(»~ po I

v', A' po )=, J(»i po I

v' ~' po )

po+po

2 2
X g [po, (v. 1+v) —po, v,—)i

qq=o
(33)

q

X
po& —po&

po& +po&

—4popo
2Fi ~ +1—v —q k +1—v, 2A, '

(po —po)'

Tz '(+co) = g a„(+co)g+,
r=0

(34)

where the coefficients a„(+co), which exhibit a
somewhat complicated structure, can be deduced
from the formulas (30)—(33). Such an expression
for the radial amplitude is general, whatever hydro-
genic state

I
n, l) is considered, and represents, in

some sense, an extension of the analytical formulas

previously obtained for the low-lying states by using
integral representations of the Coulomb Green's
function. ' As a matter of fact, one can show

(see Appendix A) that the series Eq. (34) may al-
ways be expressed as a sum of algebraic factors,
plus one term proportional to a Gauss hyper-
geometric function of the general form

zF&(l,b;b+p;g), where p & 1 is an integer. This
result enables us to make the connection with the
above-mentioned compact formulas and to gain
some insight into the analytical properties of the
series Eq. (34). On the other hand, the hyper-

Here A. &
——sup(X, A, '), A, &

——inf(A, , A, '), and po&, v&

(po&, v& ) are the values of the parameters po v cor-
responding to I,& (A, &).

From those results one can easily reexpress the
amplitude T~ '(+co) as an infinite series in the vari-

able

+ 2
po —1/n

po +1/n

We have

l

geometric functions 2Fi (1,b;c;z ) have a
continued-fraction expansion converging in the
whole complex plane, except on the cut
(+1,+ oo ). This theorem permits us to assess the
validity of the e-algorithm technique we have used
for accelerating the convergence of the series (34)
(see below).

B. Fourth-order amplitude

Again the reduced fourth-order hydrogenic am-
plitudes entering expression (22) may be reexpressed
in terms of Coulomb Green's functions. Note, how-
ever, that two cases should be distinguished accord-
ing to whether the initial state

I
nl ) is excluded or

not from the generalized sum over the states

I n212), i.e., if the corresponding diagram Fig. 1(b)
is improper or not. As a matter of fact, if the state

I
nl ) is excluded from the infinite summation, one

has to introduce the so-called reduced Coulomb
Green's function 6'"'(E„)whose expression will be
given below.

1. Contribution of the proper diagrams

In the following, for the sake of simplicity, we
shall consider the case of a typical amplitude corre-
sponding, for instance, to the diagram I, in Fig.
1(b). After the angular part is factorized out, any
fourth-order amplitude of the general form
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(nlm
I
zG (E„+to)zG (E„i2to)

XzG(E„+03)z
I
nlm )

may be written in terms of the following reduced
radial amplitudes:

T2, '2„,2,
——(nl

I rG2, (E„+to )rG2, (E„+203)rG2, (E„+to )r
I
nl t

with A, 1
——I+1, A,2

——I,I+2, A, 3
——I+1. By using the Sturmian representation of the Coulomb Green's function,

amplitudes of this kind may be rewritten as a triple sum, generalizing in a straightforward way the second or-

der. %ith similar notations one has

&.,~, (PO3)

X
1 z 3 "

1 ~3@03y3 ——A.3+1
J(n, l, 1/n

I
v3, A3,p03)

&.',~, (S 02)
x

+2 P02

2

x
g, +1 1 —&1701

J(+3 l13 p03 I ~2 ~2 p02)

J(1 2 ~2&p02 I
3 1')1 1 p01 )J(~1,~1 p01 I

n, l 1«» (36)

where p01 ——p03 —[ 2(E„+03)]' attd p02—
[—2(E„+2')]'t . The same analysis as iu the
second-order case leads us to reexpress this ampli-
tude in terms of a triple series, in three variables

(4) P) T2 l'3

T2.,2. 2, g a, 01 02 03
f I P2f3

where

(1«—F01 )(S 02
—S 01 )

( 1«+801 )(F02+F01 )

(POl P02 )(103 702 )

(I01+I02)(703+102)

(37)

3=
(u02 —S 03)(1«—S 03)

(F02 +103)( 1«+P 03 )

and the explicit expression of a„„„,which is tool') 1'2l'3&

long to be reproduced here, may be found by inspec-
tion with the help of formulas (27b), (29b), and (33).

It should be stressed that such a Sturmian series
expansion is valid, whatever initial hydrogenic
bound state is considered. Although it is likely that
these series have a structure similar to those of

t

I

Lauricella's hypergeometric functions of several

variables, one cannot derive their analytic proper-
ties so easily as in the second-order case. However,
as we shall show in the following section, the nu-

merical convergence of the series (37) is usually very

good. Note also that if one had used integral repre-
sentations of the Coulomb Green's function, the
amplitude T~ ~ ~ would have been expressed in

1 2 3

terms of multiple integrals. For a general deriva-
tion of such a result, based on a group-theoretical
approach, see Ref. 61.

2. Contributions of the improper diagrams

The general expression of these contributions,
which has been given in Eq. (22), can be split into a
fourth-order term and a product of two second-

order amplitudes, respectively. Again, for the sake
of simplicity, we shall consider only a typical case
exemplified by the diagram III, in Fig. 1(b). In the
fourth-order term, the initial state

I
nl) has to be

consistently excluded from the infinite sum over the
states

I
n21.2), which leads us to consider the fol-

lowing reduced radial amplitudes:

T'2', ~',2, = (nl
I rG2, (E„+to)rG~",'(E„)rGt,, (E„+to)r

I

nl )l,

where G~"'(En) is the radial component, for angular momentum A, , of the reduced Coulomb Green's func-

tion ', and

G(.)(E ) ~ In' &)(n'kI
( )

I
nA)(nl1. I,

n ~n E„—E„E—E (E—E„)Gg(E)
8

E=E„



STIMULATED RADIATIVE CORRECTIONS IN HYDROGEN IN. . .

Several representations of G~"'(F.„) in terms of transcendental functions have been proposed so far, ' but

unfortunately they share a common lack of symmetry in the variables which hinder us from obtaining closed

expressions of the amplitude. Instead we have found it useful to rely upon a Sturmian expansion for G~ (E„)(n)

(see Appendix 8 and Ref. 64). One gets the following general expression:

S„g(r/n)S„g(r'/n )
(r

~

G«"'(E„)
~

r') = g ' ' —, S„—«(r/n)S„«(r'/n)
1 —v/n

——,[(n+&+1)(n —&}]'~'[S„«(r/n)S„+,«(rln)+S„+~ «(r/n)S„, «(r'/n)]

+ —,[(n+A}(n —A, —1)]'~ [S„«(r/n)S„~ «(r'/n)+S„~ «(r/n)S„«(r'/n)] .

After being replaced in Eq. (38), T~'~'~ can be reexpressed as a triple series, similar to that of Eq. (37), plus123
simpler terms reducing to a product of two second-order amplitudes.

All that remains is the contribution of the product bX„' '(8/BE)AE„' ', whose radial part, in the case of the

graph III considered here, reduces to

)(nl[r)ngA g)f.—T( i(+N) 8
APE n E+co—Ei

=Ti+I (+co)(nl
i r[G«, (E„+co)] r

i
nl ),

where we have dropped the small imaginary part i g
in the denominator. Again we have used a Sturmi-
an representation of the derivative of the Coulomb
Green's function:

G(g) —(E ~ )
—&

The expansion, which has been obtained as a by-

product when establishing the one for G~"'(F„), is

given in Appendix B.

IV. NUMERICAL RESULTS

The numerical results, which we shall present and
discuss now, were obtained by summing the series
given in Eq. (34) for second-order amplitudes and in

Eq. (37) for the fourth-order ones. In order to im-

prove the efficiency of the computation we have
used routinely the e algorithm which has provided
reliable results in case of slow convergence (and
even in case of divergence) of the series. In subsec-
tion A we present our results for the second-order
contribution to the level shift and compare them
with previous calculations. Fourth-order contribu-
tions are given in subsection B. In order to get an
independent check of our results, we have per-

formed also a crude evaluation of the fourth-order
amplitudes by retaining only a limited set of bound
states in the infinite summations g„. %'e have2l)'

found that, in contradistinction with the second-
order case, such an approximation leads to very

t

poor results and we analyze the reasons of this rath-

er deceptive behavior. In subsection C, we consider

the limiting case co~0 and make the connection
with the dc-Stark effect. Finally, the case
2' &

~
E„~, i.e., when two-photon ionization is pos-

sible, is investigated in subsection D, leading to an

extension of the optical theorem to the case of mul-

tiphoton forward-scattering processes.

A. Second-order level shift

The computation merely consists of summing the
series Eq. (34). Two cases should be distinguished
according to whether the laser frequency ~ is small-
er or greater than the ionization energy of the atom-
ic state

~
E„~ = 1/2n . 1n the first case the parame-

ters po ——(n +2')'~ are real positive and

~ g& ~
&1. Then the series (34) converges very well

and the computation of approximate values of the
sum does not give rise to any particular trouble.
Our results are in excellent agreement with the most
accurate values given by Gavrila for the two-
photon amplitude r'&, '(co), Eq. (24) (see Table I).
One observes also a good coincidence between our
results and those obtained by Dubreuil for the
second-order contribution to the light shift of excit-
ed states (n =2,3) irradiated by a neodymium laser
(m=9440 cm '=4.3&10 a.u.) (see Table II). In
this table we present also the data obtained by Zon
et al. who used the quasienergy formalism: The
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TABLE I ~ Comparison of our results with those of Gavrila (Ref. 55) for the second-order
transition amplitude r&z(co), in the 1S state of hydrogen. An excellent agreement is found be-
tween these results obtained by using two different representations of the Coulomb Green's
function.

a.u. Re(1]g)
This work

lm(~",,') Re(~is)(2)
Gavrila

Im(~'&z')

0.02
0.04
0.08
0.1

0.2
0.4
0.8
1.0
2.0
5.0

10

—0.001 804
—0.007 269
—0.029 937
—0.047 843
—0.237 667

2.691 623
1.226 119
1.205 980
1.100074
1.025 888
1.008 098

—0.544400
—0.362 705
—0.095 814
—0.014455
—0.003 193

—0.001 804
—0.007 269
—0.029 936
—0.047 843
—0.237 667

2.691 623
1.226 119
1.205 980
1.100074
1.025 888
1.008 097

—0.544400
—0.362 705
—0.095 814
—0.014455
—0.003 193

discrepancies never exceed 1% for the states con-
sidered here.

In the second case, i.e., co y 1/2n, ionization can
take place and the amplitude ~'„I' (co), Eq. (24), ac-
quires an imaginary part connected via the optical
theorem to the photoionization cross section. "
More precisely the argument of the Coulomb
Green's function in the reduced amplitude

Tp (+m), Eq. (26), becomes positive and accord-

ingly the parameter p 0+ is imaginary:
pc+ —— i(

~

n —2'
~

)'—. As a consequence

i g+ ~

= 1 and one observes that (34) converges very

slowly or even diverges. In order to sum the series,
we have used the e algorithm, closely connected to
the Fade approximants. ' The results we have

obtained in that way are in excellent agreement with
those of Gavrila (see Table I). Moreover, since the
series (34) can always be expressed in terms of
Gauss hypergeometric functions 2Fi(1,b;c;z), one
can prove the convergence of the e-algorithm
scheme (see Appendix A and Ref. 26). In Table III
we have compared our results for the excited states
with those obtained by Zon et al. As expected,
the discrepancies are sometimes noticeable, the mix-

ing of states becoming of increasing importance in
this case. Note, however, that the order of magni-
tude still remains correct.

B. Fourth-order level shift

nlm

200
210
211
310
311
321

This work

—2.841(—4)
—5.264( —4)
—3.787(—4)

2.191(—4)
1.287( —3)
2.689(—3)

Dubreuil

—2.839(—4)
—5.262( —4)
—3.786(—4)

2.195(—4)
1.303(—3)
2.711(—3)

Zon

—2.844( —4)
—5.266( —4)
—3.788( —4)

2.185(—3)
1.302( —3)
2.703(—3)

TABLE II. Second-order contribution to the light
shift, expressed in cm ', of hydrogenic states

~

nlm ) ir-
radiated with a linearly polarized neodymium laser
(co=9440 cm ', I=1 MW/cm ). Comparison is made
with Dubreuil's results obtained by a direct summation
method (Ref. 25) and the data given by Zon et al. (Ref.
22) who took into account the degeneracy of the atomic
states, in the presence of the laser field. These results
show that the introduction of the quasienergy formalism
leads to corrections smaller than l%%u~ in the case con-
sidered here.

The main difficulty encountered in the computa-
tion is to sum the triple series, Eq. (37). Other con-
tributions, arising from the improper diagrams, al-
ways reduce to products of two simple series, with
structures similar to those we have discussed above.
Now, the convergence of the triple sum (37) de-
pends essentially on the respective values of the
variables g;, i=1,2, 3. One can verify that, if the
laser frequency is such that 2~ (1/2n, the param-
eters po; are real positive and

~ g; ~

(1, which en-
sures a good convergence of the summation process.
Note, however, that we have routinely used the e al-
gorithm, which has permitted us to significantly
improve the convergence rate of the nested sums.
We present in Table IV the resulting values of the
fourth-order amplitude (or dynamic dipole polariza-
bility) ~iq'(co), for the ground state, at several select-
ed values of the laser frequency co.

In the absence of previous theoretical calculations
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TABLE III. Two-photon hydrogenic amplitudes ~„'I' (co) in atomic units for a linearly po-

larized neodymium laser (co =4.30X10 ' a.u. ). The columns headed (a) and (b) are, respec-

tively, the real and imaginary parts of ~„'i' {co). By comparing with the results obtained by

Zon et al. (Ref. 22) one can check that the quasienergy formalism leads to significant correc-

tions only for excited states (see Sec. IV A).

State
nlm (a)

Zon et al.
(b) (a)

This work
(b)

100
200
210
300
310
320
321
400
410
420
421
500
510
520
521

4.55
181.6
336.5

—727.0
—1404.
—2036.
—1734.
—525.4
—568.6
—599.0
—601.5
—551.5
—457.2
—395.7
—462.7

201.8
222.6
141.7
148.8
73.41

107.2
100.2
71.07

4.55
181.7
336.7

—753.0
—1388.
—1984.
—1719.
—527.5
—568.3
—596.0
—601.0
—522.5
—452.7
—424.4
—462.7

174.5
226.7
168.3
148.4
92.70

115.1
80.47
70.84

and in order to check our computation, we have at-
tempted to get estimated values of ~'&q'{co). To this
end, we performed a rough evaluation of the infinite
sums, running over the (physical) spectrum, by in-

cluding only a limited number of bound states in
the summation. More precisely, we used a truncat-
ed representation of the infinite generalized sum
entering the Coulomb Green's function expansion:

ink, )(nA,
~

E—E„

instead of

TABLE IV. Second-order, s'iq(co), and fourth-order,
~'&q(co), dynamic dipole polarizability of hydrogen in the
ground state, in atomic units. (a) CO2 laser; (b) neodym-
ium; (c) ruby; (d) neodymium second harmonic.

G (E)=
E—E„

I"dk
~kA, )(kA,

~

0 E—E (43)

where the integral represents the continuous spec-
trum contribution. Since in the electric dipole

TABLE V. Comparison of the exact computation
with a crude estimation of the value of a typical fourth-
order amplitude

T'&pI (ri)) =(10
~
rGi(Ei+co)rGp(E&+2')

XrG|(El+co)r
~

10),
obtained by replacing

n max

Gi(E) — g ~

nA)(nA
~

/(E , E„) . —
n=A, + 1

co a.u.

2.00(—4)
5.00(—4)
1.00(—3)
4.30(—3)(a)
5.00(—3)
1.00(—2)
4.30(—2)(b)
5.00(—2)
6.56(—2)(c)
8.60(—2)(d)
1.00(—1)

—~ig(co)(2)

4.50000
4.50000
4.50003
4.50049
4.500 66
4.502 66
4.549 76
4.567 55
4.617 90
4.706 60
4.784 30

—~„(co)(4)

333.285
333.289
333.301
333.5
333.6
334.6
358.6
368.2
397.0
454.6
513.1

n max

5

10
15
20

Exact
value

t0 =0.1425

—0.7503( + 4)
—0.8769( + 4)
—0.1028( + 5)
—0.1179(+5)

—0.3598( + 4)

co =0.086

—0.2322( + 4)
—0.3012( + 4)
—0.3766( + 4)
—0.4516(+ 4)

—0.6855(+ 3)

As n,„ increases, the estimated value of Tip'~(~) does
not become stable and departs more and more from
the exact one.



988 E. ARNOUS, J. BASTIAN, AND A. MAQUET

(n, l
~

r
~

n, l+) }= , n—(n—' 1—)'~' . (44)

Such matrix elements grow like n, unlike those
connecting states with different quantum numbers n

and n' which decrease like (n ), where

n &
——sup(n, n'). The more we include states in the

triple summation, the larger these contributions,
which do not compensate one to the other and are
not counterbalanced by the continuous spectrum as
they should be in a correct calculation, become.
This very peculiar behavior illustrates the difficul-
ties encountered when trying to get sensible esti-
mates in high-order perturbative computations.

gauge this latter contribution is usually small with
respect to the discrete spectrum contribution,
such an approximation provides reliable estimates
in two-photon (second-order) calculations. Unfor-
tunately, this a priori favorable circumstance does
not hold anymore in fourth-order computations as
one can convince oneself by consulting Table V: If
one increases n, „, the obtained values for a typical
amplitude T~,~ ~, do not tend towards a stable limit

and, on the contrary, increase steadily. This rather
surprising behavior may be qualitatively explained

by the fact that the main contributions to the multi-

ple sums come from matrix elements connecting
atomic states with the same principal quantum
number [Ref. 53, formula (63.5); note the sign is er-

roneous in this reference]:

C. Connection with the dc-Stark effect

A test, which does not suffer such drawbacks, is
provided by considering the limit m~O. As a
matter of fact, one might expect that, if the fre-

quency goes to zero, the expressions of LE„' ' and
hE„' ' tend to the corresponding dc-Stark shift
corrections. This is verified at once in the second-
order case since

2

lim AE„' '= lim 2
~'„'(~)

co~ 0 f8~ 0

(45)

which is exactly the first nonvanishing term in

perturbation-theory calculation of the Stark effect.
One can verify in Table IV that, as co~0, the
dynamic dipole polarizability ~'&, '(m} tends towards

—,, in coincidence with the exact result for the static

dipole polarizability.
The verification is more intricate in the fourth-

order case since the first terms contained in the ex-
pression of ~„' '(co), Eq. (22), become singular when
co~0. In these terms, which correspond to the
proper diagrams I and II in Fig. 1(b), the initial
state

~

n ) is nor excluded from the infinite sum over
the states

~
n2), and they can be rewritten accord-

ingly":

+ Pf3 If) 267 (E„—E„,+~)(E„—E„,+~) (E„—E„,—~)(E„—E„—~)

+ s s s (~)„„,(~)„,„,(~)„,„,(~)„,„
1

(E„—E„,—a) )(E„—E„,—2')(E„—E„,—co)

Taking the limit ~~ 0, one easily extracts the apparent singularity in the first term, and one obtains

(z)„„,(z)„,„,(z)„,„,(z)„,„ /(z)„„, f /(z)„„,
/

'
o

" i+i' n3 n2~n n~ (En En )(En Ez )(E„—Ez ) n~ n3 (E„—E„)(E„—E„)
1 3

After regrouping with the other, nonsingular terms, contained in the expression (22), one gets eventually

(47}

(z)„„,(z)„,„,(z)„,„,(z)„,„ S S i(z)„„,i i(z)„„, i

lim ~„'4'(~)=6

which coincides, to within a factor 6, with the fourth-order contribution to the static dipole polarizability.
%%en specializing to the ground state (see Table IV), one can verify that, as m goes towards zero,
~'&z'(~ )~ —333.285, which is close to within 1 part in 10 from the exact value '
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lim r)s(co)= —6(4) 3555
e~O 25

Note that the factor 6=(2) arises from the number of combinations of four indistinguishable photons, taken

two by two, as displayed in the Feynman diagrams, Fig. 1(b). This factor disappears when averaging the
fourth power of the electric field operator, Eq. (21).

D. Generalization of the optical theorem

If the laser frequency co increases such that
I E„ I

~2r0 & 2
I E„ I, two-photon ionization is possible and the

amplitude corresponding to the diagram I in Fig. 1(b) (two-photon absorption followed by the stimulated

emission of two identical photons) becomes complex. This may be shown by considering its expression

(~) = 1;m (,
I
zG(E„+~+;q)zG(E„+2 +in)«(E„+~+in)z In)

o

where we have displayed the small imaginary part ig. This latter part is of importance, in the case considered

here, since the real part of the argument of the second Green s function is positive. One has explicitly

In2)(n2I Ik2)(k2I
lim G(E„+2ro+ir))= g + lim I dkz (50)
q~O + — g~O 0 + +

where the integral, corresponding to the continuous spectrum contribution, becomes

lim I dk2 =p J dk2 —
fran I k~)(k~

I

Ik2)(k21 - Ik2)(k2I
E~ +2' —Ek +l g O E+ +2+)—Ek EI =E&+2%

As a consequence, the imaginary part of v„' '(~) is

imr'"(~) = —~
I &kz

I
z«E. +~)z

I
n ) I

'
I E, =F.„+z

(51)

(52)

which is exactly, within a factor —m, the square of
the two-photon ionization amplitude. This may
be rewritten in terms of the two-photon ionization
cross section cr„' ', extending in some sense the opti-
cal theorem to the case of four-photon forward
scattering:

(2)
(4) 1 +n IO

a oIm~„(~)=-
4m m) I

This has provided us with another independent
check of our computation; see Table VI. However,
it is worth noting that, in this particular situation,
the Sturmian triple series Eq. (37), associated with
the amplitude (49), does not converge. As a matter
of fact, when 2' &

I E„ I, the parameter

po2 ———i(2 IE„+o2Ir)' and
I (2 I

=1: one ob-
serves then a strong divergence of the triple series
(37). Again, we have been able to sum it by using
the e algorithm, which has permitted us to easily
derive the corresponding Pade table.

The power of this technique is illustrated in
Table VII, where we compare a typical (divergent)
sequence of partial sums obtained from a direct

TABLE VI. Comparison of our results for the ima-
ginary part of the fourth-order dynamic dipole polariza-
bility Imr'&z(m) of the ground state arith the square of
the corresponding two-photon-ionization amplitude (Ref.
54). This comparison validates our numerical approach
for summing the (divergent) triple series Eq. (37).

co (a.u.) rtg(ro} —e
I
(kg

I
zGz

I
1S) I

0.3799
(A, =1200 A)

0.2849
(A, =1600 A)

—0.8350(+ 4)

—0.4164( + 4)

—0.8350(+ 4)

—0.4158 (+ 4)

summation of Eq. (37), and a (convergent) sequence
of Pade approximants obtained via the e algorithm.
Note, however, that the convergence of the Pade se-

quences cannot be assessed on the grounds of gen-

eral theorems in the case of such multiple series. In
spite of the lack of general proof, the accuracy of
our numerical results gives yet further support to
our method.
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TABLE VII. Comparison of a divergent sequence of partial sums

1 2 3S„= g gga. ,...,g('gg'g3',
l') =0 7'2 T3

with the corresponding diagonal sequence of Pade approximants obtained from the @-

algorithm scheme. The sum considered here corresponds to a typical complex amplitude
T'~0'~(co), Eq. (37), associated to the diagram I at co=0.3799 (A, =1200 A), i.e., when tmo-

photon ionization of the ground state can take place.

[n in]

1

2
3
4

7
8

9

17
18

0.963(+7)—i.222(+7)
—0.682(+ 8)—i. 142(+9)
—0.726(+9)+i.692(+9)

0.381(+10)+i. 142(+ 10)

0.768(+ 11)+i.330(+10)
—0.996(+11)—i. 125(+ 12)
—0.502(+ 11)+i.302(+ 12)

—0.333(+13)+i. 114(+14)
—0.144(+ 14)—i.815(+13 )

—0.130(+8)—i.265(+7)
+0.256(+7)+i. 135(+8)
+0.988(+7)+i.248(+ 7)
+0.650(+7)—i.526(+6)

4

+0.578(+7)—i.139(+5)
+0.578(+7)—i. 148(+5)
+0.578(+7)—i. 151(+5)

V. CONCLUSION

In this paper, we have presented an efficient and
reliable method, based on a Sturmian expansion of
the Coulomb Green's function, for computing
high-order perturbative amplitudes in hydrogen.
The stimulated radiative shift of a hydrogenic state
may be obtained, up to and including fourth order,
from the formula

'2

b,E„{co) ~„(co)+ ~„(~)+

to be asymptotic. There is no doubt that this
point would deserve further investigations in con-
nection with the other expansions obtained, for in-
stance, in terms of operator continued fractions.

10 .

It is interesting to note that, for the ground state,
at laser frequencies ~ ~ —,, the shift is negative, i.e.,
the 1S state is lowered, in similarity with the dc-
Stark effect. As a consequence, at low frequencies,
the stimulated radiative corrections in S states are
opposite to the Lamb shift which is positive (see
Fig. 2). One can check that this latter shift can be
compensated in the 1Sstate by irradiating a H atom
with a neodymium laser working at I—10"
%'/cm .

Another interesting fact which may be deduced
from our results listed in Table IV is that, still at
lower frequencies, the dc-Stark results provide a fair
approximation of the order of magnitude of the
corrections. Moreover, this similarity indicates that
the perturbative series for the ac-Stark shift is likely

8134
'

1D9 1D 1D $

FIG. 2. Second-order (solid line) and fourth-order
(dashed line) contributions to the level shift of the
ground state in the presence of a monomode neodymium
laser (co =4.3g 10 2 a.u. ) of intensity I. Here
I0——7.016X10' %'jcm . The horizontal dot-dashed line
represents the Lamb shift =+8134 MHz of the ground
state.
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We have also shown the usefulness of using

Pade-related techniques for summing poorly con-

vergent or even divergent multiple series. The ques-

tion of generalizing the concept of Pade approxi-
mants to the case of multiple series is by no means a
trivial one. However, the success of our approach

(see Table VII) shows that it is not hopeless.
As a by-product, we have given a Sturmian repre-

sentation of the reduced Coulomb Green's function
which should be useful in stationary perturbation-

theory computations in hydrogen. Another in-

teresting result was to show that approximate calcu-
lations, based on a partial summation of the discrete
spectrum contribution, can lead to misleading es-

timations of the magnitude of the fourth-order am-

plitudes. We have also obtained an extension of the
optical theorem to the case of multiphoton elastic
scattering by relating the two-photon-ionization
cross section to the imaginary part of the amplitude
of four-photon forward scattering.

summation index r, which implies that after some
algebra, T~ '(co) can always be expressed in terms of
a linear combination of sums of the following gen-
eral form:

S(p,q;a;g) = g r~ (r+q)! t."
(r+a) r! ' (A3)

where p and q are positive integers and a and g are
complex numbers. These series obey the recurrence
relation

R(p', q;g)= g rr
r=0

(A5)

which, in turn, obey another simple recurrence rela-
tion:

R(p', q;g) =R(p' —l,q+1;g)

S(p,q;a;g) =R(p —l,q;g) —aS(p —l,q;a;g),

(A4)

where

ACKNOWLEDGMENTS —(q + 1)R (p' —l,q;g ) (A6)

We have greatly benefited from discussions with
Y. Heno and S. Klarsfeld to whom we express our
thanks. We are indebted also to B. Dubreuil and P.
Pignolet who kindly checked several of our calcula-
tions.

APPENDIX A: CLOSED-FORM EXPRESSIONS
FOR SECOND-ORDER RADIAL AMPLITUDES

with

R(O,q;g)= g (r+q))g"/r!
r=0

g)
—(q+)) (A7)

Thus the series S{p,q;a;g) can be recurrently ex-

pressed as a sum of algebraic terms of the form
{A7), plus one term proportional to S(0,p;a;g):

Any second-order radial transition amplitude of
the general form

T), '(o) ) = (nl
~
rG)(E„+o) )r

~

nl ), k =1+1

S(O,p;a;g) = g
0 (r+a) r!

=—'
2F, (a,q + 1;a+ 1;g)

q!
CX

(A8)

'2

, po
—[—2(E„+o))]'

po+ 1/n

We have

rp'(~)= g a„g",
r=0

(A2)

where a„depends in a complicated way on the
parameters o), n, l, and A, [see Eqs. (30)—(34)], and
on the index r. The important point is to note that
a, contains polynomials of order p &(n —I) in the

(A1)

may be rewritten as a series expansion in the vari-
able

qt=—'(1—g) q 2F) ( l,a —q;a+ 1;g) .
lX

(A9)

Consequently, the amplitude T~ '(co) may be even-

tually expressed as a linear combination of algebraic
factors, plus one term containing a Gauss hyper-
geometric function.

In the particular case of a second-order amplitude
involving the ground state, i.e.,

T ( ))=o()10~ rG)(o) —,)r
~

10—),
2

PO —1

po ——(1—2o))'i
PO+1

one gets, for instance,
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12 Po (Pp+1) 1 1
Ti (co)= 2

——1+ ~F| 2 ——,4;3——;g
(1—pp) 2 (2pp 1) Pp I p

(A10)

which corresponds to Gavrila's result.
Generalization to any second-order bound-bound transition amplitude between states

~

n, l ) and
i
n', I') is

straightforward, though leading to cumbersome calculations. It should be stressed, however, that it is by far
more convenient, from a practical point of view, to directly compute the sum, Eq. (A2), which usually con-
verges very well. When it is not so (see Sec. IV), one can safely use the e algorithm for constructing conver-
gent sequences of Fade approximants (converging faster towards the exact result) which represent the analyti-
cal continuation of the series (A2). This is one of the main advantages we have encountered in using the Stur-
mian representation of the Coulomb Green's function in such computations.

APPENDIX B: STURMIAN EXPANSION FOR THE REDUCED
COULOMB GREEN'S FUNCTION

We start from the definition

aGg(E)+(E —E„) Gg(E)Gg (E ) — (E E )G/E
E=E E=E5 n

and replacing G~(E) by its Sturmian expansion, Eq. (28), one gets

5 " ~S„(p ))(S„„(p ) ~S„(p ))(S„~(p )
~

Gg(E) =-
( —po)( — 'po)

On using the orthogonality properties of the eigenfunctions of H„, one has

'n))(( 'nk
~

BE n' (E—E„)

(B1)

(B2)

(B3)

The next step is to note that the Sturmian functions are not orthogonal, and that the scalar product reads

(S„g(pc) iS„g(po)) =pp '[v5 ——,[(v —A, —1)(v+A)]' 5„„ I
——,[(v —A)(v+1.+1)]' 5„„~,] .

(B4)

Then one gets easily5, - IS„,(p, ))(S„(p ) i 1 (v —A. —1)(v+A, ) iS„,(p ))(S„,„(p )
i.=~+| (1—po)' 2 (1—vpo)[1 —(v —1)po]

1 (v —k)( v+ ki 1 )
~
S„„(p,) ) (S„, (p, )

~

2 (1—vPQ)[1 —(v+1)pp]
(B5)

This is the form we have used for expressing the second-order amplitude entering the expression of
(5/M)~„' ', Eqs. (41). The reduced Coulomb Green's function is then obtained by inserting (B5) into (Bl)
and taking the limit E=E„,i.e., pp

——1/n. The remaining finite result is given in Eq. (40). Note that, if we

consider the special case of the ground state, the reduced function becomes

Gc"( ——, ) = g ' ' —2e '"+" '[5—2(r+r')] .
S p(l')S p(T )

1 —v
(B6)

As the Sturmian functions can be expressed in terms of Laguerre polynomials, this may be rewritten as fol-
lows:
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L„'(2r)L„'(2r )
Gn ( ——,)=—2e '+'' 2 g +5—2(r+r')

v(v+1)
(B7)

—2Ei(2r & )

where L"„(r)are Laguerre polynomials. By comparing with the known representation

2J'

Go ( —2 ) =2e '+" ' 2 ln(4rr') +2(r + r') —7 — —+ —, +4y+
r r' r&

(B8)

one gets the nice summation formula

L„'(2r)L„'(2r')
=1—2y —1n(4rr')+ —+,— +Ei(2r ),v(v+ 1) 2r 2r' 2r &

(B9)

where r & is inf(r, r'), y=0.5772. . . denotes Euler's constant and Ei(2r & ) is the exponential integral function
+ ao

Ei( —x)= — e 't 'dt .
X

By considering reduced Green's functions for other atomic states, one could obtain more general formulas,
similar to those given by Erdelyi and others.
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