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Anticrossings induced by the motional Stark effect created by atoms moving perpendicu-
lar to a strong magnetic field have been observed in ~He. These anticrossings couple the
n iP state with the nominal n 'D, n 'F, n F, and n ' H states via first-order (for the 'D) and
second-order Stark effects. The theory is derived to explain the line shape in the second-

order case. This theory, along with the previously existing first-order-effect line-shape

theory, is used to obtain the zero-velocity crossing points. These values are used in a least-

squares fit to determine the zero-field intervals. The n 'P—'D2 interval is determined pre-
cisely for n=6, 7, and 8 and the n 'G —nHav interval is determined for n=6 and 7. A
power-series expansion establishes the n P energy levels with respect to the higher nL states
%'1th high precision.

I. INTRODUCTION

Recently, advanced experimental techniques have
allowed spectroscopic studies of the helium atom
with a many-fold improvement in precision over the
classical optical measurements. ' This progress
has created new theoretical interest in the pentulti-
mately simplest atom He. In particular, the
development of the parametrized series expansion of
energy intervals in odd powers of the principal
quantum number n has proved quite useful. The
series expansion predicts the energy interval between
any two states once the coefficients, which depend
only on spin, orbital, and total angular momentum,
are known. These coefficients can be phenomeno-
logically determined from empirical data. While
measurements of energy intervals between high an-

gular momentum states (L &2) are becoming more
abundant, the high-precision data on the intervals
between low L(S, P, and D) states is still quite
sparse. In this paper, we present measurements of
some of these intervals.

The electric-field-induced anticrossing technique
has previously been applied to spectroscopic mea-
surements of' helium. For an atomic gas in a mag-
netic field, an electric field is provided by the well-
known motional Stark effect (MSE), and if the gas is
in thermal equilibrium, the electric field, although
inhomogeneous, can be accurately inferred from the
known kinetic theory of a gas. Anticrossings result-

ing from the MSE in hydrogen have been known for
quite some time and in fact, the basic treatment of
the theory of anticrossing signals arose partially in
regard to this observation. More recently, this effect
has been observed with He atoms, and it is referred
to as a MSE-induced anticrossing.

The observations reported here fall into two gen-
eral categories. The first category consists of an-
ticrossings between the n 'P and n D states for
n =7 and 8. These anticrossings are characterized
by the nominal selection rule on the magnetic quan-
«~ numb rs Ot'

I ~i I
=O and

I ~s I
= ~. Such

an anticrossing is possible because of the existence
of two relevant perturbations as is shown schemati-
cally in Fig. 1(a). The n 'D levels provide an inter-
mediate state, the magnetic spin-orbit operator HFs
mixes the n 'D and D states, while the MSE opera-
tor mixes the n 'D and n 'P states. The pairs of Zee-
man levels actually coupled are indicated in Fig.
1(a).

The second category of observation pertains to an-
ticrossings between n 'P and ' F and ' H states. In
the ' F and ' H states the spin-orbit mixing dis-
cussed above is sufficiently large that singlet and
triplet quantum numbers are not very meaningful,
and for the purposes of our experiment it is best to
simply refer to a mixed level, e.g., ' F or ' H. Fig-
ure 1(b) illustrates the Inechanism giving rise to the
'P-' F anticrossings. In this case the 'D state again
plays the role of an intermediate; however, now the
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FIG. 1. Mechanisms and selection rules for each class
of anticrossing. (a} shows the anticrossing of D states to
'P via 'D; HFs is the fine-structure Hamiltonian that cou-

ples 'D to 'D, conserving only mJ, and the MSE Hamil-
tonian HMsE couples 'D to 'P with the usual dipole selec-

tion rule. (b) shows the ' F-'P anticrossing via second-
order PMsa coupling. Although the intermediate level is

shown simply as ' D it should be interpreted as the "D
character in all the high I states. The eigenvectors ap-
propriate at a given field were used for actual calculation.
F-'F mixing is implicitly assumed. (c) shows the mixing

of F and H character by the quadratic Zeeman term jjrt
thereby allowing for the ' H states the same anticrossings
as experienced by ' F states.

coupling of the 'D level to both the ' E and the 'P is
via the MSE operator HMs~. Again the details of
the ML and Mq selection rules are shown in Fig.
2(b). Figure 3(c) shows that the '* I' and ' H states
are coupled by the quadratic Zeeman Hamiltonian
H~. At the fields employed in these experiments,
the H~ coupling of the F snd H states is sufficiently
strong so that 'P-' H snticrossings, induced by the
same second-order MSE, are easily observed.

As can be seen from Fig. 1 various magnetic sub-
levels of the nP state can anticross with correspond-
ing magnetic sublevels of the n D, 'I, I', 'H, and
H states. The selection rules governing the 15 pos-

sible magnetically tunable anticrossings are shown in
Fig. 1. Since the 'P to 'H and H anticrossings are
not experimentally resolved, this reduces the number
of observable anticrossings to 12. All 12 of these
anticrossings were indeed observed. However, two,

'P(mL, ———1,m~ ——0)—D(mr ———1,mg ——1)

I

I 00.4 100,6

H (kG)

"U')Ups" "
I00.8 I 01.O

FIG. 2. Trace of the 'P- D anticrossing with the nomi-
nal magnetic quantum numbers as indicated. The experi-
mental conditions are 15 mTorr He pressure, 3 mA elec-
tron current, and 10 min averaging time.
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FIG. 3. Energy-level diagram depicting 'P-' F an-
ticrossing. Note that nonlinear Zeeman effects lead to
three distinct anticrossings for the 'P Mq values of 1, 0,
and —1, while the singlet-triplet structure of the F state
leads to a doubling of each of these anticrossings.

were not analyzed in detail because their widths
were relatively great, snd therefore the correspond-
ing uncertainties associated with the measurement
of their line centers were large. The inclusion of
them in the final data analysis would not improve
the determination of the zero-field 'P- D separation.

There are a number of imaginable anticrossings
involving the 'P state with other ' L, states which
are riot included in Fig. 1 and were observed to be
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very weak or undetectable. In each case the vanish-

ing or near-vanishing strengths are readily explic-
able. Anticrossings to states of high even L, i.e., G
and I, would require either a coupling of third orderA
or higher by HMsE or mixing by H~ of ' D charac-
ter into these high L states. Calculations indicate
that neither of these mechanisms is sufficiently
strong to give rise to observable anticrossings.

The only remaining states are the n =8' K levels.
Anticrossings from the 'P to the "K states are al-
lowed by mixing via H~, as shown in Fig. 1(c), of
the K and H and F states. These anticrossings were
observed but with limited signal-to-noise (S/N) ra-
tio. Moreover, the mixing by H~ of 8 H and K is so
strong that it is difficult to derive separate zero-field
energy positions for these states. An initial ap-
praisal indicated little expectation of significant im-
provement over the previous 8' K-level determina-
tion from the available data and so the 'P-' K an-
ticrossing analysis was not pursued, nor are unique
values for the 'P-' H separation reported.

Assuming a Zeeman tuning theory is available so
that the positions where levels would cross in the ab-
sence of coupling can be determined, one can use the
observed anticrossing positions to determine the
zero-field energy of the 'P state with respect to the
well-known energy manifold of ' D-F-G states.
With less precision, the ' H states (H,„)can also be
placed with respect to the ' D-F-G states. The
remainder of this paper is divided as follows: Sec. II
briefly describes our experimental apparatus, the
scheme of analysis is presented in Sec. III, and dis-
cussion of the results follows in Sec. IV.

II. EXPERIMENT

The He atoms are excited by a controlled beam of
electrons (-90 eV). The relevant states n ' F,Q
and n 'P are not monitored directly but instead via
the emission line of the n D-2 P transition. The an-
ticrossing signals are detected as a change in fluores-
cence intensity as a function of magnetic field. The
experiments were conducted at the lowest practical
pressure ( & 15 m Torr) and electron current less than
3 mA to avoid stray electric field from space charge.
Details of the apparatus can be found elsewhere. '

The magnetic tuning was accomplished with a high-
ly homogeneous 145-kG Bitter magnet.

discussed previously. An example of such an an-

ticrossing is shown in Fig. 2. The second category
(ii) of anticrossings is somewhat more complicated
in structure and line shape. Figure 3 shows an
energy-level diagram illustrating this type of an-

ticrossing. Figure 4 shows a broad magnetic field
scan showing both the n =6 'P-' F and 'P-' H an-
ticrossings. Figures 5 and 6 show higher resolution
scans of these anticrossings. The anticrossings in
n =7 and 8 are quite similar in form to those of
n =6.

The form of the anticrossings shown in high reso-
lution in Figs. 5 and 6 can be understood by refer-
ence to Fig. 3. Each value of mL for the 'P state
can undergo an anticrossing with a level mL +2 of
the ' F state. If only the linear Zeeman tuning were
considered, these anticrossings would occur at the
same magnetic field position; however, diamagnetic
Zeeman effects raise this position degeneracy and
give rise to three distinct anticrossings. As Fig. 5

indicates, each of these components shows a partial-
ly resolved doublet structure. This doublet struc-
ture, as exaggerated in Fig. 3, arises from the two F
states. The comparable widths and intensities of
these doublets are consistent with the strong mixing
expected between the nominal 'F and F levels.

In order to obtain zero-field separations, two steps
of analysis must be performed on signals such as are
shown in Figs. 2, 5, and 6. First, the line shape
must be understood to obtain the "true" crossing
point in the absence of perturbation. Second, the
magnetic and fine-structure Hamiltonian must be
understood to derive from the crossing fields the
zero-field separations. In the final analysis these
two steps must be done iteratively to ensure con-
sistency.

A. Line shapes

We base our line-shape analysis on our previous
treatment of MSE-induced anticrossings. We saw

III. ANALYSIS

As mentioned in the Introduction, there are two
categories of anticrossings: (i) 'P- D anticrossings
and (ii) 'P-' F, ' H anticrossings. Anticrossings of
category (i) are essentially the same in structure and
line shape as the D- F MSE anticrossings that we

130 i32

H (RG)

FIG. 4. Broad magnetic-field scan showing n =6, 'P-
H,„and n =6, 'P-' F anticrossings.
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in that work that the overall line shape I(H) can be
generally represented as

I (H) = I Ib (H H—')I; (H' Hp—)dH',

where I;(H —Hp) is the probability distribution (in

I

this case velocity dependent) for having an an-
ticrossing centered at H', Ih.(H —H') is the line
shape for the anticrossing centered at H', and Ho is
the hypothetical anticrossing position for an atom
with vz

——0. The line shape I~ can be given by the
usual formula' for levels a and b,

(Para Pb~b)(+a~a +b~b)
I

Vab I

Ig(H —H') =
4

I
Vab

I
~f~+ A' /1 +g, u p(H H')—

where

——1 —1 —1
7 =7@ +Vb

f,=r, rb/7

and uog, =BE/BH with E being an exact expression for the energy difference between the two levels a and b as
a function of magnetic field, neglecting the contributions from V,b, E,(b) is a constant proportional to the
detector sensitivity to radiation from levels a(b), and the remaining symbols have their usual definitions. '

The perturbation matrix element V,b is perhaps the most crucial factor appearing in II, . For the 'P- D case,
the terms of the Hamiltonian representing the MSE, HMsE, can be written

app 0
HMsE=Ei I0 aDD

PPD

PPD

+MSE+ VPD &

AD
thereby defining VPD as the off-diagonal part of HMsE and HMsE as the diagonal part. The a"s are the
relevant polarizabilities (excluding the contributions of the anticrossing states to each other), and ppD
represents the dipole moment between the P and D states. The MSE electric field Ez is given by

Ez ——v&H/c . (4)

In the case of the 'P-' F or ' H anticrossings first-order perturbation theory gives a vanishing coupling be-
tween the relevant states, and one must turn to second-order Rayleigh-Schrodinger" perturbation theory (a
Van Vleck transformation). In this approximation we have

app 0 aPF (H)
2 2

HMsE —El 0 +EgaFF (HH) aPF(H) 0

AD
HMSE+ VPF(H) ~

where a;; is the total polarizability of the i state is the coefficient of the electric field coupling between the i
and j states. We note that in categories (i) and (ii) HMsE is of the same form, while V,b differs for the two
cases.

The form of the distribution function I; depends only upon HMsE, and thus is the same as was previously
given,

0,

227Tc gepo 2 I 2 2
2 2 exp[ —c g,p 2 p( rr' H—Hp)aHpvp],

I, (H H, ) = . -
H' —Hp

&0

H' —Ho
&0

(6)

where a without subscripts is defined as the difference in the diagonal matrix elements of HMsE.
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If we insert the definition of V,b for the 'P D-case into Eq. (2) and use Eqs. (I) and (6), we obtain the com-

plete line-shape formula,

+ A (H —H )
—B(H' —Ho)dH'

I(H)=
I
B

I

2Af,(H' Hp) +fP—r +g,'p p(H —H') ~U~

with

A =47Tg p(glpD/CX
2

B =2mc g,pp/oHpUp,2 2 2

(7)

HU=1+ 1—
Hp

H' —Hp

H —H'

In our earlier work, Hp was assumed to be much greater than (H —Hp) and thus the factor U reduces to uni-

ty. In our present work we find that the experimental line shapes are better fit by including the complete form
of U. For the case of the 'P-' F for ' H anticrossings

H4U4

~
V,b ~

=a,s =a,bHpVi/c2 2 ~ 2 4 4 4

c4

2

(a

Inserting this definition for V,b into Eq. (2) and again using Eqs. (1) and (6) yields

A(H' —H ) e ' dH'
I(H)= iB i

2Af, (H' Hp) +F27 —+g, pp(H H') U—

with

—2
a

and B and U as before.
In our derivation of the anticrossing mechanism,

we approximate an infinite dimensional system by a
two-level one. The criterion for validity of this ap-
proximation is a large energy separation of these two
levels from the rest and/or a small coupling of these
states to others. Thus the perturbation matrix has
an error of the order of Vi/(~), where V
represents the perturbation coupling to other states
and ~ the energy separation. (This is the next
term in the series of Rayleigh-Schrodinger perturba-
tion theory. ) This criterion is not perfectly met in
the 'P-' F and 'P-' H anticrossings observed here,
since 'F and F are close to each other, and certainly
the higher-order terms of interaction are not entirely
negligible.

In particular, the mixing of the singlet and triplet
F levels creates nonzero, electric field, off-diagonal
matrix elements between all three states, 'P, 'F, and
F. The rigorous approach to the problem is the

construction of a three-level Hamiltonian; however,
its analytic complexity and the minimal effect these
corrections have on our experimental data lead us to
avoid this approach. We did, however, slightly
modify the polarizabilities azz in Eq. (5) by taking

into account these other off-diagonal matrix ele-
ments. These modifications lead to a slight, but
clear improvement in the agreement between theory
and experiment without introducing any new vari-
ables. The details of the calculations are given in
Ref. 12.

The anticrossing of the 'P and H states is
governed by the same mechanism, differing only in
the actual matrix elements. The quadratic Zeeman
term mixes states with

~
M

~

=2 and the F state is
sufficiently close to the H state that the mixing is al-
most exclusively between the F and H states. (This
can be contrasted to, for example, D and 6 states
where the mixing is relatively much smaller. ) In
this case, the interaction is strong enough to give
'P-H anticrossing widths that are comparable to
those of the 'P-F anticrossings.

The 'P- D anticrossings are much simpler in na-
ture and their treatment needs no further modifica-
tions, since they adequately meet the two-level
model specification.

B. Extrapolation to zero-field intervals

The objective of our analysis is the determination
of the zero-field energy intervals. This is accom-
plished by a least-squares fitting of the Hp's ob-
tained from the preceding line-shape analysis. Since
some of the parameters of the line-shape analysis de-
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FIG. 6. High-resolution scan of 6'P-H, „anticrossing.
Traces a and b correspond to the anticrossings for the
'PMq values of +1 and 0, respectively. The solid lines are
computer simulations of the line shapes. The singlet-
triplet structure of the H state is not observed experimen-
tally.
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FIG. 5. High-resolution scan of 6'P-' F anticrossings.
Traces a, b, c correspond to the anticrossings for the 'PML

values of 1, 0, and —1, respectively. The light solid lines

depict computer simulation of the positions o t e in ivi-

dual 'F and F anticrossings. The heavier solid lines,

matching the experimental data, are the composite of the
'F and 'F simulations.

pend on the values of these zero-field intervals (espe-
cially for the P-H anticrossings), the process must be
performed iteratively. Optical data' serve as
reasonable initial estimates for the intervals, and
thus one or two iterations are sufficient for all the
lines.

%'e begin by describing our calculation of the Zee-
man tuning. The Hamiltonian of a helium atom in
a magnetic field can be expressed as

H,
N

——Ho+H, +Hg, (10)

where Ho is the zero-field Hamiltonian and H, and

H~ are, respectively, the linear and diamagnetic Zee-
man terms. Ho is assumed to include all the electro-
static effects giving rise to the zero-field eigenvalues
characterized by the quantum numbers L, S, and L

The Zeeman levels are obtained by diagonaliza-
tion of H within a basis consisting of all states with
the same quantum number n and parity. The radia
part of the wave function is hydrogenic

R s '(r2)R io «
and diagonal matrix elements are corrected by sub-
stituting for n, n ~ =n —5L q, where 5q ~ is the quan-
tum defect ' ' ' For off-diagonal matrix elements
it has been shown' that if one uses

]/p=(n~ n~

sufficient accuracy is obtained. The spherical part
of the wave function is taken as

r, '(r-, ~ro(r",
~
SM, ),

i.e., the Paschen-Bach limit. In this basis, the ma-
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which express the mixing of J=L states with dif-
ferent spin. OL is the single parameter, depending
only on L, that characterizes the singlet-triplet mix-

ing. (Even L is not conserved, but the mixing be-
tween L states is completely negligible for our pur-
pose here. ) In this basis, Ho is diagonal, and its
eigenvalues constitute the spectrum of the manifold.
The parameters 81's are calculated using the a
spin-violating terms of the helium Hamiltonian (H3
and H5 of Breit-Bether notation' ).

The nonrelativistic electric exchange effect' ' is
the major contribution to the singlet-triplet electro-
static splitting. We follow the approach of Cok and
Lundeen" and define a phenomenological electric
exchange quantity X, which will fit the known
empirical or extrapolated energy-level separations.
We use the X values of Cok and Lundeen' and
derive OL s from the matrix diagonalization. The
resulting energy levels fit best the known empirical
or extrapolated values. Table I contains the set of
values of OL used in this analysis.

The diagonal elements of Hp thus correspond to
the zero-field energy levels. In principle, the an-
ticrossing positions, 'P-'F, 'P- F, and 'P-H, „are af-
fected by all the zero-field intervals. However, the
sensitivity of an anticrossing position to the various
intervals varies widely. The anticrossing positions
are only weakly affected by the intervals 'S-'P,
H,„-I,„,and I,„-K,„. We thus fix the 'S-'P interval
at its optical value' and tak|: the H,„-I,„and I,„-
K,„ intervals (where applicable) from the anticross-
ing results (either direct or extrapolated) of Ref. 3.

TABLE I. Mixing angle 81. used in this analysis.

tanOL

L=3
L=5

0.5440
0.7702

0.6048
0.9700

trix elements of H, and H~ assume simple expres-
sions as the expectation values of spherical tensors
of rank 0 through 2. However, for Ho, the more
natural basis vectors are

cos8L
~
(L,S = 1)JMJ &+sin8L

~
(L,S =0)JMg ),

—sin8I
~
(L,S =1)JM&)+cos8L

~
(L,S =0)JMz),

TABLE II. Constraint intervals used in this analysis in
MHz. The values were taken from Ref. 1 except as other-
wise noted.

Intervals

+av Iav

Iav Hav

H„-G4
'G4-'F
'F -'D
'D -'P,
1 1pi- Sp

G4- F
3F -'D'

3 2

D -3P'
2 1

3P 3Se

c
8 854

49 803
c

4797 885
200946

9 007
70 523

2016 344"
7 695 015"

490'
c
5 703

31558
c

3 003 669
13 650

5 774
45 061

1 269063d
4768 157

213'
403

c
3 876

21 226
c

1 997 561d

9 344
3 924

30471
851 686

3 158 338

While neither of these sources is particularly precise,
these intervals are known well enough so as to intro-
duce no further uncertainty in our calculated an-
ticrossing positions. We list the"e values in Table II
for reference. Fortunately, there are high-precision
measurements for the remaining intervals. These
values are listed in Table II also. For L &4, singlet
and triplet levels are not experimentally resolved,
and thus we treat only the average of these states,
Gav s Hav s etc.

This means that the only unknown zero-field in-
tervals are 'P-'F and 'P-H, „which are determined
by fitting to the observed anticrossings as described
below. By using the determined 'P-'F and 'P-H, „
intervals with the previously known 'F- G5 interval,
the interval G,„-H,„can be deduced, as will be dis-
cussed in Sec. IV.

In the numerical analysis, before Ho can be added
to H, and H~, the latter must be expressed in the
Hp eigenfunction basis by a linear transformation.
We use the same form for H, and H~ as we have
used previously. ' We have estimated the relativis-
tic corrections (5p;, i =1—6 in the notation of Ref.
19) for H, and found them to be no greater than
-10 ppm. This corresponds to an effect of a few
gauss in our line position. As this is comparable to,
or less than, our experimental error, we have not in-
cluded these effects explicitly in our calculations.

The Zeeman levels and states obtained from the

L=2
L=3
L=5

L=2
L=3

0.0092
0.5224
0.7702

0.0090
0.5060
0.7702

0.0092
0.5758
0.9700

0.0090
0.5542
0.9700

'Reference 3.
Reference 4.

'Determined in present analysis, see Table IV.
dReference 13.
'The magnetic fine-structure intervals for the triplet states
were explicitly included in the calculation. These values
are all taken from Ref. 1, except the P intervals which
came from Ref. 13.
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total matrix diagonalization are used to calculate the
line-shape parameters. The fitting procedure thus
consists of three steps: (i) calculating Ho and line-
shape parameters, (ii) fitting the data with these
parameters and obtaining the experimental values of
Ho, Ho, and (iii) using Ho in determining the
relevant energy intervals, minimizing 7, and return-
ing to (i) if unsatisfactory. X is defined to

I'= (Ho; —Ho;)
(&2)

l 0']

Thus

(a, ,-a„) aH, ,

g~i BE

where a i is the variance of 00;.2 ~

IV. DISCUSSION AND RESULTS

A. Line-shape fitting

The above-mentioned step (ii), line fitting, is
somewhat involved since there are three parameters
for which we do not have precise knowledge: tem-
perature T, lifetime F, and relative populations of
the ' F and 'P states. It turns out that the value of
F within reasonable limits is not critical, and tabu-
lated values ' ' are adequate. The relative popula-
tion of singlet and triplet E states is not well deter-
mined, so we must adopt a phenomenological rela-
tive strength for the singlet and triplet F signals.

TABLE III. Measured field positions, Hoexpt, of anticrossing signals. The quoted uncer-
tainty of the measurement is (0. +S )' where 0 is the variance from the line fit and S is any
other experimental uncertainty. The column labeled by Hocalc is the result of a least-squares
fitting of the Hoexpt values. The values of the zero-field intervals determined by this fit are
given in Table IV while the interval values given in Table II a&ere held fixed.

n P m J. mq J mq mq Hoexpt. (kG) Hocalc (kG) Hocalc —Hoexpt. (G)

—1 0 'F 1

3F 1

0 0 'E 2
F 2

1 0 'F 3
E 3

—1 0 H 1

0 0 H 2
1 0 H 3

134.793+0.0085
134.830
133.215
133.266
133.852
133.923

0 131.286+0.012
0 130.051
0 131.102

134.787
134.823
133.217
133.271
133.853
133.926

133.292
130.051
131.096

—6
—7

+2
+5
+1
+3

0 0 3D 0 1 100.573+0.011

—1 0 'E 1

3F 1

0 0 'F 2
F 2

0
3F 3

85.540+0.010
85.559
84.313
84.348
84.766
84.811

85.523
85.547
84.324
84.358
84.769
84.816

—17
—12

11'

10
3
5

—1 0 H 1

0 0 H 2
1 0 H 3

83.160+0.016
82.204
83.007

83.157
82.227
82.986

—3
+23
—21

0 0 3D 0 1 67.686+0.011 67.688

—1 0

0 0
E 1

2
E 2

F 3

57.604+0.012
57.619
56.660
56.684
56.994
57.026

57.602
57.618
57.665
57.688
56.990
57.022

—2
—1

5

4
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TABLE IV. Zero-field energy intervals derived from anticrossing positions.

Interval
This work

(cm ')
Optical
(cm ')

P- F3
'P-H, „

373.996+0.015
363.121+0.018

12.4752 20.0005
12.1124Z0.0006

12.45

Ip ip
'P-H„

237.016+0.032
229.994+0.050

7.9060+0.0011
7.6718+0.0017

'P-'F3 159.430+0.017 5.3180+0.0006 5.35

Since this does not affect the line shape except for
an overall intensity factor, it is not of great concern.

The most important variable is temperature. Al-
though it is not measured directly, its effect has
been well studied in previous work, the results of
which can be applied to this case.

In actual practice, the temperature T is taken as a
variable to be determined in the line fitting process.
However, there are restraints upon allowable values
of T. We found that for all 'P-' F signals, the tem-
perature ranged from 280 to 320 K (+-1S K),
whereas for the n =7 and 8, 'P-H signals the T
values needed to fit the lines are about 330 to 360 K
(+ -30 K) and n =6, -380 to 400 K (+ -20 K).
This variation is fairly small, and most importantly,
the values of the Hp's obtained are unaffected by
such variation in T within experimental error. In a
recent study of the O'S-O'L transition, s consider-
ably larger temperature variation wss observed.

B. Zero-field interva1 determination

The experimental Hp values, as determined by the
line-shape analysis, are listed in Table III along with

their estimated errors. The next step in the iterative
procedure is to predict the Hp's using the Hamil-
tonian of Sec. IIIB. The primary input parameters
for this calculation are the zero-field energy separa-
tions of the relevant levels. As described earlier, a
number of these intervals are fixed at their previous-

ly determined values as given in Table II. The two
intervals determined by the present data are n 'Pi-
F3 and n 'P

~
-H,„(the separation between 'H

3 and

H3 being neglected). The values obtained for these
intervals, based on a best fit to the observed Hp's,
weighted by the square of their estimated errors, are
given in Table IV.

Looking at the residuals between the observed and
calculated values of the Hp's as given in Table III,
one can see that overall the calculated values of the
Hp's agree well with the experimental ones, especial-

ly considering the possibilities for small systematic
errors in the line-shape fitting or small deviations of
the Zeeman parameters from their fixed values.
(For instance, the diamagnetic Zeeman parameter is
calculated using quantum defect corrected radial
wave functions only and must be accurate to less
than 10% to reproduce the spectrum. )

TABLE V. Measured energy intervals hv of n 'P-n 'D2 of He. The predicted values of
hv, based upon Eq. (14) and the coefficients given by Table VII are given in column 3.

3
6
7
8
9

16
17
18

5v i i (GHz)
2

3129.7915+0.003
423.780 +0.015
268.574 +0.032
180.6S6 +0.018
127.226 +0.018
22.8080+0.0002
19.021S+0.0004
16.0294+0.0006

Source Predicted (GHz)

3129.7915
423.7765
268.5796
180.6656
127.2409
22.8069
19.0213
16.0289

Residual (MHz)

0.0
+ 3.5
—5.6
—9.6

—14.9
+ 1.1
+ 0.2
+ 0.5

'Reference 23.
This work.

'Reference 2.
~Reference 24.
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TABLE VI. 6-H intervals in MHz.

Present work Electric field ac' rf beam Theory'

6
7
8

9
10

'Reference 3.
Reference 4.

2021+23
1318+59

695+64

1437+38
1011+43
712+59
537%85

1359.16+0.11
931.34+0.44

'Reference 22.
Reference 2.

1350
900
630
481

There are no values listed in Tables III or IV re-
garding the 8' H state. This is because the S/N ra-
tio on this data is poor and essentially complete di-
amagnetic mixing between the H and E states render
the analysis with poor data useless.

From the results in Tables II and IV it is possible
by simple arithmetic manipulation to derive the
n 'P-'D2 and n '63-8,„ intervals. %e list these re-
sults in Tables V and VI, respectively. From the er-
rors given in Tables V and VI, it is seen that the
n 'P-'D2 intervals retain errors comparable to the
experimental precision, while the n G3-H, „ interval
errors are several times the precision of the measure-
ments. The values for the n =6,7,8'P-'D2 intervals
derived in this work are, by at least an order of mag-
nitude, the highest precision results for these inter-
vals.

The same can be said for the n =7'63-'H„ inter-
val. For n =7, there is a higher precision measure-
ment with which our measurement agrees within its
experimental error. From Table IV it can be seen
that the anticrossing measurements of Beyer and
Kollath constitute the most extensive data set for
the n '6-'H, „ intervals. However, it should be cau-
tioned that by comparison to our result for n =8
and the Cok and Lundeen measurements for n =7
and 8, the Beyer and Kollath intervals seem sys-
tematically too large by roughly t~ice their experi-
mental error. Theory also appears to confirm this
trend.

C. Power-series representation of the results

In Table V we show our results for the 'P-'D2 in-
tervals and the results of three other precision mea-
surements; a laser measurement for n =3, a laser
measurement for n =9, and microwave measure-
ments for n =16, 17, and 18. The uncertainties
quoted for those intervals obtained from our an-
ticrossing and laser work include a generous esti-
mate of any possible systematic errors and experi-
mental uncertainties. The uncertainties listed for
the other intervals are those quoted by the respective
authors.

%e have used the data presented in Table V to
derive coefficients for the expansion'

Av=A/n +8/n +C/n (14)

TABLE VII. Correlation matrix for coefficients A, 8,
and C in Eq. (14} for 'P-'Dz He intervals;
A =93719.01+3.87, 8 = —77 155.0+203, and
C = —51993.5+1544.

1.00
—0.929

0.899

—0.929
1.00

—0.997

0.899
—0.997

1.00

Such expansions have been shown to be very accu-
rate in predicting all He intervals between any given
pair of angular momentum states. ' Although the
'P-'D2 interval coefficients have been previously
determined using microwave and optical data, due
to the relative inaccuracy of the optical data and the
very high n values of the microwave data, the sta-
tistical significance of the previously published 8
and C coefficients is very low and the possibility of
systematic error is significant. Our new values for
A, 8, and C, which are significantly different from
the values obtained by MacAdarn and %ing, are
given in Table VII along with the one standard devi-
ation error associated with each coefficient. The
values of A, 8, and C are highly correlated, and we
therefore also present their correlation matrix in
Table VII.

In deriving the coefficients given in Table VII, we
chose to give slightly less significance to the mi-
crowave data points than the very small uncertain-
ties quoted by the authors and shown in Table V.
The determined intervals all have Stark shift correc-
tions of a few MHz, the accuracy of which are very
difficult to determine. In addition, if we use the
previously determined A, 8, and C coefficients, we
predict n =6, 7, 8, and 9 intervals that are all sys-
tematically greater than the measured values, by as
much as 196 MHz for n =6 compared to the quoted
uncertainty of 15 MHz. By using only our data and
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the n =3 interval to derive A, 8, and C coefficients
we predict intervals for n =16, 17, and 18 that are
always smaller than the measured values but fall
within 3 to 4 MHz of the measurements. In light of
these considerations we assigned uncertainties of
+2.5 MHz to the n =16, 17, and 18 intervals in
deriving the A, 8, and C coefficients of Table VII.
The uncertainties used for the other intervals are
those listed in Table V.

In fitting the data to the series expansion of Eq.
(14) we also attempted to include even power terms

such as n . The coefficient for such a term turned
out to have no statistical significance and did not
improve the expansion series modeling of the data.
The last two columns of Table V list the predicted
values of the intervals based on the coefficients in
Table VII and the difference between the measured
and predicted values. As can be seen from the very
small and reasonable (within experimental uncer-
tainties) residuals, Eq. (14) is a sufficient model to
very high accuracy.
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