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Competition between resonant multiphoton ionization and third-harmonic generation:
A mean-field model
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In connection with a recent experiment of vacuum-ultraviolet generation in multiphoton
resonant ionization of xenon at increasing pressure, a model is elaborated to account for the
simultaneous effect of a laser excitation tuned near a three-photon resonance and a
pressure-induced emission from the resonant state to the ground state. Under certain as-

sumptions usual in various super-radiance treatments, a system of Bloch equations is de-

rived and numerically solved. The dependence of the ionization probability and third-
harmonic production versus the interaction time, gas pressure, dynamical detuning, and
laser intensity is extensively studied. A transition between a high and low ionization rate is

observed when the pressure increases simultaneously with the disappearance of Rabi oscilla-
tions and a saturation of third-harmonic generation. An order-of-magnitude calculation re-

veals that such phenomena are accessible to experiment and a qualitative comparison with
the above-mentioned results in xenon is found to be satisfactory.

I. INTRODUCTION

Recently, third-harmonic generation with a strong
suppression of the ionization yield has been reported
in a resonant multiphoton ionization experiment of
rare gases at a pressure higher than 10 ' Torr. ' The
explanation proposed by the authors is the building
of a "giant dipole" under the effect of the coherent
laser excitation. On the other hand, models involv-

ing a competition between "superfluorescent emis-
sion" and incoherent decay have been developed for
several years. Such effects should be present too in
multiphoton ionization experiments: The atomic
system is shown to undergo an abrupt transition be-
tween a high and a low degree of ionization, and
under certain conditions an hysteresis cycle can ap-
pear, pointing out the bistable behavior of the sys-
tem. The theoretical approach of Payne et al. is
based upon the usual third-harmonic generation
theory. It emphasizes the propagation effects of the
generated wave which, as well as the focusing, are
certainly of importance when dealing with vacuum-
ultraviolet (vuv) radiation in a rather dense medi-
um. Qn the other hand, the bistability models '

use a set of semiclassical Bloch equations derived
from a mean-field approximation. They lead to reli-
able predictions concerning the spectrum and the
statistics of the emitted light.

The alternative approach proposed here is an ex-
tension of this model, which emphasizes the dynam-
ics of the atomic variables, while the latter treatment
was dealing mainly with stationary solutions. The

elimination of the radiated field variables is made
possible by the introduction of a damping constant
which forces this field to follow adiabatically the
atomic motion. The main hypothesis here lies in
neglecting stimulated emission and absorption.
Thus the present treatment of pressure-induced
emission is analogous to the super-radiance theory
in an optically thin medium, ' including the ioniza-
tion loss terms. It can naturally apply to a time-
varying excitation or a non-zero-bandwidth laser.
The resulting mathematical formalism is a set of
nonlinear differential equations that have been nu-
merically integrated. The solution clearly exhibits
the dependence of ionization and third-harmonic
generation yields versus the various physical param-
eters, namely, the interaction time, dynamical detun-
ing, pressure, and laser intensity.

Section II deals with the theoretical background
and the validity range of the present treatment. The
differential system of Bloch equations is derived in
Sec. III. Then we develop the computer results, and
analytical expressions are obtained in the cases of
strong or low emission I,'Sec. IV). A comparison
with available experimental data and a general dis-
cussion of expected magnitude orders is finally
presented in Sec. V.

II. THEORETICAL APPROACH

In the problem of third-harmonic generation com-
peting with resonant multiphoton ionization, the
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atoms interact strongly with two waves, usually con-
sidered separately.

A. Laser-atom interaction

resonant state of the jth atom. Wc define the indivi-
dual operators:

&3,=-, (
I
J:e&&J:e I

—Ij:g &&j:g I &, i»)

The incident laser yield, which is tuned near the
three-photon resonance, is conveniently described in
R classical wRy bccausc spontaneous emission is
negligible in this mode,

E1(t)=e(t)e ' ' +c.c. , (l)

where e(t) is a slowly varying envelope; note that we
do not allow for spatial variations, but we can
describe a multimode field within this formalism.
Neglecting nonresonant level populations, the
single-atom multiphoton ionization is governed by
density matrix equations previously established by
several authors. Within the two-level model, the
coupling of the ground state and the resonant state
1S dCSCr1bCd by Rn CffCCt1VC HamllfOnlans Wh11C 1n"

coherent losses towards the continuum are depicted
by a non-Hermitian Liouville operator. Such a for-
mulation has been used in laser theory.

Let Ij:g) and IJ:e) be the ground stateand the

In the interaction representation, the time evolution

of the density matrix is given by

d8'
[H), W]+ [I ), W]+

dt lR

with

r 3

J

6 is the dynamical detuning,

2 2mg
I w. I

m mg

p being the electric dipole amplitude. The sum over
l, i.e., over atomic states coupled by one photon to
the resonant state, includes the continuum states,
and if the

I
j:e) state can be photoionized, this sum

must be considered as a principal value. I is the
ionization rate of the resonant state, which may be
ionized with one photon or (preferably) more. At
last, let

0 =2f~gE /A

be the three-photon Rabi frequency, with

PetPtmPmg

(GP~g
—2N 1 )(cd' —AP 1 )

Note that incoherent decay phenomena, such as
spontaneous emission or collisional transfer towards
other levels than those considered here, can be
described by terms like I . Here it is assumed that
the nonradiative transfer between the resonant state
and the ground state is negligible compared to the
laser-induced transition rate; the effect of a thermal
reservoir could have been accounted for through
some appropriate operator.

B. Radiated field-atom interaction

The third-harmonic field, assumed to originate in
spontaneous coherent emission, is described quan-
tum mechanically. The main treatment we will
refer to is the Bonifacio et al. super-radiance master
equation. ' The radiated field, quantized inside
the active volume itself, may be said to be a single-
mode field if this volume is characterized by a
Fresncl number much greater than unity. Moreover,
a damping term AF is introduced to account for the
escape of photons from the medium. This loss fac-
tor is essential because it forces the radiated field to
follow adiabatically the motion of atoms. Lct 8'be
the atom-plus-field density matrix', one has, in the
interaction picture

d8'
EA

[H3, W] +AF 8'
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AFW=ir([aW, a ]+[a,Wa ]) . (10)

In these formulas, G is the coupling constant be-
tween the atom and the third-harmonic radiated
field, K is a damping factor, and a, a~ are the usual
annihilation and creation operators of the field mode
k3.

C. Overall evolution equation

From (3) and (8), the atom-plus-laser-field plus ra-
diated field evolution equation becomes

[Hi, W]+ [I'i, W]+
dR' 1

rA

[H, , W]+AFW .1

rA

(12b)

(12c)

Since the attention is focused on cooperative phe-
nomena, we define the classical collective dipole
operators and the number of particles,

(12a)
J

R3 ——Q R3j , (N, N—s—), —
J

N, = X I
j:e)(j:e

I

J

N =Ng+N, .

(12d)

Equation (11) will yield the time evolution of the
mean values (R+(t) ), (Ns(t) ), (N, (t) ), and
(a(t)). Throughout this paper, we assume that the
phase-matching condition is fulfilled, i.e.,

k3 ——3k1 . (13)

This requirement is discussed in the Appendix.
Moreover, the following basic hypotheses are made:

jr »v NG, (14a)

K))I,Q . (14b)

They imply that stimulated emission and absorp-
tion are neglected, which is consistent with the
phase-matching assumption. Note that condition
(14a) is certainly very difficult to fulfill in the uv re-

gion, except for very small systems. However, this
approach allows us to exhibit a quite general
behavior.

Equation (11) leads to the following general sys-
tem involving mean values:

—(R+) = —id+ —(R+) iQ*(R,—) 2iG(a R—3),
dt 2

(isa)

—(N ) =i (R+)—i (R )—+iG(aR+) —iG(a R ),
dg ' 2 2

(N, ) = —I—(N, ) — (N ), —d
dg

' ' dt

—(a) = —iG(R ) —ir(a) .d
dt

(15b)

(15c)

(15d)

III. SYSTEM OF BLOCH EQUATIONS

The above system is not of Bloch type because it
involves mean values of products such as a R3. It
can be put into a more convenient form by using a
few approximations already discussed by Bonifacio

l 11,12

thus follows adiabatically the atomic dipole

(a(t)) = i (R —(t)—) .. G

B. Decorrelation approximation

(17)

A. "Adiabatic approximation"

From (15d), (a (t) ) can be expressed as a function
of(R )

Under certain conditions, the a and R operators
involved in (15) can be decorrelated. First, note that
Bonifacio et al. " have shown, provided the condi-
tion a » ~NG is met, that

t

(a(t)) = iG f dse—"'(R (t —s)) . (16)

As it will be shown later, (R (t)) evolves slowly
during times of the order of 1/K if the conditions
s »Q, l, v NG are fulfilled. The radiated field

(a R )=i (R+R ) .—. G

K

Second, the validity of the decorrelation

(R+R (t) ) = (R+(t) ) (R (t) )

(18)

(19)
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has been studied numerically. In super-radiance
theory, it has been shown that (19) is quite satisfac-
tory for a system initially in a "Dicke state, " i.e., a
system excited by a coherent mf2 pulse. The
decorrelation is only approximate when a total pop-
ulation inversion is created at time t=0, owing to
the large quantum fluctuations necessary to initiate
the super-radiant pulse.

The validity range of the decorrelation can be
studied in the present case. When a full population
inversion is reached, the system is driven by the
laser field, and the coherent spontaneous emission
has a negligible effect on its evolution. Thus the
fluctuations otherwise necessary to initiate the
super-radiant emission are not of importance here.

From a more quantitative point of view, the
departure from the classical situation (where a whole
decorrelation is assumed) is sho~n to be important
only when'

8 being the "tipping angle" of the Bloch vector, de-
fined by

~Q aQ 1

2G'(R+ ) 2~G' sin8

Introducing the boundary value (20a) in (21) we ob-
tain the ratio

p vN
2NG

(22)

Provided that the dimensionless quantity
(xQ)/(2NG ), hereafter called m, is much larger
than 1/v N, the laser interaction dominates the evo-
lution when spontaneous emission alone would
create important quantum fluctuations. This condi-
tion (p &g1) is certainly easy to fulfill practically.

Within these approximations, the following non-
linear differential system can be written:

&R3 & =—cos8 .N
2

Let us now compare the strengths of the laser
driving field and of the radiated field in (15a),

n*&R, )
26( tR, )

&+—&R+) — ((&, &
—&& &)+ &R+&((&,) —&& )),d . I . Q~ G

df 2 g g (23a)

Q* 26—„&~,&= —,«')-, &R-&+ «&«-&,
—(x, )=——(x ) —r&x, ).d
dt '

dh

We define the "super-radiance rate" as

2NoG1

TSR

1 3
2 No —

vrad ——NoPvrad s

TsR Sm
(2Sa)

where No is the initial number of atoms. It can also
be expressed in terms of the single-atom radiative
decay from e to g (v„d),of the generated wave-

length (A,3) and of the radius of the active volume
(a) as'

ETsR ——5,
I Tsa —v

QTsR =cg .

(26b)

(R+(t) ) =Xo[r&(t)+irq(t)],

We suppose from now on that m is real without
true loss of generality. Using four new real func-
tions

where

(2Sb)

&X,(t)) =X,n, (t),

(N, (t) ) =Non, (t),
the system (23) can be written

(27c)

is a geometrical factor.
This cooperative emission rate allows the defini-

tion of four reduced parameters,
d v

r&+5r2+ —,ri(n, —n ),
dT

(28a)
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l+ —,( —a+re)(n, —ng ), (28b)

n = —Nr2+r ~ +r2,2 2

2 2 2 2
(n, nz —r~ —r2)= —v(n, nz —r& —r2) . (29}

Therefore, if initially

= 2 2
ning =r ) +r2

which condition is of course fulfilled for a system in
its ground state at t=0, then the equality (30) holds
at any time. This condition means that no depolari-
zation occurs during the interaction. It would be
different if elastic collisions had been included in the
effective Hamiltonian, the square of the dipole being
then smaller than the product of populations.

To conclude this section, note that usually one
also writes the third component of the equivalent
vector

n~ = — n —vn~
d~

' d~ '
A new equation can be readily derived from this sys-

tem,

Our results are summarized in Figs. 1—5. In each
case, a square pulse is assumed, and the laser inten-
sity is such that Q/I =10. The set of reduced
parameters (26) is particularly convenient because it
allows for a calculation without specifying the
atomic values.

The time dependence of the atomic level popula-
tions g, e and ionization probability c is plotted in
Fig. 1(a)~ Figure 1(b) represents the corresponding
emitted intensity i and number of photons p. The
parameter co is 10. Note that curve e, population of
the excited state, is the derivative of curve c, number
of ions, and curve i, instantaneous intensity, is the
derivative of p, time-integrated number of phoions.
In the present case, it is clear that the behavior is
mainly determined by the laser driving field. The
number of emitted photons remains relatively small.

Figure 2 represents the opposite case, where
~=0.31, which corresponds to the same laser inten-
sity as in Fig. 1 but to a pressure 32 times higher.
The oscillating behavior of the populations disap-
pears during the first six Rabi periods. In this case,
the radiative damping is so strong that it may be
said to be "overcritical. '* But ionization

r3(t) = —,(n, —ng ) .

Here, as pointed out by Georges et al, , the classi-
cal vector model of Feynman, Vernon, and
Hellwarth does not apply because the ionization14

reduces the length of this vector. However, this
physical representation remains useful. For exam-

ple, the square of the transverse component is

2=2 2
rg =r) +rg (32)

Up to the factor Xo, this is the number of third-

harmonic photons emitted per unit time. The total
length of the rotating vector is

(r ) +r2+r3) =
2 (n~+ng), (33)

which is the number of neutral atoms still present in
the medium divided by 2NO.

~ TI%8 (Tggj

— 0.20

- 0.10-

The system (28) has been solved by numerical in-
tegration using a standard fourth-order Runge-
Kutta method. The limiting case where radiative
terms are disregarded leads to the well-known
resonant multiphoton ionization solutions. ' The
condition (30) has been checked at each step of in-
tegration.

O & 2 3 & S VI~~ (Vsa

FIG. l. (a) Time evolution of the atom and {b) the radi-
ated field during the interaction. The reduced parameters
defined in {26) are co=10, v=1, and 5=0. Abscissas:
time ~= t/TsR. Ordinates: (a) g, ground-state popula-
tion; e, excited-state population; c, ion number per atom.
(b) p, photon number per atom, the corresponding scale
being on the left; i, radiated intensity with the scale on the
right, in units Xopv„,d.
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FIG. 3. Dispersion curves of the photon number (solid

lines) and the ion number (dashed lines) per atom. Re-
duced parameters: ~ =10' and v = 10'. In the abscissa, 5
is expressed in units of Q. The various curves correspond
to the following interaction times: a, t=0.02 TsR ——20/0;
b, t=0. 1 TsR ——100/0; c, t=0.5 Ts& ——500/0, ; and d,
t =2.5 TsR ——2500/B.

100 150 Time (TsR)

FIG. 2. Time evolution of the atom and radiated field.
Same situation as in Fig. 1, except for the pressure which
is 32 times higher. Therefore ~o =3.125 X 10
v=3.125&10, and 6=0. The abscissa scale is such

that equal lengths in Fig. 1 and this figure correspond to
equal interaction times t and reduced times ~ in a ratio of
32.

In Fig. 4, the time interaction is equal to 100/0,
and the various curves correspond to increasing den-
sities. The ionization yield, saturated at low pres-
sure, decreases while the photon number increases
and the "Rabi profile" broadens, no splitting being
present if a &0.3.

A more explicit representation of the pressure
dependence of these signals is given in Fig. 5. The

meanwhile reduces the number of neutral atoms and
the cooperative emission, proportional to n, ng, de-

creases rapidly when roughly 60% of the atoms are
ionized. Then the damped Rabi oscillations reap-
pear. Note that they are asymmetrical: Upward
transition is only owing to three-photon absorption,
while downward transition is owing to stimulated
emission plus spontaneous decay. The generated
photons are mainly produced in the first, nonoscil-
lating stage. If the interaction time is shorter than
the critical time defined by the transition to the os-
cillating regime, the ionization probability can
strongly decrease compared to its low pressure
value.

Figures 3 and 4 are dispersion curves, the zero
abscissa corresponding to the dynamical resonance.
The solid curves represent the number of emitted
photons per atom and the broken lines represent the
corresponding ion number.

In Fig. 3, the interaction time is varied, while
laser intensity and pressure are kept constant such
that ~ =10, v=10 . The generated harmonic sig-
nal exhibits the classical Rabi splitting. In this case,
the maximum number of photons is not obtained at
exact resonance.

~~~J~l I J I I J,~
-8 -4 O 4 8

DETUNING h, /0
FIG. 4. Dispersion curves of the ion number per atom

(dashed lines) and photon number per atom (solid lines).
The interaction time is equal to 100/fL, and the laser in-

tensity is such that 0/I =10. a, v=10; b, v=1; c,
v=10 '; d, v=10; and e, v=10 '. These curves are
symmetrical with respect to the axis 6=0.



M. POIRIBR

number of photons and lons produced pc1 atoIB at
dynamical resonance is plotted versus the parameterv, directly proport1onal to thc prcssure. Thc vari-

ous curves correspond to various interaction times,
Essentially, two different regimes can be dis-

tinguished. If QTs~ ««1, i.e., at low pressure, the
cffcct of collcctlvc emission 1s s1Tlall. In this case,
thc cmittcd 1ntcnslty bclng P] +I'2 1n rcduccd units
thc number of cIMttcd photons can bc obtalncd from

= I [r, (cr)+r2(o)]der

Using the results of resonant multiphoton ioniza-
tion,

—(1 /2 jt p2
ns(t) = —P+4 + cosh ~Psin+t +~P icos++ —sin+ sinh YP sin+tI' 2 4 2 2 2 2 2

+ —P b, — co—s icos t +vP —b, sin +—cos+ sin ~Pcos+t1 2
I" I

2 4 2 2 2 2 2

The integration involved in (34) can be performed analytically. For an interaction time corresponding to sa-
turation, onc obtains

(s)
&ph 1

2I TSR r' '
Q2++2 + I 2+2

1

2I TSR

At resonance, the approximate formula (36b)
holds if I ««0 &1/TsR or if 0 ««I" «1/Tsa. Far
from resonance, it is vahd if

~
6

~
&&max(I, D)

««1/Ts~ whatever the ratio I /Q. When 0 ««I,
the third-harmonic saturation signal is

(s)
&]h 1

No 8I TSR
(37)

]

at dynamical 1csonRncc, and

&ph
(s)

&0 2I TSR.

if the saturation is reached far from resonance, this
last value being an absolute maximum for N&h/No,
whatever the parameters.
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FIG. 5. Constant intensity v ' dependence (i,e., pres-

sure dependence} of the ion number (dashed lines) and

photon number (solid lines) per atom. The chosen value

for 0/I is 10. Using the order of magnitude given in

Sec. V and the intensity value J =10" Wcm, we get
v-1 when p-4X10 Torr. The various curves corre-

spond to various interaction times. a, t = 1/0; b,
t= 10/0; and e, t = 100/Q.

As could be guessed, the smaller the ionization
rate is, the larger the radiated energy is. Thus an ex-
perimental situation where tl.e excited level is ion-
ized with two or more photons is preferable. This
condition was met in the Miller et al. experiment. '

Furthermore, the following discussion assumes gen-
erally that O is much larger than I . Last, concern-
ing the low-pressure results, we note that 1/2I TsR
is a linear function of pressure, and thus the total
number of emitted photons varies quadratically with
the atomic density, as expected in cooperative emis-
sion phenomena.

A striking feature in Fig. 5 is the abrupt decrease
of the ionization yield for atomic densities such that
OTsR &1. In the limiting case 1/TsR &pO and I",
the ionization probability decreases as Xp and thus
the total ion number is inversely proportional to the
pressure

¹=XpO I TsRt = 1 O'I
Np p2~2d

with the above definition of p (25b).
On the other hand, the number of photons per

atom behaves like v or N p ', and the total number of
photons is approximately independent of the pres-
sure,

These expressions are valid if O ~gI and only as

long as the oscillatory regime is not reached. This
condition can be roughly expressed by writing that
the photon yield given in (37) is greater than the cor-
responding value (40),

FO ~sat& —,

It should be emphasized that relation (41) is valid

only if the isolated atom ionization process is sa-
turated with the chosen values of the intensity and
interaction time. Below saturation, the number of
photons emitted at resonance is given by

&ph 1

Np 8F&sR

which is valid if t is greater than the Rabi period.
Equating this expression to the one given by (40)

leads to an approximate relation characterizing the
appearance of Rabi oscillations,

O I 1sRt = —,(1—e ') (43)

It is interesting to note that if

1
OTsR )

8

Eq. (43) has no solution and the regime is purely os-

cillating. Conversely, if by a pressure increase or in-

tensity decrease the opposite condition is met, then
(43) defines an optimum laser intensity if pressure
and interaction time are kept fixed or equivalently
an optimum interaction time for a given intensity
and pressure.

The effect of pressure and laser intensity is not
completely equivalent. If the laser power is kept
fixed, then for sufficient pressure the nonoscillatory
regime is reached, and with increasing pressure one
observes no spectacular effect (as long as no
avalanche phenomena occur) because the number of
emitted photons saturates. On the other hand, at a
constant atomic density, the photon number is a
more complex function of the laser intensity J. At
low intensity, it is proportional to I3 [see i40)]; it
then reaches a maximum and finally decreases like
I if the resonant level is two-photon ionized.

V. DISCUSSION AND CONCLUSION

It is instructive to compare our results to experi-
mental observations of Miller et a/. ' No accurate
value is available for the Rabi frequency or ioniza-
tion rate in xenon, so this comparison is essentially
qualitative. The reported photon number is roughly
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linear with pressure below 0.2 Torr.
The present theory predicts a p law under these

conditions. Several phenomena not included in it
(collisions, for instance) can certainly decrease the
emission signal. The strong dependence of the shift
and broadening toward the pressure observed in the
experiment is not reproduced in our model because
propagation effects are not taken into account. The
shift considered here is simply induced by the laser
excitation. Conversely, the broadening obtained in
this model

1
=&oP&rad

~SR

is linear with pressure and has the correct order of
magnitude. Furthermore, the saturation of the pho-
ton number at high density is well reproduced in our
model, as well as the simultaneous abrupt decrease
of the ionization rate. A cubic dependence of the
third-harmonic production versus the laser intensity
was reported, which agrees with the expression (40),
valid in the strong emission range. It is thus clear
that the "regime transition" described here has been
observed by Miller et al. Of course, the directivity
of the coherent emission is in agreement with the
present model where the radiated intensity is con-
centrated within the diffraction angle.

Let us now give typical orders of magnitude. As-
suming a single atom radiative width equal to 10
s ' for the resonant level, a third-harmonic wave-

length of 1450 A and a tight focusing, limiting the
effective region of interaction to a cylinder 200 pm
long, one finds that the super-radiant rate defined by
(24), is, in s

1
(2 x 10i2)

Torr, the "critical" situation QTsa =1/W8 occurs at
I =2 g 10Io W cm . This shows that, in spite of
the inaccuracy of these numerical values, the phe-
nomena studied here correspond to realistic situa-
tions with the high-power lasers now available.

The present work proposes a formulation of
pressure-induced third-harmonic generation which,
in contrast to the previous treatments, does not in-
volve the resolution of either the Maxwell equations
or of a X-atom density matrix equation. Though
propagation effects are not taken into account, this
single-atom approach is really adequate to bring a
physical representation of the processes.

It predicts a transition between two very different
behaviors of the atomic evolution, the critical value
of pressure can be related simply to the atom and
field parameters. Collisions in the impact approxi-
mation can be easily included in the present set of
equations. Moreover, this formalism can be easily
extended to the case of a multimode laser field.
Several theoretical developments are thus possible,
and new experiments are desirable to test the con-
clusions of this model.
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APPENDIX

The validity range of the phase-matching condi-
tion (13) is studied here. This condition is

where p is in Torr units.
A two-photon ionization cross section is typically

10 cm s for nonresonant phenomena. ' Then

v-4X10 [I(Wcm )] /p,
where p is in Torr units.

The determination of the Rabi frequency is much
more difficult because expressions like (7b) involve
severe destructive interferences. Nevertheless, tak-
ing for 0, '

0=2X10 '[I(Wcm ')]' '(s '),
gives

m —10 ' [I(Wcm )] /p

where p is in Torr units.
This gives a more convenient scale for the figures

of the preceding section. For a gas pressure of 10

(A1)

L is the length of the medium, n3 (or n
& ) is the re-

fractive index of the medium at frequency 3'~ (or
mi). Since the laser frequency is not one-photon
resonant, we assume n&-1. Moreover, L is much
greater than k3, thus (A1) implies that n3 must not
be very different from 1.

The Sellmeier formula gives a rough estimate of
the maximum refractive index n 3,

4mnroe 2

n 3
—1=2(n3 —1)(

3' i A

where n is the vapor density, ro is the classical ra-
dius of the electron, and A is the damping factor of
the dipole. In cases of practical interest, the three-
photon Rabi frequency 0 is greater than the ioniza-
tion width, and we will adopt for the electromagnet-
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ic broadening the value

A=A . (A3)

Thus the maximum wave-vector mismatch is
iven by

(A5)

g
L 1 e ~0~3 1

(n —n, )—( (A4)
4rr +

i p i
QTsR

where a is the fine-structure constant and all other
quantities are defined in the text. An order-of-
magnitude estimate (see Sec. V) shows that the nu-
merical factor in front of 1/QTsR is close to unity.
Thus the phase-matching condition in its most
severe form should require

QTsR ))1 .

Assuming 0/1 =10, the validity range of the
present theory should be v ' gg10. We can see in
Fig. 5, for instance, that this restriction removes
part of the interest of this study. Nevertheless, we
must keep in mind that n3 is close to its maximal
value only when co3 differs from E,g by a quantity
less than A. The disagreement between the experi-
ment and this theory is expected to be smaller for a
slightly nonresonant excitation. Finally, it is in-
teresting to note that the phase-matching condition
is less severe when

~ p,s ~

is small, e.g. , intercom-
bination lines. Of course, these remarks are mainly
qualitative, and a more involved study is necessary
at exact resonance.
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