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A theory is developed of the ionization of inner-shell electrons during P decay. For al-

lowed transitions it is shown that in the lowest order of the coupling constants the transition

amplitude for the process is a sum of two terms, one of which attributes the ionization pro-

cess to the sudden change in nuclear charge, and the other to a virtual scattering of an

inner-shell electron by the emerging P particle. For the K-shell specific calculations are car-
ried out using nonrelativistic hydrogenic wave functions and a Coulomb Green's function

due to Glauber and Martin. Results whose relative accuracy is of order Za are obtained for
energy spectra, angular correlation functions, and the total internal ionization probability;
numerical results are presented for the nuclides Ni, ' Pd, and "'Sm. The role of the
virtual-scattering mechanism is assessed and a comparison with other recent theoretical

work is made.

I. INTRODUCTION

It is well known that nuclear P decay is some-
times accompanied by ionization (or excitation) of
the electron cortege of the daughter atom, a higher-
order process commonly referred to as internal ioni-
zation. A satisfactory description of the process re-
quires that the decay be treated as a transformation
of the whole atom, a formidable theoretical task
which was first undertaken by Feinberg' and Mig-
dal in two pioneering papers. As these authors
were first to recognize, there are two basic mechan-
isms by which an internal ionization transition can
proceed, viz. , (i) the shake-off (SO) mechanism
which attributes the transition to the sudden change
in nuclear charge, and (ii) the direct-collision (DC)
mechanism according to which the transition results
from a (virtual) Coulomb scattering of an orbital
electron by the emerging P particle.

On the basis of estimates made by Feinberg' it be-
came generally accepted that the dominant contribu-
tion to the internal-ionization probability comes
from the SO mechanism, with the DC mechanism
contributing, at most, a small correction. As a re-
sult, the SO process became the focus for subsequent
theoretical work, "with detailed calculations usu-

ally restricted to the determination of Pz(SO), the
total lt.'-shell internal-ionization probability per P de-

cay due to SO alone. In these studies the DC contri-
bution was either completely ignored or corrected
for by means of Born-approximation results or sim-
ple ad hoc prescriptions based on Feinberg's esti-
mate. ' Of these SO calculations the most refined is
that of Law and Campbell. "

The development of the theory of the SO process
was paralleled by extensive experimental work, espe-
cially during the last ten years, primarily devoted to
the measurement of Pit, the probability per P decay
for the production of a hole in the K shell. On the
seemingly reasonable assumptions that the contribu-
tion to Pz from shake-up transitions is unimportant
and the DC mechanism can be ignored [so that
P trP (SxO)], excellent agreement with the Law-
Campbell theory was obtained for a large number of
nuchdes. '

However, in 1977 it was pointed out by Isozumi,
Shimizu, and Mukoyama' that, because of a count-
ing error, the Law-Campbell results for P~(SO) are
too large by a factor of 2. And awhile initially this
assertion generated a good deal of controversy, it
was soon confirmed by Cooper and Aberg' and now
there is general agreement that such an adjustment
of the Law-Campbell results is indeed necessary.
Thus, the previously established good agreement be-
tween theory and experiment was fortuitous, the re-
vised theoretical values for P~(SO) being roughly
one-half the experimentally determined values for
Psc.

To explain this discrepancy, Isozumi, Shimizu,
and Mukoyama' suggested that the DC contribu-
tion to P~ may be much larger than had been as-
sumed from Feinberg's estimate so that a satisfacto-
ry theory of the internal-ionization process must
take both mechanisms fully into account. Indeed,
this suggestion has been offered with increasing fre-
quency by various experimental groups'6 ~~ as a
way of reconciling their data with the predictions of
SO theory. Also, Feinberg hinself has pointed out
that his frequently quoted estimate
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Pg (DC)/P~(SO) =8~/Ep,
where 8~ is the E-shell binding energy and Ep is the
average P-particle kinetic energy, implies that the
DC contribution will not be unimportant at very low
energies. This has particular significance for nu-
clides with large charge number and a very small de-
cay energy. For such nuclides the DC contribution
to P~, the total E-shell internal-ionization probabili-
ty per P decay, may be quite pronounced.

Stimulated by such speculation regarding the role
of the DC mechanism, we have undertaken a
theoretical study of the internal-ionization process
in which both the SO and DC mechanisms are in-
cluded ab initio. In this paper we limit our con-
siderations to allowed transitions and the use of non-
relativistic hydrogenic wave functions to describe
the initial and final electronic states. Admittedly,
such a treatment will not yield accurate quantitative
results for heavy nuclides, but to obtain such is not
our purpose. Rather we wish to examine the relative
importance of the DC mechanism for the E-shell
internal-ionization process, particularly under those
circumstances which ought to be most favorable to
the DC mechanism. To do this we shall carry out
exact calculations within an approximation scheme
whose relative accuracy is of order Za.

Some results of our work, including values for Pz
and the various contributions to it for several nu-
clides of interest, have already been reported. ' In
the sections that follow we shall describe the calcu-
lations upon which these results are based. %e shall
also examine the DC mechanism for its inAuence on
energy spectra and certain angular-correlation func-
tions.

After completion of this study there came to our
attention a recent paper by Batkin et a/. in which
a similar investigation of the role of the DC
mechanism is described. However, in their treat-
ment Batkin et al. employ a completely nonrela-
tivistic Coulomb Green's function rather than the
more accurate Glauber-Martin Green's function
which is utilized in our work. Consequently, as we
have already pointed out, Batkin et a/. have omit-
ted from their calculations terms larger than order
Za; whereas in the calculations presented in this pa-
per only terms of order Za have been neglected.

II. TRANSITION AMPLITUDE
FOR INTERNAL IONIZATION

The Hamiltoaian for the radioactive system is

H =Ho+Hp,

where Hp is the weak-interaction Harniltonian re-
sponsible for P decay,

Hp=c, f dr l(,(r)y„(i+ay,)t(„(r)l(,(r)

xy„(l+y5)t(„(r),

and the t((r)'s are the field operators for the quan-
tized fields associated with the various particles.
The Dirac y matrices are defined by y = iP—a,
y4=P; they therefore obey the anticommutation re-

lations Iyq, y„I=25„„(p=1,2,3,4) and are Hermi-
tian. We have y~ =y, y2y3y4, t('= P y4,

~
Cq/Ci ~, where Ci and Cq are the vector and

axial-vector coupling constants of the P interaction.
The unperturbed Hamiltonian Ho is the sum of

nuclear, atomic, and neutrino contributions:

Ho ——H~+Hg +H„,
in which H, is the Hamiltonian for the free neutrino
field and Hz is the Hamiltonian of the nucleus (in
the absence of the weak interaction). The atomic
Harniltonian is usually written as

H„=f dr g, (r )hc(r )P, (r )

+ —, f dr f dr'P, (r')g, (r)

Xl(, (r)l(, (r '), (4)

a form in which the vector part of the electromag-
netic interaction and associated retardation effects
are neglected. The single-particle Dirac-Coulomb
Hamiltonian h~(r) is given by

hc(r)=a P+P —aZ/r, (5)

where Z is the nuclear charge-number operator.
The units employed are those in which I =c =fr= 1

and 8 =o.'= —.
From the Feynman-Dyson expansion for the S

matrix the lowest-order matrix element for a P-
decay transition from an initial state i to a final state

f (assumed to be eigenstates of Ho) is easily ob-
tained, and from it the familiar Fermi s golden rule
for the partial transition rate m,~,

~,I=2~ ~M ~'f(E, z/), — (6a)

M=(f ~Hp ~i) . (6b)

To find the total transition rate, (6a) must be
summed over all final states and averaged over all
initial states, operations which mill be considered
shortly.

For simplicity we restrict our considerations to al-
lowed transitions where, with the nuclear part re-
duced to nonrelativistic form, the transition matrix
element simplifies to

M = (a';k'
i Hp i

a;k) =Cy(a'
i Q, (0)AQ„(0)

i
a ),

(7)
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where a (a') labels the initial (final} leptonic state
and k (k') labels the initial (final} nuclear state. The
nuclear matrix elements operative in allowed transi-
tions are contained in A, viz. ,

A =B„yq(1+yg),

8„=(i A(k' ,
~

cr
(
k },( k'

~

1
~

k }) .

The basic model adopted in all theoretical studies
is one in which only those leptons which participate
in the rearrangement process are included in the
specification of the leptonic states. All other elect-
rons are regarded as inert and it is assumed that
their inAuence on the process, largely one of shield-

ing, can be corrected for later. In this case,

g = e)seg V

where e~ denotes the initial bound electron and ei
and e2 denote the two final electrons, taken to be in

continuum states. With this simplification and the
introduction of a configuration-space representation,
the transition matrix element takes on the form

M =C,&e, ,e, , v ~ P, (0)uy„(O)
~ e. &

=Cv(1 —P„)f dr y'(,"(O,r)y~*'(r)

xy4&$„(0),

in which (()'i'q and P" ', labeled by the appropriate
eigenvalues of the nuclear charge-number operator,
and P„arethe normalized wave functions represent-

ing the two-electron final state, the initial state of
the orbital electron, and the final state of the neutri-

no, respectively. P~2 is the exchange operator which
interchanges the two final electrons.

The evaluation of (10) requires the construction of
a reasonably accurate form for the two-electron
wave function Pi 2 which satisfies the equation

[)ic(ri}+kc(rz)+«&ill((li 2(ri r2}

=E, i(()'i*2(ri, ri), (11)

in which the nuclear charge-number operator ap-
pearing in hc has taken on the eigenvalue Z. Were
there available a solution of this equation based on
the self-consistent-field method, its use would per-
mit the evaluation of (10) directly, yielding results
which include the effects of the final-state interac-
tion. Unfortunately, no such continuum solution of
(11) is known and one's only recourse is to perturba-
tion theory.

Provided that Z ~&1, it is appropriate to treat the
electron-electron interaction as a perturbation on the
nuclear Coulomb interaction of the electrons. The
unperturbed wave function is simply the product of
two continuum hydrogenic wave functions and the
perturbed wave function, calculated to first order by
conventional perturbation theory, is

0'i', z(ri ri)=0'i*'(ri)4z"(r2}

(the prime on the summation implying that terms for which the energy denominator vanishes are to be omitted

from the sum). With the introduction of (12), the transition matrix element (10) may be written as

Appearing in (13c) is the Dirac-Coulomb Green's
function

with E =E~ +Eq —E, the total energies of the two
final electrons and the initial electron being given by
Ei, E2, and E, respectively.

The overlap integral appearing in (13b) is readily

Mso=Cy(1 —Pi2}pi'(0)37$„(0)f dr Pp' ' (r)P"'(r), (13b)

MDC=Cia(1 —P i}f dr f dr'$'i" (r')P,"'(r') P' (r)GE(r, 0)APE„(0). (13c)

l

shown to be of order u as a consequence of the near
orthogonality of Pz and P (since Z =Z'+ 1).
Thus ~so and ~DC are of the same order in the

Gs(r, r ')= g coupling constants and the contributions of both
(E g ) terms must be considered in determining M to

lowest order.
In Fig. 1 are shown Feynman diagrams associated

with the internal-ionization amplitude (10) and the
leading terms in its perturbation expansion. (In ad-
dition to the diagrammatic expansion shown, there
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8 8~ ~ f 8N N 8 „g8N to introduce the integral representation

1 . 1 ~ - exp[ik. (r —r ')]= lim dk
~

r —r'j ~-02m —" (k +e2)

Nj

Mso

FIG. 1. Feynman diagrams for internal ionization dur-

ing P decay.

is also a similar expansion for the exhange term,
differing only by an interchange of the two final
electrons e& and e2.) In the amplitude Mso correla-
tion effects are neglected and the transition is attri-
buted to the sudden change in nuclear charge and

the resulting imperfect wave-function overlap. The
final-state interaction is accounted for (to lowest or-

der in a) by the amplitude MDC according to which

the transition results from a (virtual) direct collision
between the orbital electron and the emerging P par-
ticle.

For purposes of calculating MDc, it is convenient
I

and express the Dirac-Coulomb Green's function
GE(r, r ') in terms of the analogous Green's function
for the second-order form of the Dirac equation,

GE(r, r ') =[—y 7+1+y4(E+a/r)]gE(r, r ') .

Then the DC amplitude may be written as

Cyo,' dk
Mnc ——

2
(1—P(2)lim

2 J)J2,
27T2 O oo (k2+~2)

with

J~ ——f droop (r)P (r)e

and

J2= f drys, (r)GE(r O)uy (0)e ~

= f dr/ (r)[[—y. V+1+y (E+a/r)]g (r, O)]&P„(0)e'"''

= f drys (r)e'" ""(E+E,+2a/r+a k)g~(r, O)%$„(0), (17c)

where we have integrated by parts and used the fact that (()~ satisfies the Dirac equation in obtaining (17c).

The evaluation of the transition amplitude will be described in Sec. III. For now we simply note the connec-
tion between the transition amplitude and the total transition rate for the internal ionization of an electron ini-

tially in the state a. The partial transition rate is given by (6a); hence, the rate for transitions to a group of fi-
nal states in the differential momentum ranges dP&, dP2 is

d~. =2~ f dp, g j~ ~'5(E, +E,+E„—E.—sE)dp, dp, , (18)
fmal

spins

where AE is the energy released in the nuclear transformation. The spin summation in (18) is over the spin
states of the three final leptons. Also, a summation over all final nuclear spin states and an average over all in-
itial nuclear spin states are implicitly assumed. If averaging with respect to the directions of P„is denoted by
angular brackets with a subscript v, the result of integrating (18) over all final states of the unobserved neutrino
may be written as

dm =8m g {~M ~
)„(W E~ —E2) dp~dPq—, (19)

spins

with W =Eo+2—8, where 8~ is the binding energy of an electron in the state a and Eo is the P end-point
energy. Transforming to the energy scale and integrating over all directions for Pi and P2, we obtain for the
double-differential energy spectrum

dw~

dE&dE2
=g~'p, p, (W. —E, —E, )' f dn, f dn, g ( jM j')„.

fma]

spins

Then, for P, the total internal-ionization probability per P decay, we have



8' —j. 3V -E) dNf ds, f ' ds,
„

where to~ is the rate for ordinary P decay and, because of the indistinguishability of the two final electrons, we
have divided by 2 to avoid double counting the internal-ionization events.

Of particular interest are results for the internal ionization of E-shell electrons. These are obtained from (20)
and (21) by setting o; =K and summing (20) over the spin states of the initial electron. Hence,

irk —
& ~ac-E~

P»= f ds, f ds, P, P, (w» s, ——s, )' f dn, f dn, g & ~m~')„. (22)
Np 1

aII

For the purpose of detailed calculation we limit
our considerations to the internal ionization of K-
shell electrons. It is this case which has been inves-
tigated most extensively; it is also the one for which
the Dc contribution is expected to be most impor-
tant. Our task is to evaluate M as given by (13) and
(17) and then obtain the transition rate from (20).

Thc cvaluatlon of Mso ls straightforward Rnd re-
latively simple; it has been calculated by many
%0rkcrs Rnd thcrc Rre Rvai18blc for lt expressions of
greater accuracy than. we shall need. By compar-
ison, the evaluation of Moc is much more difficult.
Indeed, while Mso has been evaluated analytically
using relativistic hydrogenic wave functions, a
closed analytical form for Moc has Qot been Ob-

tained even in the nonreiativistic Sorn-
RppI'oxlInatlon llmi t.

80Dl-approximation results Rlc, of coUlsc, of llttlc
interest since Moc is expected to exert its greatest
influence at very 10% cncrglcs %herc Coulomb ef-
fects cannot be neglected. At the same time, howev-

er, relativistic effects will be of secondary impor-
tance, although they cannot be completely ignored,
owing to the presence of the intrinsically relativistic
neutrino. Therefore, it is appropriate to undertake
Rn analysis of thc DC Rmp11tudc ln which nonlcla-
tivistic hydrogenic wave functions are utilized,

I

thcI'cby prcscrvlQg 8 lclatlvc RccuI'Rcy of order Zcx.

Concomitant with the use of nonrelativistic hy-

drogenic forms for the initial and final electron

states, %c Inay cnlploy thc slInpllf led form fOI' thc
second-order Green's function gz(r, 0) which was

first studied by Glauber and Martin. ' For the P-
decay case this approximate second-order Green's

function ls glvcn by

with

p=(S2 1)'r2, —r)=aS/IJ„a=Zn .

For the initial SC electron we employ the familiar
form

P»(r)= f(a')'/rr]' 'e "X»

%hllc for each of thc final clcctI'Ons wc usc 8 contin-
uum hydrogcnic wave function written as

P p (r)=
ized g i'(2l+1)Jti(Pr)Pi(P r)

(2m')i" i —0

F(ia/P+I +1,21 y2, 2iPr)
(2I +1)!

e ' =r(1+1—~a/I')/~(1+1+~~/I') . (2Sc)

In the above expressions, g is 8 two-component
Pauli spinor, P is the rnomenturn of a final electron,
I I ls 8 Legcndrc polynomial, I (z) ls thc gRIDIna
function, Rnd I' (b„c,x) ls thc conAucnt hypcI'-
geometric function. As given by (25), P p, describes
an in-state normalized on the momentum scale.

Although 8 closed-form cxprcsslon for the Donrc-
lativistic Coulomb scattering state P p is well

known, its employment would render the calculation
of (13c) intractable at a.n early stage, necessitating a
pI ohlbltlvc amount of numerical work. Further-
more, results based on such an approach are not
1cadlly gencrahzablc to thc 1clRtlvlstlc domain.
Thus, we have chosen instead a partial-wave expan-
sion for Q p .
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The use of such as expansion will, of course, lead
to results for MDC and the transition rate which are
also in the form of partial-wave expansions and, at
first glance, it might appear that any calculational
advantage will be offset by the need to evaluate a
large number of terms in order to achieve an accu-
rate final result. The DC mechanism is however ex-
pected to be important only at very low energies, its
effects being most pronounced for nuclides with
large Z and a small decay energy. Here, the amount
of energy that can be transferred to a E electron
during its collision with the P particle is necessarily
quite small, thereby limiting the electron's final an-
gular momentum.

Recognizing that the first Bohr orbit (1/a) is the
only natural length associated with this process and
denoting by P,

„

the maximum momentum acquir-
able by the ejected electron, we may estimate the
maximum angular momentum the electron is likely
to have as I,„=P /a; above l,„apartial-wave
expansion for Moc should be rapidly convergent.
As can be seen from Table I, Im,

„

is in the neighbor-
hood of 1 or 2 for those nuclides of particular in-
terest. For them, truncation of the partial-wave ex-
pansion after only a few terms should yield quite ac-
curate results.

We begin our calculations by rederiving a well-
I

known result for Mso. Substituting (24) and (2S)
into (13b) and employing for the conAuent hyper-
geornetric function the contour-integral representa-
tion,

i I {1—a)I (b)
2m I (b —a)

where C is a contour enclosing the interval 0&t &1
on the real axis in the positive sense, we obtain upon
integration

~so =&&v(1 —P 12 }Xz&P„(0}X1XKIso(P~,P2 ),
(27a)

with

Iso(P),P2) =— [(a') /n ]'~~D(P),P2)f (PI ),

D(P„P)=e 'r(1 —I,a/P', )

ge 'I (1—ia/P ),

f(P, )=exp[ (2a/P—~)tan '(P&/a')]/[PI+(a') ]

Now considering MDC, we start by introducing into {17b)and (17c) the Rayleigh expansion,

(27d}

e'"'" = g i'(2l+1)jI(kr)PI(k r")

l=O

where jI is the spherical Bessel function and k.r=cosO, 8 being the angle between the vectors k and r. After
integrating over dQ», we have

[2(ai)3]1/2 co

J) —— X)Xx- g ( —l)l(21+1)P((k P, )9F( (29)
7T 1=0

J,=(2/~)' 'X, g (21 +1)Ps(k'P }[(2E+E +2a k)NI" +2a&I "]%/„(0) (30)

with

9PI(P(,k)= f dr r RI'(P, rj)((kr)e

Imax

TABLE I. Characteristics of some P -emitting nuclides with very low end-point energies.

Nuclide Type Ep (keV) &x/Ep P (mc)

,63,Ni
1P7Pd
151
628m

A

tf
lf

67
35
76

0.134
0.729
0.638

0.49
0.19
0.33

2.4
0.6
0.7
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P'&"'(Pz, k) = I dr r "RI'(Pzrj)t(kr)gE(r, O)e (32)

To ensure convergence of the integral in (32), we have inserted the factor e ' with the understanding that the
limit A,~O will be taken at an appropriate point in our calculation.

It is now convenient to substitute (29) and (30) into {17a)and integrate over dQ-„. This leads to the follow-

ing expansion for MD&.

M~ =acv(1 —P iz gtzlac(P i Pz)ay. (O)&~gx

with

(33a)

IDc(Pi, P2)= (4/m' —)[(a') /rr]' g ( —1) [(21+1)AiPt(Pi Pz) —[l(21 —1)]' B1 Al l(Pi P2)
1=0

+[(1+1)(21+3)]'~B/+'A)+i(Pi Pz)I {33b)

A/(P, Pz) =[4'/(21 +1)]' g ( —1)I'C(1', l, l;O, lz, lz}u q Y("(Pi.P2),
p, =1,0, —1

(33c)

where C(1', l, l;O, tu, p) are C'lebsch-Gordan coefficients, a„arethe spherical components of the Dirac matrices
a, and F& are the spherical harmonics. The functions A~, BI' ', 8~'+', containing the energy dependence of
Eoc, are defined by

Al(Pit 2} [{E+E2)~l {PliP2)+2a~l (P1~P2}l

with

k dkS("'(P„Pz)=hmI 2 9Fi{Pi,k)A'I"'{Pz,k)
O 0 (I 2+~2)

and

(34a)

{34b)

k dk
BI (Pi,P2) = lim I 981(Pi,k)&~r~'(Pz, k) . (34c)

0 (k2+~2)

The determination of MDc is now reduced to the evaluation of the functions A~, BI'-'. This is described in the
appendix where it is shown that these functions may be written in the convenient form

Ag(Py sP2 ) (D/4) Ug(P7 sPp )s BI (P] sP2 ) (D/4) VI{PisPp )~ BI + (P)P2 ) (D/4) Sg(P] sP2 ) s (35)

where D is given by (27c) and the functions UI, Vi, and IVI are defined by (A13), (A14), and (A15), respectively.
With the use of {35},(27) and (33) may be combined into the following expression for the internal-ionization
transition amplitude:

M =—{aCv/n )[(a') /n]' D(Pi, Pz)(1 —Piz)X2K(Pi, P2)&py(0)XtXk

with

{36a)

K(P»P2)=f(P& }+X { 1}l(21+1)UI(P»P2)Pi(Pi Pz) —[l(21—1)]' Vl(P~, P2)Ai i(Pi Pz)
1=0

+[(I+1)(21+3)]' IV((Pi, P2)AI+i{Pi Pz)) . {36b)

A final result for P~ may now be obtained by substituting (36) into (22) and performing the angular integra-
tion and spin summations. This leads to

W~ —1 ~X-El
P~ ——, I dEi I dEzA~(E~},iE2) {37)

1

with the P-normalized double-differential energy spectrum given by
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2 o. (a')
~re(E] Ez) = P]P/E(QsPi )E(QsPp )( Wg' Ei Ep ) (Csp +CI +CD/ )

77K p

where we have introduced the nonrelativistic Fermi function by

F(a,P)=(2rra/P)/[I —exp( —2~a/P)] .

In obtaining (38) we have also written the rate for ordinary P decay as

g)p —(Cy/7T )(B B*+B484)A,p

with

(38)

(39)

(41a)

8'0 —1

A~= f dEPF(a, P)(Wp —1 E)— (40)

and 8'0 ——ED+2. Lastly, the coefficients determining the relative importance of the two mechanisms and the
extent of their interference are given by

&so =f'+f ' ff—
CI =Re[f ( Up —2Up)+ f(Up —2Up)], (41b)

&Dc= g [(2I+I)[
f

Ui I'+
I Ui I' Re(U—iUi")]+I[

I

I'i )'+
[

I'i I' —Re(l i&i)]
I =0

+(I+1)[IWi I'+
I Wi I' —«(WiWi')]J (41c)

where f=f (P, ), f=f(Pq ), Ui = Ui(P, ,Pz ), Ui = Ui (Pz P, ), and similarly for Vi and Wi.

IV. ANGULAR-CORRELATION
FUNCTIONS

As we have already reported, the value of Pz is
not greatly affected by the inclusion of the DC
mechanism. This is owing, in part, to the fact that
the contribution to P~ from the interference term is

negative and largely cancels the contribution due to
the DC process alone. As we shall see in Sec. V, the
same is true for the energy spectra whose shapes
show very little change when the DC amplitude is
included.

It is therefore of interest to examine some of the
simpler angular-correlation functions. Since Msp is
spherically symmetric, any correlation in the distri-

ebution of the final electrons is evidence for the pres-
nce of the DC mechanism. Furthermore, because

such a correlation can manifest itself through the in-
terference term where it is amplified by the much
larger SO amplitude, its effect can be quite pro-
nounced.

dw~(8) dpi~
=Ay(Ei, E/) $(E],Ep, e),

ep dEidEp 4m

(42)

where A,z(Ei,Ez) is given by (38), dQ&z is the ele-
ment of solid angle about the direction of Pz relative
to Pi, and the angular correlation function 9 is
given by

9(Ei,Ep, 0 ) = ( Csp +&I +@D|") /( Csp +Cy +Cog )

(43a)
with Csp, Cr CDc given by (41) and

41——g ( —I)'(21 +1)Pi
l=o

XRe[f (2Ui —Ui ) y f(2Ui —Ui)],
(43b)

@DC g g ( 1) [Qll'+~ll'+~II'
I =OI'=0

A. Electron-electron angular correlation
with

(Tii + Ti'i )1—(43c)

To study the angular correlation between the
directions of emission of the two final electrons we
once again substitute (36) into (22), but now we only
perform the spin summation and not the angular in-
tegration. The result obtained is

Qii = [(21+ 1)(2l'+ 1)P(P( ]

X [Ui Ui" + Ui Ui ——, ( Ui Ui' + Ui Ui' ) ]

(43d)
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~„,= [P(("P(("+n'P, P, ]
&& [V(V('+ V(V(' —, (—V(V('+V(V(')]

{43e)

S(( =[Pi Pi '+(I+1)(l'+1)P(P(]
X[W(W,'+ W, W(' ,

'—(W—(W('+W(W(')],

T((,=[P("'P(I" I (I —+ I )P(P(]

X[V(W('+ViW(' ——,(V(Wi'+ ViWi')],

(43g)
]

where the argument of the Legendre polynomial P~

and associated Legendre functions PI is
cos8 =PI.P2.

For SO alone we have S{E],E2,8)=1, a well-

known result implying no correlation between the
directions of emission of the two final electrons. On
the contrary, the result (43) shows that such a corre-
lation does arise through the DC mechanism, mani-
festing itself especially through the interference term
g I.

Also, for later use we define the integrated angu-
lar correlation function by

W~ —1 8'~ —E]

f dE( f( dE~Ax(E(, E2)9'(E„E2,8)
G(8) =

f, dE( f dE2A(r(E(, Ez)

As with $(E„E,,8), G(8) =1 for SO alone.

{44)

B. Distribution of electrons from poiarized nuclei

Implicit in the expression g, ,„,~

M
~

is a sum over all final nuclear spin states and an average with respect

to all initial nuclear spin states. Thus far in our calulations we have assumed that the initial nuclear popula-
tion is unpolarized. If, on the contrary, the initial nuclei, whose states ~J,M) are characterized by the
angular-momentum quantum numbers J and M, are polarized, {36)leads not to {38)but rather to

1 du~ '{O, ) dO,
[I+~(E»Ez)r(rc

I +((r I
cos8(] {45)

dEidE2
'

4m.

with

~=(FI+FDe)~«so+ CI+ CDc»

Fi =Re[f (2Wo —Wo)+f(2WO Wo)1

(46a)

(46b)

FDC —2 g Re[i —[—U( V(+ U( V( ——,( U( V(+ U('V()]+(l +1)[U(' Wi+ U( W( ——,(U( W(+ U('W()] j,
1=0

{46c)

after the Qi2 integration has been performed. Herc9I——&I,M
~

I
~
J,M) jJ is the polarization vector

of the initial nuclear state and 8] is the angle be-
tween the vectors 9'~ and P&', a~ is an energy-
independent coefficient whose value depends on the
initial and final nuclear angular momenta J and J'
and the type of transition as follows: For a pure
Fermi transition,

ag ——0;
for a pure Gamow-Teller transition,

—J/{J+1), J'=J+1
ag —— 1/{J+1), J'=J

1, J'=J —1;

for a mixed transition,

((~JR f2

{J+1)
AJ{R +R*)
[J(J+1)]'"

X(i+A, '~R ~') ';

where

~ = &fll~ll( &~&fIIIII( &

is the ratio of the reduced nuclear matrix elements
for Gamow-Teller- and Fermi-type transitions. If
we now integrate {45)with respect to Ez, we obtain

du~ {8&) dQ~
=A.g {E]) 8'~{Hi ), {47)

Np dE) 4m.

a result in which the one-electron energy distribu-
tion is given by
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~X —~1
As(E))= f dE2&a(E),E2), (4

and the angular distribution function is defined by

%sr(e))=1+&(E))as
~

9'sr
~
cose)

with the energy-dependent coefficient
8'~ —E1

&(E()= f dE2kg(E(, Ep)
K 1

5.0

2.0

X~(E),E2) . {5O)

For the SO process alone, W(E~,Eq) =0 and the
one-electron distribution is spherically symmetric.
As is evident from (49) and (50), this symmetry is
perturbed by the action of the DC mechanism, the
extent of the resulting asymmetry depending largely
on the magnitude of &(E&}. %e shall examine the
behavior of this function in Sec. V.

V. RESULTS AND CONCLUSIONS

To illustrate the results of our calculations we
have chosen the three nuclides listed in Table I. Al-
though the ratio 8~/Eo is not very large for Ni, it
is the best candidate available from among known
a11owed P emitters. The two other nuchdes shown
better satisfy our criteria of low decay energy and
large Bz/Eo ratio, but they decay by nonunique
first-forbidden transitions. For them our results are
valid on1y in the g approximaton which, however, is
well satisfied because of the low end-point energy.

%e consider first the composite energy spectrum
A,~(Ei) obtained from (38) and (48). As is evident
from these equations, Aa(E, ) is of the form

0.5

I 0 20 30 40 50

K~XCT~C ZXCRGY (ke V)

FIG. 2. Composite energy spectrum of ejected K elec-
trons and P particles for internal ionization during P de-

cay by Ni. Curve S is the spectrum due to SO alone;
curves Do, Di, and D2 are the l=0, 1,2 partial sums of the
contribution from DC alone. Overall spectrum is
described by curve T.

A,~(DC) is even more rapid as is to be expected from
the corresponding values for / „.Indeed, in Figs. 3
and 4 the curves D& and D2 are indistinguishable.
Thus, for all three cases our results for A,z(E& ) may
be regarded as essentially exact within the frame-
work defined by our approximation scheme.

From the curves D2 and S of all three figures it is

where k~(SO) is the spectrum due to SO alone,
A,z(I) describes the interference between the SO and
DC amplitudes, and A,~'(DC} represent the partial-
wave contributions to A,~(DC), the spectrum due to
DC alone.

On the basis of our estimates for l,„wehave
truncated the series for A,&(DC) after the l=2 term.
Computer codes have been developed for the evalua-

tion of the functions Ug, VI, and 8'I, defined by
(A13)—(A15), for I=0,1,2 and with them we have
obtained the results displayed in Pigs. 2—4.

It is evident from curves Do, Di, and Dq of Fig. 2
that the partial-wave expansion for A,~(DC) con-
verges rapidly at all energies for Ni and, even
though /, „=2.4 in this case, the contributions from
partial waves with I & 3 are clearly negligible. Por

Pd and ' 'Sm convergence of the series for

2 4 6

KlNETIC ENERGY ( ke V )

FIG. 3. Composite energy spectrum of ejected K elec-
trons and P particles for internal ionization during P de-

cay by ' Pd. Curve S is due to SO alone and curves Do,
D~, and Dq are the first three partial sums of the DC con-
tribution. Curve T represents the overall spectrum.
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0.75
'0

0.50

5 I0 I 5 20 25

KiNETIC ENERGY (ke V )

FIG. 4. Composite energy spectrum of ejected E elect-
rons and P particles for internation ionization during P
decay by '~'Sm. Curve 5 is due to SQ alone and curves
Do, Di, and D& are the first three partial sums of the DC
contribution. Curve T represents the overall spectrum.

clear that A,s(DC) is never more than about one
third to one half of A.~(SO). But while such a con-
tribution is quite substantial, the overal1 effect of the
DC mechanism on the composite energy spectrum
is, in fact, considerably smaller because of an equal-

ly substantial, but negative, contribution from A.z(I).
%hen both of these contributions are added to
A,a(SO), one obtains a total A,s which, for the three
nuclides considered, differs from A,~(SO) by only
about 12—15% at all energies.

In view of the significant role played by the in-
terference term it is worth remarking that this term
is Coulombic in origin. As Feinberg has shown,
when a plane-wave approximation is employed for
the intermediate and final states of the P particle,
A,@(I) vanishes and the SO and DC contributions to
A.z are purely additive. However, when Coulomb ef-
fects are included, this is no longer the case al-
though it is only the s-wave part of the expansion
for Moc which contributes to k~(I).

Because the overall effect of the DC mechanism
on X~ {and P~) is not very great, even under favor-
able conditions, it is of interest to consider correla-
tion effects since these can arise only through the
DC amplitude. Since such effects are Inore sensitive
to the higher partial waves, we shall examine only

Pd and ' 'Sm since our expansion for MDc is
more rapidly convergent for these nuclides than for
63Ni. Although these two cases involve nonunique
first-forbidden transitions, angular-correlation func-
tions are expected to be relatively insensitive to
shape-factor corrections.

I.75
107

48

I.50—

I.25—
C9

I.GG—

0.75
0 30 60 90 I 20

1

I 50 I 80

FIG. 5. Plot of integrated angular-correlation function
G(8) for 'O'Pd obtained using first three terms of partial-
@ave expansion.

Undoubtedly, the simplest correlation to observe
is that between the directions of emission of the two
final electrons. To illustrate this correlation, we
have plotted in Fig. 5 the integrated angular-
correlation function G(8), given by (44), for ' Pd.
The effect is indeed substantial. For example, in an
electron-electron coincidence experiment, the count-

ing rate is predicted to vary by about a factor of 2

when the angle between the two detectors ranges
from 90' to 180'. Such experiments, while admitted-

ly very difficult, are to be encouraged since they are
capable of furnishing direct evidence for the pres-
ence of the DC mechanism as mell as a more
stringent test of the theory developed in this paper.

Another correlation function of some interest is
that associated with the angular distribution of elec-
trons from a polarized source. As we have sho~n in
Sec. IV, the composite one-electron momentum dis-
tribution is, in this case, characterized by the angu-
lar dlstributloIl function 8 ~ ( 8~ ), defiIled by (49).
The extent to which this function can depart from
unity is limited by the magnitude of the energy-
dependent coefficient &(E~},defined by (50), espe-
cially at low energies where most of the internal-
ionization events occur. In Fig. 6 we have plotted
N(Ei) for ' 'Sm; the results are disappointing.
Over the entire energy range this function is only of
order 10, making polarization effects far too
small to be of any experimental interest. The situa-
tion with respect to Pd is much the same.

To further refine the theoretical model, relativistic
and screening effects must be included. In view of
the dominance of the SO process, a reasonable esti-
mate of the resulting corrections may be obtained by
considering their influence on the SO amplitude
alone. For the model used in this paper, this can
readily be done for Pg. By combining results of Iso-
zumi, Shimizu, and Mukoyama with those from
Table I of Ref. 24, it is found that relativistic effects
increase P~(SO) by a factor of 1.05, 1.08, and 1.21
for the nuclides listed with Z=28, 46, and 62,
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FIG. 6. Plot of asymmetry coefficient &(E&) for ' 'Sm

obtained using first three terms of partial-wave expansion.

respectively. Similarly, combining results from Iso-
zumi, Shimizu, and Mukoyama' with those from
Mukoyama and Shimizu, ' it is found that screening
effects increase the relativistic hydrogenic results for
P~(SO) by a factor of 1.36 (1.21) for the nuclide
with Z=28 (Z=62). When combined, these factors
yield an overall correction factor of 1.43 for Ni
and 1.46 for "'Sm.

For the DC process corrections of comparable
Inagnitude are to be expected and a completely satis-
factory theory will have to take them into account.
For low-energy transitions this may be done by ex-

tending the calculations of this paper to the rela-
tivistic domain and using wave functions which in-
corporate the effects of screening.

An advantage of the perturbation approach used
in this paper is that it permits a detailed and accu-
rate treatment of the DC amplitude, particularly im-
portant for the study of correlation phenomena.
However, because of the complex structure of Moc,
the extent to which one can modify the wave func-
tions to iIlcorporatc many"body cffccts is limited.
On the other hand, the DC amplitude plays only a
minor role as far as the calculation of A,~ and P~ are
concerned. Here, because of the much simpler
structure of Mso, it is possible to use more elaborate
procedures to include many-body effects. Indeed,
recently Law and Suzuki have utilized a relativis-
tic self-consistent-field approach to include many-
body effects in a calculation of Mso, thereby achiev-
ing much better agreement with recent experimental
results for P~.

The results of Law and Suzuki are very encourag-
ing and point up thc importance of many-body ef-
fects. However, DC effects are not included in their
results and estimates of the DC contribution to P~
by Law and Suzuki yield results about an order of
magnitude smaller than expected, an indication of
the difficulty of properly accounting for the DC am-
plitude in their approach. It therefore seems likely
that the two approaches will have to be combined in
an appropriate way in order to adequately describe
all aspects of the internal-ionization phenomenon;
further theoretical work to this end is to be en-
coul aged.

APPENDIX

Evaluation of the functions A~(P1,P2) and 8~'-'(Pl, P2) begins with the calculation of P'I"'(P2, k) and
.9't(P, ,k} defined by (31) and (32}, respectively. For this purpose we introduce into these equations the forms
(23a), (25b), (26), and, for the spherical Bessel function,

jt(kr)=, f due" P((u).
Zi'

The r integration is now elementary and leads to the following results:

~',"'(P,k) = —(&/'8~ )( —Za' )'e 'r( —I +I'.0/P )e ' ' (I +n)!

f 1 1+S i «tft(P2, t2}
X du2PI(u2) dS—1 [A, +iP2(2t~ —1)—iku p i p(1+2S)]—'+"+ '

with Imt2 & A, /ZP2 as the condition for convergence, and

AI(Pl, k) =(i /4m )( —ZiPl )'e 'I ( —I +ia/Pl )e ' ' (I +2)!
1 dtift(Pi, ti)

X du 1pl(ul)—1 c [a' iku, +iP, —(2t, —1)]'+'

(A1)

(AZ)

(A3)

with Imt1 &a'/ZP1 along C to ensure convergence. Also, for convenience, we have introduced the definition
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f (P, t)=( t—) to +t(1 t—)i'i +t (A4)

Substitution of (A2) and (A3) into (34) and completion of the k integration by the method of residues then
yields

lg

St'"'(P&,P2) =Nt'(P&, P2)(D/4) f dS f dt, ft(P„t,) f dt2ft(P2, t2)It'"' (A5)

and

lg

Bt (Pi,P2)=Nt (Pi)P2)(D/4) f dS II) dtift(Pt, ti) f dt2ft (P2, t2)It
(A6)

where

(A8)

(A9)

l, 2;g,(p, ) p;g, ,(p ) I ( —I+ia/P1)I ( —I+ia/P2)
Nl (P1,P2)= —(p/4m )(2P1) (2P2) e ' ' e (A7)

I (1—ia /P1)I (1—ia /P2)
1 1It"'=( —i)"(—1)'+'(21+n +2)!f duiPt(ut )uI+" f du2Pt(u2)u2+ /(Au, +Bu2)2t+" +

1

It' =( —I)'+'(1'+2)(1+1'+3)!f duiP (uti) I
u'+ du2Pt(u2)u'2+'/(Au, +Bu2)'+'+~

1
z+( —1)'(l+1'+4)M f dutPt(ui)ui+ f du2Pt(u2)u2+ /(Aui+Bu2)'+'+~

with A =P2(2t2 —1)—p(1+2S)—ii, and B =Pi(2t1 —1)—ia'.
By repeated integration by parts and extensive use of well-known recursion relations for the Legendre poly-

nomials, both integrations in (A8) and (A9) may be completed. The results are

and

II"'——( —i)"(—1)'+'(2l +n)! +
(2l+ )(An B2( A+B)2I+I AB(A +B) +n+' (A10)

jl'
(

1)(l+l' —1)/2(I +I +2)1
(I +I'+ 2)A

I' —l+ 1BI —l'+1(A +B)l +1'+2

1

A
(l' —1 +1)/2B(l —l'+1)/2(A +B)l+l'+3

With the aid of (34a) we may now write

(A11)

Al(P1, P2) Ul(P1 P2)

Bl (P1 ~P2 ) D (P1 )P2 )/4 Vl(P1 sP2 )

Bl'+'(P1 P2) W, (P, P, )

(A12)

(A15)

where, from (A5) and (A6), we have
1

Ut(P, ,P2)= Nt'(P„P2)f dx—x '"(1—x) f dt, ft(P, , t, ) f dt2ft(P2, t2)[(E+E2)It +2aIt'"], (A13)
1

Vt(P, ,P2) =Nt (Pi,P2) f dx x '"(1—x) f dt, ft(Pi, ti ) f dt2ft i(P2, t2)It (A14)
1

W((Pt, P2)=Ni+ (Pi,P2) f dx x '"(1—x) f dti ft(Pi, ti) II) dt2ft+, (P2, t2)It'+' .

The final evaluation of (A13)—(A15), for which we have transformed the integration variable S to
x =S/(1+S), is straightforward but laborious and we shall not present it in detail. Of the three remaining in-
tegrations only one of the contour integrals can be done analytically. For example, one can perform the t1 in-
tegration by observing that Il"' and Il-' have poles in the t1 plane at t1 ——(P1+ia')/2P1 and at
t 1' ——t1 —A /2P1 and applying the method of residues. The remaining two integrations must then be performed
numerically. By means of standard techniques their execution is straightforward but with the amount of com-
puting time required increasing rapidly with I.
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