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Theory of photoelectron angular distributions in resonant multiphoton ionization
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In this paper, we present the theory of photoelectron angular distributions in resonant
multiphoton ionization that rigorously takes into account the saturation, ac Stark-shift, and
the laser-linevridth effects. The influence of these effects on the distribution is incorporated
through the coupling equations between the angle-resolved ionization probabilities and the
(time-dependent) bound-state density-matrix elements. General expressions for the angular
distributions are derived and several properties of these distributions are arrived at from
these expressions. Finally, numerical results are presented to illustrate the effects of satura-
tion, of ac Stark shifts, and of the laser line shape.

I. INTRODUCTION

Thc study of photoelectron angular distributions
is one of the basic tools for the exploration of atom-
ic and molecular structure. In multiphoton ioniza-
tion, however, such angular distributions acquirc ad-
ditional levels of complexity and variety. ' As in
single-photon ionization, the initial state plays a cen-
tral role in determining the distribution. But two
other aspects are equally important in a multiphoton
transition: thc order' of the process and the possible
participation of real intermediate states. The order
of' the process introduces features which are in-
dependent of the target atom; as, for example, the
maximum order of the I.egendre polynomial appear-
ing in the distribution. One might say that it re-
flects the geometric features of the process. The
participation of a real intermediate state on the oth-
er hand, reflects dynamical aspects of the process as
well. Thus, in three-photon ionization, for example,
the details of the distribution depend significantly
on whether there is a single- or a two-photon reso-
nance with an intermediate state. It is the effects as-
sociated with such resonant or near-resonant inter-
mediate states that is the focus of our interest in this
paper.

The photoelectron angular distribution under such
resonance conditions can also be viewed as the dis-
tribution for ionization froxn an excited state: the
resonant intermediate state. Thus, the problem is
intimately related to the spectroscopy of excited
states which is a topic of intense current in-
terest. ' Resonant multiphoton ionization, how-
ever, is known to require particular care in its inter-

pretation because the resonant intermediate state can
and does shift as mell as broaden under the strong
radiation required for the observation of thc process.
Moreover, the bandwidth and other stochastic prop-
erties of the laser radiation are known to affect the
process in a profound way. It might then seem
that, in view of such complications, the prospects
for a quantitative description of these processes are
not very encouraging. Our intention herc is to show
that one can in fact develop a systematic theory
which contains the important features of the process
and allows for a quantitative comparison with ex-
periment.

Our theme, therefore, is the photoelectron angular
distribution in resonant multiphoton ionization and
its dependence on the strength and bandwidth of the
radiation. It turns out, however, that this depen-
dence is uninteresting if not trivial when we have
only one intermediate state. It is the case of two
closely spaced intermediate states —such as, for ex-
ample, a fine-structure pair —that presents a number
of surprises. First of all, the transitions from the in-
itial to each of the two intermediate states may satu-
rate at different rates as the intensity changes.
Second, the tmo states may shift by different
amounts with the possibility of their order becoming
inverted with respect to the order in the bare atom.
Third, the laser bandwidth may affect the angular
distribution because it may affect the superposition
of the channels via each of the states to the continu-
um. This mould come about, for example, when the
laser bandwidth is comparable to the energy separa-
tion of the two states and the laser line center does
not coincide with the center of the distance betmcen
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the states. Needless to say, this relative position will
in general change with light intensity as the states
shift. The above three aspects are of course interre-
lated and the theoretical challenge lies in developing
a model that includes all of them.

In the following sections, we have taken two-
photon resonant three-photon ionization of Na as a
case study and have developed a model that can be
readily generalized to other cases. The calculations
presented here are sufficiently detailed to allow com-
parison with experimental results when available.

II. THEORY

The discussion in this section will be divided into
two subsections, the first dealing with the dynamics
of the process and the second concerning the details
of the observation and the effect of the dynamics on
it. The former includes a description of the multi-
photon absorption process in terms of either the am-

plitude, the density-matrix, or the resolvent operator
equations. The effects of ac Stark shifts, saturation
of the probabilities as well as the effects of the laser
linewidth, are included here. The second subsection
describes the observation process; i.e., measurement
of the ionization probability, angular distribution,
and/or spin polarization of the ejected photoelect-
rons. The influence of the dynamical effects are in-
corporated through appropriate coupling
equations —differential equations involving the
density-matrix elements between the bound states.

A. Dynamics of the absorption process

The process we have in mind is the ionization of
an atom (initially in its ground state) by absorption
of n+ 1 photons. As far as the evolution of the
population in the bound states is concerned, the con-
tinuum can be eliminated in an adiabatic way. This
is a well-known procedure and has been described
elsewhere in the literature. ' '" Such an elimination
of the continuum gives rise to the shifts and widths
to the bound states, the widths signifying the decay
of the population to the continuum. The (reduced)
bound-state dynamics can be simplified further if
the frequency of an integral number of photons is in
resonance with some intermediate state. In that
case, the number of equations can be reduced to
those connecting only the resonantly coupled states
with the effects of the off-resonant bound states ap-
pearing in the form of Stark shifts of the resonant
states and the effective matrix elements connecting
them. Such a procedure has been widely employed
in discussing resonant multiphoton processes.

Restricting ourselves then to the case of an n-

photon resonant (n+ 1)-photon ionization of the
ground (S1/2) state of an alkali-metal atom, the

resonantly coupled states are the Si/2 ground state
and the two (if other than an S state) fine-structure
states near the n-photon resonance. The importance
of treating both fine-structure resonant states in dis-
cussion of strong-field behavior of the process has
been emphasized recently by us."' For the sake of
simplicity we shall further restrict ourselves to two-
photon resonant three-photon ionization of sodium
via a nD3/25/2 doublet. The generalization to the
case of an arbitrary order process can easily be done
with appropriate generalization of the atomic
parameters.

Denoting by
~
0),

~
1), and

~

2) the states (in
the

~
lsjmj ) representation)

~

0 —, —, —, ) (S,/z ground
state), ~2 —, —, —, ), and ~2 —, —, —, ) (D3/z5/z near-

resonant states), respectively, the density-matrix
equations governing the time evolution of the three-
state system coupled to the continuum can be writ-
ten as'
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In the above equation, Qp&, Q02 denote the two-
photon Rabi frequencies for transitions from the
ground state to states

~
1) and

~

2), respectively.
I i,I 2 denote the ionization widths of states 1 and 2,
while Qi2(=Q&2 —iQ&'2) denotes the interference be-
tween the two ionization channels. Ei,42 are detun-
ings of two photons from the (ac Stark-shifted) ener-

gy differences between the ground-state and the
near-resonant states

~

1) and
~

2), respectively, and
coi2+ S&2 ——62—b i. The details of these parameters
can be found in Ref. 12. The effects of the laser line
shape, which is assumed to arise from phase fluctua-
tions, are included in the terms

4b
2 2, k=12.

+2+ p2

In this phase diffusion model, the laser spectrum is
Lorentzian near the center with the full width at
half-maximum (FWHM) 2b and has a cutofff
around P (& b) The fo. rm of these terms is valid for
P larger than other parameters in the process. '

Apart from the assumptions about the laser line
shape and the adiabatic elimination of the off-
resonant states and the continuum, the above equa-
tions are exact in describing the evolution of the
three-level system with time. All the saturation ef-
fects are rigorously included in the solutions of the
coupled differential equations (1).

bound-state system and can be written as

P (t) = 1 —ppp(t) —
p~ ~(t) —p22(t) . (2)

~ fk,pf &=4~
I =0m = —I

X Y)~(k) YIm(r)

XREI(r)g„P,f 7

(3)

where the radial functions RF~(r) are assumed nor-
malized on the energy scale,

f "REIRE'lr d. b(~
0

=5( —,k' ——,(k')')

and have the asymptotic form given by'
1/2

2 1
REI(r) ~ —sin(kr —1m/2 —51 ) .

r mk r

(4)

In situations where the photoelectron angular distri-
bution and its spin polarization are measured, calcu-
lating the total loss of population is not sufficient;
one has to study the details of the population
dynamics in the continuum. To do this, we employ
the partial-wave expansion of the continuum wave
function as ' '

B. Photoelectron angular distributions

Having described the "equations of motion"
governing the dynamics of the bound-state system
decaying into the continuum, let us analyze how this
dynamics influences the properties of the ejected
photoelectron. Experimentally measured quantities
are the probability of ionization (IP) (which is pro-
portional to the total ion signal), the angular distri-
bution (AD) and/or the spin polarization (SP) of the
ejected photoelectrons. Of these, the IP is given
simply as the total loss of population from the

I

In Eq. (3), X& denotes the spin-wave function ofPf
the electron with pf as the projection of its spin
along the quantization axis (pf ——+ —,) and YI~(r)
and YI (k) denote the spherical harmonics for the
orientation of the photoelectron position and its
momentum, respectively.

For atoms exhibiting strong spin-orbit coupling,
the radial function depends on the total angular
momentum j, and the partial-wave expansion (3) has
to be generalized as

2k

1/2

(i) e 'YIm(k) g ( —1) I(2j+1)' REll(1)
1=pm = —1 j,m.

note that
~ f z,pf ) is normalized so that

p(k) f i,f k ypf ~
f-„ypf'id k=1,

~
(m p~ m) ~

'
2 jml —~

where
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p(k) = 1

(2a)
The phase shift 5~ of the 1 partial wave is the sum of the Coulomb phase shift arg(1'(1+ 1 i—/k)) and the shift
due to the quantum defect m pI, where pI is the extrapolated quantum defect for the I states.

The probability that an electron will be ejected at an angle (8,$) with respect to the z axis and will
have py =+—,, denoted by P+ (8,$), obeys the differential equation

dP+(8, $ )

dt
=I;(8,$ )p) )+I 2-(8,$ )p22+0,"2- (8,$ )2 Rep, 2 (8)

whose derivation is sketched in the Appendix. The direction-dependent width parameters I ~-(8,$), I'2 (8,$),
and QI'z-(8, $) are defined as

Q)'g (8,$) =-2maFco

I';(8,$)=2nuFco (1I r e
I
f-,pI)(f-,p~ I

r e
I
1),

(2 )2
k' k'

I z(8(tl)=2~nF~, (2Ir'e 'If ~ IzI&(fg pI Ir'e I2&

f- pI1(j

with + corresponding to p~ ——+ —,, and are related to the total widths I 1, I 2, and 01'2 used in Eq. (1) by

I') ——I dQI, (l )+(8,p)+I') (8,p)),
I'z ——I dQg(I'~+(8, $)+I z (8,$)),

and

QI'2 ——I dQg, (QI2+(8,$)+QI2 (8,4)) .

The above expressions for the widths can be simplified further by using the partial-wave expansion of the con-
tinuum wave function given in Eq. (6}.

Consider the matrix element
' 1/2

krMf Xq & 4~
~num, =fp~p. I " I

Ygq R (JI 2 jmJ.

representing the 2X-pole transition between the state
I R„1~(—,jmJ ) and the continuum (I= 1,q=O for electric

dipole transitions with light linearly polarized along the z direction while 1=2,q=+1 for electric quadrupole
transitions in the presence of light linearly polarized along the z direction). Using the continuum-state expan-

sion given in (6) and the well-known theorems on angular-momentum algebra, '
A„IJ . can be written as14 17 kyfrq

kPfxg
~nIJm. =4~

2k

00 1 I ill

o
I

l, mJi

where the purely algebraic coefficients CIJ .I J „.(chosen to be real) are defined in terms of the 3-j andJNlJ, IJ1PF1I PfPJJ

6-j symbols' ' as

I

l i +J ) +J+7+ 1 —2Pll ~

CtJ~~, II ~, „~ ——( —. 1) '(2J)+1)[(2l,+1)(21+1)(2j+1)]'
mI py —mJ

and
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X P" X Z
g&&.EI - ——~" REI, ,

r R„I r dr .

A product of tmo bound-free matrix elements such as those appearing in Eq. (9) can then be expressed as
kpfpgijt kpfgQ+ kpf gg

Njlm. ;n'Ij''rn -'
~"IJ'NJ' N'I'j 'rn '

Sm' 3 I2 X X
i(5 —5 }

~njl;El& j&~n'l'j', EI2j 2
I1 I2»1 j2

pnI
1 2

Nl ~,Nl ~

I 2

CX|t CXQ p jk)p4 jI )
I'J'n .I j ~ ~ ~' ~J~J ~1J 1~IV~Zf iZ J'

1 J1 1 2

Finally, with the help of the identity (Ref. 17, Eq. 1.43)

(21,+1)(21,+ I)(2L+1)
I'i', m, I'i, ,

=( I) —'
L,M 4'

Eq. (15) can be rewritten as

(1, 1, L, ) f 1, 1, I.~
'"~o o o) ~m, —m, Mj

kPf&c 8%
7lljln. ;N Ij IN ~

k
/Fag, Ply, PS),Hl ~

1 2 1

i(5I —5) }

(21i + 1)(212+1)(2L + I )x( —1) '
L,M 4m'

(/, 1, I.)(1, 1,

2

This is the main expression of our paper. All the
details of the angular distribution and the spin po-
larization are contained in the coefficients appearing
in this equation.

Several general statements about the angular dis-
tributions can be made at this point without explicit-
ly calculating any of the coefficients. These con-
clusions follow from the properties of the 3-j sym-
bols. In arriving at these conclusions it is assumed
that only one type of multipolc interaction is present
(only one set of g,q allomed). Effects of more than
one multipole interaction on the distribution are dis-
cussed a little later.

Because the 3-j symbol

t ji j2 j3~
(o o oj

vanishes unless the sum j» + j2 + j3 is even, ' it fol-

lows that only those values of I.'s appear in Eq. (17)
that satisfy the condition

I+I'+I. =even .

If the states ~1 —,jm ) and ~1' —,j'mj') were
reached by absorbing the same number of photons
from some common state, then I —I' is even which
implies that I. is even. Thus orly even order r~~'s
remain in Eq. (17).

If m =m ' and I—I' is even, as mould be the case
if the same number of photons mere absorbed from

1
some given state to reach the states

~ R„ij 1 —,jmj)
and ~R„i '1' —j'm' ), it follows that ml ——m2 and
hence M=o along with thc fact that I. is even.
Hence, only even-order I.egendre polynomials ap-
pear in the expression for the angular distributions.
Such an expansion of the angular distribution in
terms of even-order Legendre polynomials has been
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widely employed in the discussions on multiphoton

angular distributions. "
Note that the interference terms between different

partial waves (/1&/2) disappear in the integrated
cross section because of the relation

/ 1 /2 0 5il 5

m1 —m2 0

A comment is in order at this point. All of the
above expressions have been derived assuming that a
single multipole of the radiation field is important
in the ionization process. If the dipole approxima-
tion is valid, this will indeed be the case. VAenever

higher multipoles contribute to the ionization pro-
cess, the factor r ~Y« in (9) has to be generalized to

a sum of the important multipoles and the angular-
momentum algebra carried out in an appropriate
manner. Then in addition to the partial-wave in-

terferences, one also gets interferences between vari-

ous multipoles.
For the remainder of this section we shall restrict

ourselves to n-photon resonant (n + 1) photon ioni-
zation of the S1~2 ground state of an alkali-metal
atom by light linearly polarized in the z direction
(X=1, q=0). In this case, the maximum allowed
values of /, /' is n and that of /1, /2 is (n + 1). Furth-
ermore, mj ——mJ' which implies M=O and there is
no p dependence of the angular distribution. Clearly
only even-order Legendre polynomials from L=0

k@f10
uP to 1.=2(n+ 1) aPPear in Eq. (17). Bnlj

can then be expanded as

l(JMf =+—)10f
niJm), n'l'j 'm '

n+1

()
j' J '

2

nlJm. ;nlJm. ';2p k
' ~+ '

mi, J (,J2
1

. I) —l2 il l2
i(5 —5 )

al j;hp 1j1~ 'I'j',klzj'

, (Ii lz 2PI (Ii I, 2P)xc9, . cf&. ,&'j'm', &ijimi pfmj ijm' zjzmi, "f jz I 0 0 0 1 & mj —mi 0 j
'! X 1 I

toelectron spin for this state does not contain the
I.engendre polynomial of the highest order (2 I + 2).
Specifically, since

~
1)= ~2 —, —, —, ), 1,(8)=1,+(8)

+ I 1 (8) contains terms only up to P4(cos8).
Qne can alternatively expand I 1 (8), etc., in terms

of even powers of cos8 simply by expanding the
P2p(cos8). Thus,

n+1
~l (8) g u 1112k1COS

k=0
n+1

I'z (8)= g az~zizkicos "8, (23)
k=0

n+1
&12 (8)= g Q1212kicoS "8,

k=0

With the help of Eqs. (9) and (10), I'~ (8,$),
I"2(8,$), and Qi'2-(8, $) can also be expanded in
terms of P2p(cos8) as

I 1 (8)= g b 1 1(zp)Pzp(COSH),
p=o

1 z (8)= g b 2~212~1P2~(cosH), (22)
p=o

n+1
n+ +

012 g b 12(zpiPzp(COSH) .
p=o

n+1+ ~ + 2k
+ij (2k) ~ ~ij (2p)C2p

p=o

biJ(2p) are simply products of the factor
+

A„& „,&.j. . in .Eq, . (21) with proper njlm as de-.
fined in Sec. IIX and the factor [kl(2m) ]2rraEco
from Eq. (9).

Another important property that follows
quite generally is that if j=/ ——, for a given / state

(D3~2 state, for example), then

a+
~njlm. ;n'Ijm-;2( l+1) — ~nljm. ;nlJ'm&, (21+2)-

This implies that the width summed over the pho-

and

I'2p(cos8 )= C2pcos (8),
k=0
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C2& being the expansion coefficients for the Legen-
drc polynomials.

Expanding P+(8) in terms of cos 8 as

8+1
P+(8}= g P2kcos2"(8), (25)

k=o

thc cocfficicnts P2k Obey

dP2k + +

dt
=~ i&(2k&pi i+~ 22(2a)p2z+2~ i2(2k) Rcpi2

This is thc connecting equation describing thc influ-
ence of the bound-state dynamics on the angular dis-
tribution Rnd the spin polarization of thc photoelect-
ron. Saturation effects appear through the time-
dependent density-Inatrix elements p~i, p22, and p~2
whose behavior is governed by Eq. (1). If one is in-
terested in studying only the spin polarization of the
photoelectron, as was done in Ref. 12, P+(8) has to
be integrated over the angles

CO 8+1 P2k
P+ 2n I P——+(8)sin818=4m

0
o (2k +1) '

(278)
while investigating the angular distributions alone
requires that we sum the IP over the spin of the
ejected electron,

P(8)=P+(8)+P (8), P2k ——P2k+Ppg . (27b)

For 8 complete measurement of all the atomic
parameters as done in recent experiments, one must
study P+(8) itself.

For weak fields, lowest-order solutions for pi&,
p22, and pi2 can be obtained from. (1), which, after
substitution in (26) yield the familiar Fermi golden
rule for the ionization probability per unit time.

An observation that can be made easily from the
expansion of P(8,$) in terms of cos k8 is that for
an odd-photon ionization of an 5 state in the ab-
sence of spin-orbit coupling {SGC), all the
a,zq+ a,&~

——0; i.e., there is no constant term in the
angular distribution: Po ——0. This is so because
m~ ——m2 ——0 in the absence of SOC and 1&,I2 are
both odd because of odd-photon ionization of an 5
state. Thus, only F~,o, FI,o with odd I&, I2 appear in

Eq. (15}which have no constant terms implying that
+

~)go + &sjo=0
In off-resonant Qlultiphoton ionization of

ground-state alkali-metal atoms, the SOC can be
neglected and this yields Po ——0. Note further that
Po is amenable to direct observation as
P(8= sr /2) =Pa. One would measure Pc by measur-
ing the ion signal in thc diicction pcrpcndicular to
thc direction of the light polarization.

Strong-field effects due to the ac Stark shifts as
well as due to the saturation of the IP inAuencc the
behavior of the angular distribution through their
influence on the density-matrix elements p», p22,
and p~2 in Eq. (26). In discussing these effects, it is
convenient to normalize the distribution in a suitable
Inanner. In this paper, we shall normalize the AD
so that the integrated area under the distribution is
unity. The normalized coefficients Pzk are defined
as

+ +
u2k =Ps ~P

is the total ionization probability. Furthermore, we
shall sum over the photoelectron spin as our em-
phasis here is on its angular distribution. Saturation
effects on the photoelectron spin polarization have
been discussed in detail elsewhere. ' Thus, we con-
centrate here on the behavior of the coeKcients

Formal integration of (26) yields

Pzk =P2k+P2I =
o

~i&kp»d&+
o ~22kp22d&

+

+ I 0 &pk2 Rep~pdt, (3

o
I ip»d&+

o
I 2p22d&

+ 0 i22 Repi2dt

It is worth noting that any chRngc in thc normal-
ized distribution due to saturation occurs because of
the differential saturation of the two ionization
channels. For, if the ionization were to take place
via only one intermediate resonant state, for ex-
ample,

~
1), then p»dt would disappear from the

0
definition of thc normalized cocfficicnts @2k 8nd

@2k
——a»~2k~/1 i irrespective of saturating conditions.

For very long interaction times, all the population
has already decayed to the continuum and thus p~~,

p22, and pi2 are vanishingly small. Therefore, thc
area under these density-matrix elements does not
change with further increases in time. Hence, P2k
reach their asymptotic values and furthermore, this
limiting distribution is not isotropic. For a uniform
excitation field (a;J~2k~

——const), areas under p~i, p2q,
and pj2 can be obtained by Laplace transforming Eq.
(1) and evaluating p& &(s =0), p22(s =0), p&2(s =0)
fp;t(s) denotes the Laplace transform of p;~( t)]. Al-
though analytic cxpicsslons can bc obtained by in-
verting the coefficient matrix of Eq. (1), the results
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are not sufficiently transparent to warrant this pub-
lication. The limiting behavior is, however, dis-
cussed on the basis of numerical results in Sec. III,

For two-photon resonant three-photon ionization,
the angular distribution can be written as

P(0)=Pp+P2cos 8+P4cos 8+P6cos 0

This distribution is symmetric about 8=0, m/2, m,

and 3m/2 and one need only look at one quadrant
(for example, 0& 8 & m/2). To emphasize the shape,
we shall plot P(8) for 0&8&2m with the under-

standing that P(8) for fT &0&2% cof1esponds to
P(8,$=3irj2) [=P(8,/=A/2) as there is no
dependence] with 0(8 (n.. Along with the extrema
at 8=0, m/2, m, and 3a/2, P(8) will have extrema
at angles satlsfylng

We shall characterize a distribution as being two
lobed, one lobed, or as having no lobes according to
whether the above equation has two, one, or zero
solutions for the angle 8. How many lobes will ap-
pear in the distribution depends on the number of
solutions of (31) that satisfy 0& cos 8 & 1. This im-

poses restrictions on the parameters P2, P4, and P6.
Finally, we conclude this section with a remark

about the multiphoton angular distributions in gen-
eral. From Eq. (15), it is clear that all the informa-

tion about the angular distributions is contained
kpfXq

in the expressions 8 &. ,&, , , The differentialnum;n'f'j'm ' '

cross section for Photoionization of a given
~

nIJmj)
state 1S proportional to

J J

kpf XQ
&.IJ ),.i),

IJf

This expression still has to be averaged over the
initial-state magnetic quantum number mj. Let
m(mj) denote the occupation probabilities for the
state

~
nljmj). Then we can define an averaged dif-

ferential cross section as

do kp fpig= X /J(mj) X JJ«i~;;«j~,
m.

In the above equation, all the irrelevant constants
have been suppressed for the sake of clarity. If the
initial state is unpolarized as would be the case in
single photoionization of a ground state, the occupa-
tion probabilities m(mj) are all equal to 1/(2j+1);
Eq. (32) then simplifies to

(33)
dQ (2 +1) 15,Pf

After stra1ghtforward but tedious algebra, the sum-
mations can be performed analytically and the above
equation can be rewritten as

|'X X L,'I
=const g ( —1)/ Pj (cos8)

~ ~g~,dQ„4.
~
—q q 0~

, „,j„„„„„„(j,x I (i, x j) I'j, ~, L,')

nlj;E//j& «j;E/&j&( )
+

i 2 Ji J2 J/I
l), I2

XII- Jj X

I» I2 J»

j»
t

j I

1

I2 2

X J

& J2

J».

etc. Equation (34) reveals an interesting feature that
in single photoionization of an unpolarized state, the
photoelectron angular distribution contains even-
order Legendre polynomials of order 0 to 2X Q =1
for a dipole transition, 7=2 for quadrupole, etc.).

This is just a restatement of the well-known theorem
by Yang. For photoionization by a dipole photon
Q'=1), the angular distribution (34) is of the form
a+bP2(cos8), a form that is widely used in the dis-
cussion of effects of atomic structure on the pho-
toelectron angular distribution.

The multiphoton angular distributions, on the
other hand, can be viewed as angular distributions
arising from the photoionization of a polarized ini-
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tial state [w(mj) not same for all mj]. The signature
of the multiphoton character of the process is passed
through the creation of an uneven distribution in the
states

~
njlml). The weights w(mJ ), being propor-

tional to the square of the Rabi frequency for the
transition from the ground state to the resonant
state

~
nljmj ), reflect the characteristics of the mul-

tiphoton nature of the absorption process through
the specific m& dependence of the Rabi frequencies.
Angular distributions from ionization of an excited
state prepared by other means would be different
from the multiphoton ionization angular distribu-
tions due to different relationships between the
weights w(mj ).

III. NUMERICAL CALCULATIONS
AND DISCUSSION

In this section we shall illustrate some of the ef-
fects described in Sec. II with the help of numerical
calculations of the angular distributions. These cal-
culations have been performed for two-photon
resonant three-photon ionization of the 3S~/2
ground state of sodium via the inverted 4D5/23/2
doublet separated by 0.0346 cm ' (=co&2). For in-
teraction times of a few ns, the precession of the
density-matrix elements due to the hyperfine split-
ting (hf) is small (precession period- 1/hhr) and the
description of the ionization process in terms of the
fine-structure scheme is adequate. For long interac-
tion times and/or large hyperfine splittings, the
problem has to be analyzed in the hyperfine scheme
as has been done for the two-photon ionization pro-
cess. ' This treatment, however, is not complete
since rate equations have been used in Ref. 21 to
describe the two-photon ionization process. The
atomic parameters were calculated using the
quantum-defect theory and are given below (see Ref.
12 for a description of these parameters). All the
parameters are in rad/sec and I denotes the laser in-
tensity in W/cm:

Q&p= —556.0I, Q2p=713. 3I, I i =9.361I

I =9.584I,

Sp = 1310I, S& = 175.2I, S2 = 190.7I,
Qi2 ———39.52I, Qi2 ———0.546I .

Angular distribution parameters for this process are

a &ip =0.556I, a
~ &2

———1.111I,

a~~4 ——2.798I, a&&6
——0,

a 2' =0.3705I, a 222
——3.434I,

a224
———12.09I, a226 ——11.64I,

a )2p
——0.454I, a )22 ———11.15I,

a )p4
——36.46I, a (26 ———28.51I .

It is known that turning the field on instantane-
ously (as is implied in a square-pulse approximation)
gives rise to unphysical populations of the excited
states. To eliminate such populating of the states
we assume that the intensity rises linearly for zero to
its maximum value in a time v and remains constant
thereafter. Equations (1) and (26) are integrated nu-

merically up to time r and the Laplace-transform
method is used for t & v. with the values of p;J at v. as
initial conditions. We have found that ~=0.1 nsec
is sufficient to remove the transients and v has,
therefore, been set to this value for all the results
presented in this paper.

Note that there are two types of interference in

the process. First, there is the interference between
the P and the F partial waves in the continuum
which is proportional to the product of the D~P
and D~F bound-free radial matrix elements R

~
and

R3, respectively, and to the cosine of the difference
in the phase shifts (5~ —53) for the P and F waves.
For photon energies near the 4D resonances, we find
R ~ &&R3. Thus, the P —F interference contribution,
as well as the P partial-wave contribution to the
coefficients a,j~2k~ are small. The second type of in-

terference occurs betwen the ionization channels
that proceed via states

~

l) and
~

2). This is
characterized by Qi'2 and a&2~2k~ terms and is a
dynamical effect because of its dependence on pi2 in

Eq. (26). Note that although QI'z is small compared
to I i,I 2, a~2~21, ~

are comparable to or larger than

aJJ~2k~. This implies that the angular distribution
will be quite sensitive to this dynamical interference.
This is illustrated below.

In Fig. 1 we have plotted a series of angular dis-
tributions for various values of the laser intensity.
The photon frequency is tuned to the D5/2 reso-
nance in the absence of Stark shifts. For low powers
(0.5 MW) the D3/2 level, being detuned from reso-
nance, influences the distribution very little and the
resulting distribution resembles the one obtained as-
suming only the D5/2 state present. With increasing
intensity, the ac Stark shifts become large and move
the levels in and out of resonance. This is reflected
through the changes in the angular distributions.
Note that the magnitudes of the relative shifts (with
the ground state) are such that the dynamic separa-
tion between the ground and excited states decreases
with increasing intensity. Furthermore, S&2 is nega-
tive and at some intensity will cancel out co&2. Thus,
there will be a field-induced crossing of the 4D
doublet at this value of the laser power. At 1

MW/cm, the lobes disappear due to the interfer-
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FIG. 1. Photoelectron angular distributions for a two-

photon resonant three-photon ionization of sodium. The
laser intensities (in M%/cm } are shown under each plot.
Other parameters are laser duration t=5 nsec, its band-
width b =0, and its frequency co is such that
2' =~~a —a~3~ . The arrow indicates the direction of

5/2 1/2

light polarization with respect to which 0 is measured.
The radial scale is the same for all the plots.

ence of the two ionization channels while for higher
intensities the distribution reemerges as a one-lobed
structure when the dynamic detuning of the D3&2
state is small. %ith further increases in intensity,
both levels move away from resonance while the IP
begins to saturate. This causes the distribution to
reach an asymptotic shape where the lobes are very
sharp. %e find that this shape is quite different
from the one predicted by the lowest-order perturba-
tion theory and is insensitive to further increases in
intensity, interaction time, and detuning; the insensi-
tivity occurs due to the indistinguishability of the
two fine-structure states that were near resonant at
low intensities but have been shifted far away from
resonance at high intensities.

In Fig. 2 we have plotted the ionization probabili-
ties for ejecting an electron along the direction of
light polarization [P~~ =P(8=0)] and perpendicular
to it [P~ =P(8=@/2)] along with the total ionization
probability {P). The most important effect observed
in this graph is the decrease of Pz at large intensi-
ties. Note that with increasing intensity the D levels
are shifted farther and farther away from resonance
and hence become indistinguishable and the ioniza-
tion process proceeds as if the spin-orbit coupling
were small. Under such circumstances, it follows,
from the arguments presented in Sec. II, that Po
would vanish since the minimum number of photons
required for ionization is odd. Pl~ and P do not ex-
hibit any such decrease since P2, P4, P6 are nonzero
even in the absence of spin-orbit coupling. Other
features of this graph have already been discussed in
our earlier paper.

104

10 10~ 108
I (w/cm')

I

109 1010

FIG. 2. Multiphoton ionization probability as a func-
tion of the laser power. I', Pll, and I'& correspond, respec-
tively, to the total ionization probability, and the ioniza-
tion probabilities in a direction parallel and perpendicular
to the direction of light polarization. Solid curves corre-
spond to a monochromatic field and the dashed lines to a
field having full width at half maximum 0.002 cm

Let us discuss the limiting behavior of the angular
distribution a little further. From Eq. {30)it is obvi-
ous that it depends on the area under the curves of
p&&, p22, and Rep&2 as a function of time, hence, on
the details of the dynamics for all times. Being
close to or far away from resonance with

~
1) or

~
2) alters the evolution of the density-matrix ele-

ments and hence the area under them. An asymp-
toticaHy constant value for the limiting distribution
is reached only when the area under the curves
changes little with changes in external parameters.
In Fig. 1 this occurs at about the same power at
which the ionization probability saturates. The fact
that this need not be so is illustrated in Fig. 3 where
we have again plotted a series of distributions for
different laser intensities. All the atomic parameters
have been kept the same as in Fig. 1 except m~2 is in-
creased to 5 cm '. Since it is possible to find atoms
with fine-structure splitting of the D states about 5
cm ' and atomic parameters roughly of the same
order of magnitude, we believe such an assumption
is not unrealistic. On the other hand, this value of
co&z suffices to illustrate the effect under considera-
tion.

Sirlce N ]2 =5 cm, 5=2a) —A@20 ——0, the D3/2
state, being 5 cm ' away from the D5&2 state, inAu-
ences the distribution even less compared to its in-
fluence in Fig. 1. Only at about 10 W/cm does the
distribution begin to lose its lobe structure due to the
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FIG. 3. Same as Fig. l except that the fine-structure
splitting 6=co~~ —co4D ——5 cm

3/2 5/2

interference of the two channels. At these intensi-
ties, however, one is already in the saturation regime
as P=1 for I&5X10 %/cm . Nevertheless, it is
clear from this figure that the (limiting) distribution
is still changing with increasing intensities. This is
due to the fact that although P=1, it is not suffi-
cient to infer that Pogqgq, and P6 have reached
their limiting constant values. The evolution of
p»,pz2, pi2 is still sensitive to the laser parameters
even though there is total ionization. Such effects
are absent from Fig. 1 since the two D levels remain
close together in the case pertinent to Fig. 1 while
they are still well separated in the present case.

For the slowly varying model of the laser intensi-

ty as a function of time described earlier, the limit-
ing values of the AD parameters p~k obtained by nu-
merical integration of Eqs. (l) and (26) agree with
those obtained by the Laplace-transform method.
For a more realistic laser pulse, however, one would
expect to see some quantitative differences between
the results obtained by the two methods while the
qualitative features between them should remain the
same.

The effects of laser bandwidth and its line shape
are demonstrated in the next two figures. The finite
bandwidth is assumed to arise due to the Auctua-
tions of the phase of the electric field that are
governed by an Ornstein-Uhlenbeck process. This
model has been used recently in several related con-
texts' ' and the line shape is characterized by two
parameters b and P; the former being the half-width
at half maximum of the spectrum which is
Lorentzian near the center and falls off faster than
Lorentzian for detunings larger than the latter
parameter P. For P~ ao the line shape is a
Lorentzian for all detunings. A rigorous treatment
of this type of a line shape leads to an infinite set of
coupled moment equations as has been demonstrated
elsewhere. For P much larger than all other
parameters one can retain the effect of the non-
Lorentzian nature of the line shape to first order and
the corrections to first order are of the form given in

0.0346 0.1

(b)

0.1

FIG. 4. Laser bandwidth effects on the angular distri-
bution: (a) AD for 6=0.0346 cm ' and
5=0=(2' —m4~ + m3q ); {b) AD for 5=5 cm ' and

5/2 l/2 '

5= —2 cm ', I=10 M%/cm~ and T=5 nsec for both
sets of curves. The laser linewidth is assumed Lorentzian
and the value for the half-width at half maximum (b in
cm ') corresponding to each curve is indicated below it.

Eq. (1). It is clear from the form of the bandwidth-
dependent terms in Eq. (l) that the effect of the
phase fluctuations of the laser is to add a term 4b to
the decay rate of the off-diagonal matrix elements

p~0 and p20 for detunings h~, h2 &&P. On the other
hand, for large detunings (h~, h2 &&P), these
bandwidth-dependent terms in Eq. (1) vanish indi-
cating the fact that the line shape looks mono-
chromatic far off resonance. This treatment re-
moves the unphysical absorptions from the wings of
the spectrum in an off-resonant excitation process.

Figure 4(a) illustrates the effect of increasing
bandwidth (b) on the angular distributions for the
case u&2 ——0.0346 cm ' and 5=0 while Fig. 4(b)
does the same for the case +~2——5 cm ' and 5= —2
cm ' The hne shape is Lorentzian (P~ oo). Note
that the bandwidth values are different for the two
figures. In 4(a) the normalized distribution changes
little for b &coi2 as the levels become indistinguish-
able under broadband excitation and the distribution
is insensitive to all saturation effects as discussed in
Sec. II. The lobe structure is somewhat smeared out
due to the increasing contribution from the absorp-
tion of photons from the wings of the spectrum by
the off-resonant D3/2 state. This is also seen in Fig.
4(b) since the distribution approaches a limiting
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form even though b &co&2,5 for all the values. This
distribution is similar to the one obtained by assum-

ing only D5/2 state participating in the process
which is explained by the fact that the absorption
from the wings by the D5/2 state is stronger than
that by the D3/2 state since the latter is detuned far-
ther (-7 cm ') from the center of the spectrum.
This also explains the constancy of the distribution
with respect to changes in the bandwidth.

The effects of the non-Lorentzian line shape (fin-
ite p) are demonstrated in Fig. 5 where the angular
distributions are plotted for co&2 ——S cm ', 5=0,
P=100, 0.2, 0.1 cm ', and b=0.075 cm '. Note
that even for such small values of b iand P=100)
the distribution is very different from the b=O case
in Fig. 3. As we decrease P the absorption of the
photon from the tail of the spectrum by the off-
resonant D3/2 state decreases and hence the line
shape looks more and more monochromatic thereby
causing the distribution to revert to the b=O result
of Fig. 3.

IV. CONCLUSIONS

In summary, we have discussed the behavior of
the photoelectron angular distributions in multipho-
ton ionization. A unified treatment of the strong-
field effect on these distributions is developed in the
density-matrix formalism. Saturation effects on the
distributions appear in the form of coupling equa-
tions that involve the time-evolving density-matrix
elements for the excited states. The theory of angu-
lar distributions is presented in a general form with
completely general analytical expressions. On the
basis of these, several conclusions have been arrived

at and these are further illustrated with numerical
results for two-photon resonant three-photon ioniza-
tion of sodium. The effects of the laser line shape
are also discussed.

The approximations of neglecting the spontaneous
decay and the hyperfine structure in the results
presented are valid for high laser powers and nsec
pulses. Likewise, the pole approximation in elim-
inating the continuum is also valid as long as the
continuum is smooth. Thus, except for the limita-
tions introduced by the quantum-defect theory and
the assumptions about the laser pulse shape, our re-
sults are rigorous and complete and are susceptible
to direct experimental observation. With increasing
experiments involving high-power lasers and
resonant transitions, such complete calculations
should prove to be useful in comparing experimental
results with theoretical calculations and in extract-
ing atomic parameters.
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APPENDIX

In this appendix, we illustrate the procedure of
adiabatic elimination of the continuum states lead-
ing to Eq. (8) for the angle resolved IP. Let Ho and
V denote, respectively, the unperturbed atomic
Hamiltonian and the perturbation due to its interac-
tion with the radiation field. The evolution of the
density matrix p is governed by (h =1)

dp
dt

=i[Hp+ V,p] . (A1)

Restricting ourselves to states
~

1),
~

2), and
~ f )

defined in Sec. II, equations for the matrix elements
of p between these states can be written, within the
rotating-wave approximation, as

100.0 0.2 0.1

=2Imgpjf Vfj, j=1,2
dt

dpff
dt

= —2Im( Vf) p&f+ Vf2p2f);

d
dt p/2 & (~1 ~2)p]p ~ p lf Vf 2 & Vffpf 2 y

(A2)

(A3)

(A4)

FIG. 5. Effects of the laser line shape on the pho-
toelectron angular distributions: 6= 5 cm ', 6=0,
b=0.075 cm ', I= l GW/cm, and T=5 nsec. The cut-
off parameter P is indicated, in cm ', below each curve.
See text for details.

dpif
i i—l (CO —COf +-N)P f

'Vif(pii pff ' pi 2 2f~i ~ +pi ~V~f~j 2

j=1,2 . (A5)
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(Here 5,J- is the Kronecker 5 function. ) Note that
the terms representing transition to the ground state
are omitted from (A2) and (A4} for the sake of clari-
ty. They are same as those given in Eq. (1).

%'e eliminate p~y, p~j from (A2)—(A4) using the
solution of (A5} obtained by setting pyy

——0 and

dp&y/dt=0 in (A5). This approximation amounts to
treating the continuum as a sink for the loss of
bound-state population and introduces the irreversi-
bility of the Aow of population into the continuum.
Because of the large density of states in the continu-

l'VkI+. p)k ~

l (NJ +N —Ny ) —E
(A6)

pyj ——pj's* and E is real and positive and lim, o is
taken in the end. Substituting (A6) into (A2)—(A4)
one obtains

um this approximation is adequate. The solution of
(A5) under these approximations is given by

i Vjy

i(N +N —N) ) —E1

d I jf l V2f fj jt 1f fj j2
Nj+N —Nf+ i& Nj+N Nf+—ie Nj+N Nf—+ie

VVVf2
Pi2 —'(Ni —N2)pi2=i . p~~+& . P~2

Ni+N —Ny+lE J Ni+N —Ny+lE

V&f Vf2
. P22 —i . P&2

f N2+N Nf —ie — f N2+N Nf i—e-
d V) 2Viy

pff ——2 lm g p&& + p&2+ P2&dt J, 2 NJ+N —Nf+lE Nf+N Nf+lE N2+N Nf+lE

(A7)

(A9)

Note that the summation over f stands for integra-
tions over the electron energy and its direction of
propagation as well as a summation over its spin.
Making use of the relation

1 1
lim . =9' —+im5(x),
e—+0 X+lE X

and assuming that the density of states in continu-
um is a slowly varying function of the energy, it is
easy to see that (A7} and (AS) simplify to the terms
given in Eq. (1), with

g, i =.g— , j=12
2 y N&+N —Ny+lE

Vi) Vy2
Q)2 ——2

C0
~

+Co Nf +lE-

Vi) Vg2
=Q')2 iQ I'2 . —

N2+N —Ny+ lE

Equation (A9) describes the details of the popula-
tion distribution in the continuum. If energy
analysis of the photoelectrons is not performed, we
can integrate (A9) over the energy and define
I' (8,$} as the -total probability that electron will be
ejected in a direction 8,$ and have spin + —,. Corre-

spondingly, one has to define angle- and spin-
resolved width parameters 1;2(8,$) and QI'2-(8, $) as

1 j-(8,$)=2m.
~ Vjf ~'p(kf), j=1,2

Q f2 (p (() ) —27l Vif Vf 2 pf (Cof =N i +N )

2 kg=N ~ +N2=

Final state
~ f} used in calculating matrix elements

of V and the density of final states p(k) are as de-
fined in Eqs. (6) and (7). %'ith (A10), (A9) immedi-
ately yields Eq. (8) of Sec. II.
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