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Reduction of degenerate two-level excitation to independent two-state systems
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Examining the dynamics of a degenerate two-level system excited by coherent resonant
light, we exhibit a transformation of basis states which reduces the problem to a set of in-

dependent nondegenerate one- and two-state systems. More generally, reduction of mul-

tilevel Hamiltonians requires only that the states can be collected into two sets; within each
set the states are degenerate, unlinked by Hamiltonian matrix elements. The remaining
Hamiltonian linkages must share the same time dependence, but are otherwise arbitrary.
We apply this method to reduction of the angular momentum degeneracy of a two-level
atom excited by elliptically polarized light and to multiple-laser resonant excitation of multi-

ple levels into a common level.

INTRODUCTION

The nondegenerate two-level atom (or, more pre-
cisely, two-state atom) provides an important model
in treating time-dependent excitation (see Allen and
Eberly') and serves as the basic starting point for
more elaborate studies of atomic and molecular exci-
tation by lasers. The presence of magnetic sublevels
can complicate the appearance of the dynamical
equations, but in this paper we show that, even
with arbitrary elliptically polarized light and with
degenerate sublevels, the coherently excited near-
resonant decay-free two-level atom can be treated as
a set of independent two-state systems. (Of course,
this superposition of two-state systems does not
behave as any effective "average" two-state system. )

Figure 1 illustrates the reduction of interest. Fig-
ure 1(a) shows the dipole-transition linkages present
with elliptically polarized excitation (a combination
of AM=+1 and —1, where M is the magnetic
quantum number) for transitions between levels hav-
ing angular momenta 1=2 and 1. In the absence of
radiative decay, the dynamics comprises two in-
dependent systems: a three-state "A," (dashed line)
and a five-state M (solid line). We show that one
can always introduce a new basis of upper- and
lower-level states (replacing the basis of magnetic
sublevels) within which the dynamics follows a pat-
tern appropriate to the one- and two-state linka'ges

of Fig. 1(c). The linkage patterns of Figs. 1(a) and
1(c) are familiar from expressions of linear polariza-
tion in terms of a quantization axis along the propa-
gation direction [Fig. 1(a)] or along the electric vec-
tor [Fig. 1(c)]. The present, more general, transfor-
mation applies to excitation with arbitrary multipo-
larity and polarization as well as to arbitrary degen-
eracy.

Although we term the system of interest a degen-
erate two-level atom, we point out below that
transformation applies to a class of more general
multilevel systems.

M=-2

J —2

FIG. 1. (a) Excitation linkage pattern for electric-
dipole transitions between a ground level having angular
momentum J=2 and an excited level having angular
momentum J=1. The pattern comprises two separate
linkages, an M system shown as full lines, and a A, shown
as dashed lines. Labels show magnetic quantum number
M. (b) System dynamically equivalent to that of (a), ob-
tained by introducing new degenerate basis states for the
M linkage. (c) System dynamically equivalent to that of
(a), obtained by introducing new basis states for the M
and the A, systems.
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STATEMENT OF THE PROBLEM

The problem of interest requires solution of a
time-dependent Schrodinger equation

i—c;(t)= gH;, cj(t)~ d

J

for the probability amplitudes c; (t). The Hamiltoni-
an matrix H has the structure

hi V
[H]=

where h i and h2 are diagonal submatrices and where
V denotes the linkages between sublevels of level 1

(having angular momentum J& ) and those of level 2
(angular momentum J2) originating in the laser
driven excitation.

In the rotating-wave approximation (RWA) the
elements h; represent detunings, and V is a matrix of
(slowly varying) Rabi frequencies, proportional to
the electric field strength and to appropriate
Clebsch-Gordan coefficients. For our method we

only need assume that h
~

and h2 are (possibly time-
dependent) scalar multiples of unit matrices and that
the ratio of any two elements of V is time indepen-
dent.

Now we can always introduce a unitary transfor-
mation on the basis states

c'= Uc

with

URDU=1= UU

such that in the new basis the amplitudes satisfy the
matrix equation

i —c'=H'c'
dt

with

H'= UHU

This is equivalent to introducing a new set of basis
states Ii )'

Ii)'= & I
j»'; .

J

We shall show that we can always find a transfor-
mation such that H' represents independent one-
and two-state transitions.

THE TRANSFORMATION

The transformation of interest must only mix sub-
levels of a given level. Thus we can express the ma-
trix U in terms of unitary matrices A and B

A 0
[U]:

()

with

A 'A =I]=AA, B B=I2 =BB

Here I] and I2 are the identity matrices appropriate
to the dimensions 2J]+1 and 2J2+1, respectively.
Then the transformed Hamiltonian has the form

h] M

M h'2.
where

h] ——Ah]A, h2 ——Bh2B, M=A VB' .

Although the matrices h; and A and B are square
matrices, the matrices M and V need not be; levels 1

and 2 may have different degeneracies. Our goal is
to obtain a matrix M for which each sublevel of the
lower state connects to no more than one upper sub-
level and vice versa. Thus if we extract from rec-
tangular M a square matrix M, then M will be a di-
agonal matrix when the sublevels are suitably or-
dered. The eigenvalues of M are half the Rabi fre-
quencies for the transformed problem.

If we are to succeed in representing the degenerate
two-level atom as independent two-state systems,
then the (square) matrices h must be diagonal. The
original matrices h; are, by the degeneracy supposi-
tion, scalar multiples of the identity matrices I;.
(Indeed, they are null matrices for exactly resonant
excitation. ) Thus the transformed matrices h will
indeed be diagonal, and furthermore, they will main-
tain the original degeneracy; we have

h =h;.
The assumption of degeneracy rules out applica-

tion to strong magnetic fields or appreciable hyper-
fine splitting whenever the sublevel energy spacing
becomes a non-negligible fraction of the nonzero ele-
ments of V.

Next we observe that

MM =A VV A and M M=BV VB

are square matrices. As a step toward our goal of a
diagonal matrix M, let us require that these be diag-
onal. That is, we define (in part) the unitary ma
trices A and B by requiring that they diagonalize VV~

and V V, respectively. Now the eigenvalues of VV~

and V V are real and non-negative, so that we can
write them as squares. To prove this assertion we
note that if u is a non-null eigenvector of VV,

VV u =Au,

then
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u (VV u)=)ifiu//

where ~

~

u
~ ~

denotes the norm of u. But we also have

u (VV u)=(V u) (V"u)=
i i

V uii &0.

aj @0,
and let uj be the vector

llj —M VJ

Then

Thus the eigenvalue k must be real and non-

negative.
We therefore can write the diagonalized matrices

in the form

AVVA =MM =a

BV VB =M M=b

(that is, the matrix a has diagonal elements a; ).
We require that the new basis states are ordered
such that elements of a and b are arranged in

nonincreasing order. (The number a; is half the
Rabi frequency for a two-state transition. ) If each
of the matrices a and b consists of distinct
nonzero diagonal elements, then we can identify the
desired matrix M as (a ) or (b ), since both a
and b will then be square and equal to each other
(as shown below). However, the general case will

admit degeneracies and null eigenvalues with which
we must deal.

Next, we want to eliminate the null subspaces of
the matrices V and V . [By definition these yield
null values for elements of M=AVB, and hence
they correspond to (uninteresting) unlinked levels
which do not participate in the excitation dynam-
ics.] We proceed by removing all of the null eigen-
values of a and b to form the (diagonal) matrices
a and b,

M Muj ——M (MM )vj ——aJM vj ——ajuj,
and u is an eigenvector of M M having eigenvalueJ
aj. The vectors Iuj ] are linearly independent (oth-
erwise some combination of I UJ ) would be in the ex-
cluded null space of MM ). Thus we see that M M
has the same eigenvalues and multiplicities as MM .
Because a and b are diagonal with eigenvalues ar-
ranged in nondecreasing order, they are equal.
Hence M commutes with its adjoint

MM =M M,
so that M is a normal matrix.

Now any normal matrix can be diagonalized by a
unitary transformation. We can therefore prove
that, because the matrix M is normal and M M ~ is
diagonal, M can be decomposed into the product of
a diagonal matrix and a block unitary matrix Q (see
the Appendix). The diagonal factor is just the ma-
trix a =b, where all the diagonal elements are
chosen to be real and positive. Thus we can write

M=a Q,
where Q is block unitary,

Q Q=QQ =I3,
and where the matrix of interaction strengths is the
diagonal matrix

a~a and b~b
Similarly, we discard the corresponding rows of A, B
and columns of A ~,B~ to form new matrices A, B,

A~A and B-~B .

Using these truncated matrices we then construct
the desired matrix M,

M=A VB

Now according to our construction we have

MM~=a and M~M=b

We can show that, except for their null spaces, MMt
and MtM have equal eigenvalues of equal multipli-
cities. Let vj be an eigenvector of MM having a
nonzero eigenvalue

f.—2.MM vj
——aj vj

with

Here I& is the unit matrix appropriate to the dimen-
sionality of M. If the matrix a is nondegenerate,
then Q will be the unit matrix; if eigenvalues of a
occur in pairs, then Q will comprise 2 && 2 blocks.

Given the matrix M (which we obtain by con-
structing A VB ), we can obtain the matrix Q by di-
viding by the diagonal matrix a,

Q=(a) 'M or Q =M (a)
Because a has, by construction, no null eigenvalues,
the inverse ( a )

' is well defined. We can now use
this matrix to construct a transformation for the
level-2 sublevels

B"=B"Qt=BtBVtAt(a )

which will complete the diagonalization of the in-
teraction V. That is, the matrix

M=A VB
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is diagonal. It has the elements

m=z=(W VV'W ')'" .

(Note that although BB =I2, the reverse is not
true, 88 &8 B.) The desired transformation of
the Hamiltonian therefore has the form

where e is the electric field strength, d~ is the dipole
moment operator, x = exp(iq) is a phase factor, and
the parameter p, bounded by —1 &p (+ 1, expresses
polarization: p=+1 for circular, p=0 for linear.
Within the M system the RWA matrix V has the
form

A 0
~o 0'"= oa
0 8

( —1)

x [6(1+p )]'/
V= x'(1 —p)'"

0

(+1)
( —2)

x(1+p)' ' (0)
x ~[6(1—p )]'/2 (+2)

where A and 8 denote the null spaces of 2 and B.

EXAMPLE

To clarify how this diagonalization proceeds in
practice we examine a particular case. Consider the
example of the "M" linkage portion of the RWA
Hamiltonian of the J=2 to 1 excitation shown in
Fig. 1(a). The elements of the RWA Hamiltonian
within levels are

where 0 is the real-valued Rabi frequency.
To find the transformed basis states we begin with

the excited level because it has the smaller degenera-
cy, two. We form the matrix

7+5p x (1—p )'
V V=

20 (x*) (1—p )'~ 7—Sp

The transformation 8 which diagonalizes Vt V is

100
hl ——a)II( ——mi 0 1 0

001

x'(f+5p)'/ x(f Sp)'/—
x4t(f 5p)1/2 x(f+gp)1/2

1 0
A2 =c02I2 =c02 0

1+p
2

1 —p]x+
2

We are free to choose the RWA phase such that

col ——0, and hI is a null matrix. Then mq expresses
the detuning of the laser from the Bohr transition
frequency; h2 will be null if the laser is tuned to res-
onance.

To evaluate the interaction operator V we employ
an helicity basis with states labeled by magnetic
quantum number M appropriate to quantization
along the propagation direction. We express the
electric-dipole interaction operator in the form

' 1/t'2 1/2

V= d+ IX E'

f—(1+24p2)1/2

The eigenmatrix b is BV VB, so that the matrix b

( '7 +f )
1/2 ()

0 ('7 f )1/2

The two eigenvalues are distinct and nonzero (be-
cause —1 &p & 1 and thus 1 &f & 5) so we have

This transformation is equivalent to a change of
basis states from those labeled by magnetic quantum
number

I
M ) to states

I
n ) ' where, with x = 1,

I
1&'=[

I
1&x(f+'5p)'"+—I+1&x'(f &s )'"]~v 2f —( I+1&+

I

—1&)/'1/2
p=0

I
+1),

@=+I

I
2& '=[—

I

—»x(f —5p)'"+
I
+1&x'(f+&p)'"]/'v 2f ( —

I

—1&+
I
+»)/~2

p=0
+ I+1) .

p —+]

Thus pure circular polarization (p=+1) corresponds, at most, to a phase change. For linear polarization
(p =0) these states

I
1) ' and

I
2) ' together with the third state

(part of the A, subsystem of states for the J=2~J=1 system) form, apart from phase factors, a real irreduci-
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ble tensor set —as opposed to a standard magnetic sublevel basis in a rotated coordinate system.
To find the basis states for the ground level we next form the matrix

6(1+p) x [6(1—p )]'i
0VVt= (x*) [6(1—p )]'i 2
20

0 (x*)'[6(1—p')]'~'
x'[6(1—p')]'

6(1—p)

By diagonalizing this matrix we obtain three eigenvalues, one of which is zero. The nonzero eigenvalues gen-
erate the transformation

g)2 X(1+p)(6p —1+f)N+ v 6p( 1 p)—'i N+ (1—p)(6p+1 f)N+—

2
(1+p)(6p —1 f)N —v 6p(1 —p )'~2N (1 —p)(6p+1+ f)N

2

= lf[(1+p )f+(1—lip )]I

and the complementary null space generates the transformation

3 =l —(x~) (1—p) [6(1—p2)]'~ —x (1+p)]]/2(2 —p )'~

The matrix M is then obtainable as the product

(7+f)' '
M=A VB

20

In this case M is completely diagonal; it is identical
with the matrix a =b. Thus the block-unitary ma-
trix Q is just the unit matrix, and in this example

COMMENTS

We have sho~n that we can reduce the degenerate
two-level system to independent two-state systems
through the following prescription: First, we obtain
unitar~ matrices A and 8 which diagonalize VV
and V V,

3VV A~=a and BV VB~=b

We see that, in this example, the upper-level
transformation 8=8=8 mixes the two sublevels
having magnetic quantum number

l

M
l
= 1 to pro-

duce two new states. The lower-level transformation
A mixes the sublevels having

l
M

l
=0,2 to produce

two states, each linked with a unique one of these
upper states, and one unlinked state which does not
participate in the excitation. That is, we have the
Hamiltonian excitation pattern of Fig. 1(b) (the A,

linkage remains unaffected by this transformatiOn)).
Our transformation does not alter the detuning;

resonant excitation remains resonant. The elements
of M are half the Rabi frequencies for the two tran-
sitions of the new two-level systems; these are never
identical.

To complete the treatment of the J=2~J=1
system we need to carry out a similar (and well-
known) transformation of the A, portion of Figs. 1(a)
and 1{b); this results in the pattern of Fig. 1{c), in
which we obtain three two-level excitation linkages
and two unlinked lower states. In the case of linear
polarization we can identify the transformed basis
states as those appropriate to a real irreducible ten-
sor set, rather than the standard magnetic sublevel
basis.

We then remove the null subspaces to obtain ma-
trices 3 and B. Finally, we form the matrix 8

8 =8 BV~A f(a )

Then the new basis states are

I
~ &'= X~,'; li&

J
for level 1, and

l~&'= X~J' lJ&

for level 2. The nonzero linkages (i.e., Rabi frequen-
cies) between these new basis states are the elements
a. The transformation of basis states does not alter
the resonant nature of the excitation; the matrices h;
remain null matrices after the transformation.

The resulting dynamical simplification can be
considerable. Instead of dealing with an XgX
Hamiltonian matrix, where X= (2J

& + 1)
+(2J2+1), we need only deal with n independent
two-state systems, where n is at most the lesser of
2J~+1 and 2J2+1. In general, each two-state sys-
tem has a different Rabi Aopping frequency, so that
the overall population dynamics is not a simple
sinusoidal Rabi flopping.

We note that both of the transformations A and 8
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(from which we obtain A and B) depend upon the
linkage pattern between levels 1 and 2 rather than
depending upon properties of the levels alone, for
both diagonalize a bilinear form VV or V~V. In
any attempt to construct a multilevel ladder using a
sequence of transformations A,B,C,D, . . ., all but
the first and last transformations must simultane-
ously diagonalize two quadratic forms. Only spe-
cially related pairs of quadratic forms can be diago-
nalized simultaneously by a single unitary transfor-
mation. Thus the general degenerate multilevel ex-
citation cannot always be reduced to independent
ladders.

The two-state reduction discussed in the present
paper differs from the reduction of a sequentially
linked multilevel system to an equivalent two-level
system which occurs when intermediate levels are
not resonant or when intermediate Rabi frequencies
are very large. '

To construct our transformation it is not neces-
sary that the interaction matrix V be independent of
time. It is only necessary that the time dependence
be a common factor in all elements; otherwise the
basis-state expansion changes with time. Of course,
it is always possible, in principle, to choose suffi-
ciently small time intervals that ratios of matrix ele-
ments remain constant; different basis states then

apply within each interval.
Although the foregoing discussion dealt with link-

age patterns arising from excitation of degenerate
magnetic sublevels by polarized light, the proof of
reduction to a two-state system made no use of the
rotational symmetry properties of the interaction V.

In particular, it does not require that the elements of
V be related in any way to angular momentum
operators, although such is of course the case for the
example treated above. Furthermore, the matrices
h; need not be real (and hence Hermitian), but may
include an imaginary term to express probability
loss due to ionization or dissociation. Thus our
analysis applies to the well-known k system"' of
Fig. 2(a) and to the other multibranched linkages of
Fig. 2(b). In these systems a set of n distinct lasers
excites a set of n lower levels into a common upper
level. Each laser is resonantly tuned to the ap-
propriate transition frequency, so that in the RWA'
the elements of h; are degenerate. (Recall that in the
RWA the elements of h; are the detunings; the
RWA dynamics is independent of the energies. ) We
have shown that such systems are dynamically
equivalent to the system of Fig. 2(c), in which only a
single lower sublevel connects with the excited state.
Thus if the ground sublevels initially have equal
populations, then only 1/n of the ground-level pop-
ulation can ever reach the excited state and subse-
quently ionize. The remainder of the population

(a) (b)

(c)

FIG. 2. (a) k system linkage pattern for two resonantly
tuned lasers. (b) Multileg linkage pattern. (c) Equivalent
system to (b).

remains trapped in a coherent superposition of
ground levels. If the lasers are detuned from reso-
nance, the elements of h; no longer are equal (to
zero), and the lack of degeneracy prevents transfor-
mation to a two-state system; the ionized fraction
can exceed 1/n. Alternatively, if different lasers
have different temporal behavior, then we no longer
have the conditions necessary for application of our
transformation (i.e., time-independent ratios of V-

matrix elements), and again the ionized fraction can
exceed 1/n. (Sequential access can yield complete
ionization. )

In this paper we have shown that certain classes
of coherent-excitation linkage patterns reduce to in-

dependent two-state excitations. When this occurs
the coherent-excitation relaxation-free equations of
motion for an appropriate N)&N density matrix
reduce by transformation to unlinked equations for
2 && 2 and 1 X 1 density matrices.

The considered patterns are those for which the
linked states can be collected into two sets (or lev-

els); within each set the states are degenerate in the
RWA. That is, no off-diagonal matrix elements link
states of a common level. There is no further re-
striction upon the linkage pattern. The only restric-
tion on values of matrix elements is that the ratio of
any two be time independent. Barring accidental
zeros, the number of 2)&2 systems is the dirnen-
sionality of the smaller set of states, i.e., the smaller
of the two-level degeneracies.

The present paper aims only to show the existence
of this transformation and to point out simple appli-
cations to excitation of degenerate two-level systems
by elliptically polarized light (of arbitrary multipo-
larites) and to excitation of multibranched generali-
zations of the well-known k system. It would be in-

teresting to examine the algebraic or group-
theoretical properties of the transformation coeffi-
cients themselves for cases in which angular
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momentum operators yield the elements of the in-

teraction matrix and for which tensorial sets offer a
popular basis for expressing the density matrix.
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APPENDIX

We have the following.
Theorem: If M is a normal matrix and if

(MM ),J ——a;5,~
with

a

for i p j, then a 'M is block unitary in blocks that
are identical to the degenerate blocks of a.

Proof: From Eq. (A 1) we obtain the result

a 'MM a '=I

so that

(a M)(a M)~=I3

and the matr1x Q M 1s unitary. Again from Ec}.
(A1) and from M M =MM we have the results

M =aM '=M 'a

so that a commutes with M,

[a,M] =0 .

From this result we have the result

0=a[a,M]+ [a,M]a,
so that for all i and j

0= [a,M];J (a; +aj )

or, because a; y 0 for all i,

0=[a,M]J .

Therefore a commutes with a 'M,

0= [a,a 'M]

and, for alii and j,

so that, as was to be proved, the matrix a M has
elements only within blocks sharing a common
eigenvalue.
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