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Floquet theory is applied to systems whose Hamiltonians are periodic in time. Specifi-
cally, the application deals with the sinusoidal Hamiltonians for the semiclassical approxi-
mation of the radiation —quantum-molecule interaction in an intense field. For these types
of Hamiltonians new time symmetries are shown to exist in the Floquet solutions and con-
sequently to yield three useful properties. Three formal approaches to the Floquet solu-

tions are compared. Also the Floquet-state "mean energy" is shown to play the major role
in the static part of the molecular-state energy fluctuations. Numerical application to the
dynamics of the diatomic HF vibrotor shows multistate participation in both the one- and
two-photon excitations, and "resonance interaction" between the one- and two-photon ab-

sorption is observed. Also, Magnus approximations to the exact numerical calculations
show excellent agreement.

I. INTRODUCTION

Along with the advent of lasers, interest grew
rapidly in semiclassical radiation theory as a viable
approximation to the full quantum description of
molecules in intense laser fields. Within the semi-
classical approach, the molecular dynamics pro-
duced by the radiation-molecule interaction is inves-
tigated here for fields 'which are described classical-
ly and for molecules which are described quantum
mechanically. The time-dependent Schrodinger
equation can be integrated directly or approximated
by analytic Magnus expressions to obtain the evolu-
tion of the system in the form of the fundamental
propagator. Here, the expression "fundamental"
denotes that the propagator is determined in the
molecular-state representation and evolves from the
initial field-free molecular states.

Floquet theory provides a unique functional form
for a (Floquet} propagator which permits "exact" or
approximate solutions for the semiclassical equa-
tions of motion without resorting to perturbation
theory, the rotating wave approximation, or to a
brute force integration for times greater than one
oscillation of the field. Using the periodic form of
the Floquet propagator, the problem can be refor-
mulated with solutions and eigenvalues (in the form
of Floquet characteristic exponents) which charac-
terize and simply determine the dynamics. The
periodicity also allows analytic expressions for time
averages.

As far back as the 1880's, Floquet periodic solu-

tions of the semiclassical-type equations, first-order
homogeneous differential equations having periodic
(in time} coefficients, were studied by Floquet' and
Poincare. Not until after the mid 1960's did the
application of Floquet theory to quantum systems
grow. The usefulness of the theory is evident by the
diversity of its applications. Salzman, Chu and
Reinhardt, and Chu have applied Floquet theory
to hydrogen atom multiphoton ionization, while
Leasure and Wyatt, and Leasure, Wyatt, and Mil-
feld have applied it to a "larger" system, the rotat-
ing diatomic. Floquet theory has even been used in
the studies of molecular multiphoton dissociation
by Leforestier and Wyatt (in one study, Floquet
states were used in conjunction with R-matrix
theory, and in the other, with the investigation of
the optical potential9}. Some of the earlier applica-
tions are given in a review of the quantum "two-
level problem" by Dion and Hirschfelder, ' which
also includes a description of the nine Floquet
theorem s.

More theoretically oriented studies including Flo-
quet analysis (also known as the quasienergy
method) have expanded the work of Shirley, "
Ritus, ' and Zeldovich' to include slowly modulat-
ed oscillatory Hamiltonians, ' development of an
extended Hilbert-space formalism, ' approximation
of the propagator to simplify the dynamics, and in-
vestigation of a new notion of energy ("mean ener-
gy"), ' to name some examples.

In this study, both the theory and application of
the Floquet formalism are extended. We begin in
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Sec. II with a short review of the general properties
of time-dependent Hamiltonians, propagators, and

the application of Floquet theory to molecular

dynamics. Also, the relationship between the Flo-
quet and fundamental propagators is defined. In
Sec. III new symmetries in the Floquet solutions for
the semiclassical Hamiltonian are derived. These
properties can be used to shorten computations. In
Sec. IV, different Floquet formalisms are related,
with an emphasis on the role of the Floquet charac-
teristic exponents (or quasienergies). A new method

is presented for correlating molecular energies to
the Floquet characteristic exponents in multistate

systems. Also, we introduce a measure of the
molecular-state energy and find that the constant

energy term is a linear combination of the Floquet
state mean energies, while fluctuations are deter-

mined by the Floquet characteristic exponents.
Presented in Sec. V are formal expressions for the

Magnus propagator, up to fifth order, and a note on

their derivation. Also, we have derived the third-

order interaction picture, and the third- and

fourth-order Schrodinger picture matrix elements

using the Magnus approximation for the semiclassi-

cal Hamiltonian. Section VI contains numerical re-

sults for the HF vibrotor. Time-averaged one- and

two-photon absorption probabilities are determined

at various (IR) frequencies and intensities, along

with time-dependent survival plots which show

probability (and energy) exchange. Also included is

a critical comparison of the Floquet characteristic
exponents, propagators and mean energies as deter-

mined by both numerical integration and the

Magnus approximation. Finally, multiphoton reso-

nances are shown to directly affect the single-

photon absorption in a physically measurable way.
We end with conclusions in Sec. VII.

H(r) =Ho+ Vcos(ciir),

where Ho and V are time-independent operators (or

matrices), is used to describe quantum systems

(such as those which occur in NMR and IR experi-

ments) interacting in the dipole approximation with

a classically oscillating monochromatic linearly po-

larized field. In the molecular-state representation

Ho is the diagonal matrix E of molecular energies

and V represents the scalar product of the electric
field magnitude-polarization vector (e} and the

molecular dipole moment (p ). Since we are partic-

ularly interested in IR laser-induced molecular exci-

tation, within a single electronic manifold, the for-

malism will be directed and couched in terms of
multistate vibrational excitations (of vibrotors).

Throughout, a capital symbol will denote an opera-
tor or a matrix (with the corresponding small dou-

bly subscripted symbols as matrix elements, and

singly subscripted symbols as vectors) in the
molecular-state representation, unless stated other-

wise or the notation's meaning is obvious.

The time propagator is a linear operator U(t
~

t&&)

which transforms an initial state
~
ip(to) ) at time to

into state
~

'p(t) ) at time t:
~

qi(t})
=U(r

~
rp)%(ro) ). The propagator has special

properties which can be attributed to its unitarity

and to its initial conditions.
The unitary condition and the time multiplication

relations are

U (r
i
t')= U-'(r

i
r')= U(r'

i
r)

U(t
i
r")= U(r

i
t')U(i'

i
r"),

respectively. ' The evolution of U(t
~
to) is deter-

mined by the time-dependent Schrodinger equation:

ih U( ~rro)=H(t)U(r
~
tp)

a
at

(4)

II. PROPAGATORS FOR PERIODIC
HAMILTONIANS where the integral equation equivalent to Eq. (4} is

The sinusoidal (periodic) time dependence intro-

duced by the classical radiation field sets apart a
genre of Hamiltonians with propagators amenable

to Floquet analysis. The introduction of Floquet
theory into the dynamics recovers the Hamiltonian
periodicity, which is lost in the fundamental propa-
gator, through the generation of the Floquet propa-
gator; the Floquet propagator is then used to effi-
ciently determine the fundamental propagator for
all times.

The sinusoidal time-dependent Hamiltonian (co is
the field frequency)

U(&
~

&0)=1—(iliii') f, H(r')U(&'~ to)dr'. (5)

The initial condition adopted for its physical sig-
nificance and simplicity is

U(ro
~
ro)=1 r 00

which forces the propagator U(t
~
to) to determine

the evolution of the linearly independent
molecular-state eigenvectors; U(t

~
to) is the funda

mental propagator.
The propagator solution of Eq. (4) [or Eq. (5)],

can be obtained by numerical integration using the
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initial (fundamental) condition of Eq. (6). But it is
advantageous to transform or analyze the Hamil-
tonian for possible constants which have physical
significance and determine the dynamics in a simple
way. For example, in a conservative (molecular)
system the constants are the energies and the systein
evolves according to them. When V=O in Eq. (1),
the propagator in the molecular-state representation
is simple,

U{t
~
to) =exp[ itt(t —to}/—A], a+a(t) (7)

where ~=E is the diagonal matrix of molecular en-

ergies.
It is the periodic form of H(t} which permits the

use of the Floquet propagator" having the Flo-
quet characteristic exponents {FCE) as constants.
Unlike the energy constants in Eq. (7},which solely
evolve the stationary states of a time-independent
Hamiltonian, the Floquet characteristic exponents
neither evolve the system by the same exponential
form nor are they a result of a transformation to
stationary states. The FCE are a consequence of
the time dependence of the Floquet states and the
periodic boundary conditions. For a molecular sys-

tem of N states, there are N-independent Floquet
I

states, each the product of a ~ periodic factor
[r=2n /t0 is the optical cycle (oc)] and an exponen-
tial of a pure imaginary term. The Floquet propa-
gator elements are of the form

f;„(t}=P;„(tmode }e

or in matrix notation

(8)

I" (t)= U—(t
~
0)=qi(t mode)e

where the superscript of U (t
~
0) indicates that it is

the Floquet propagator. To be consistent with the
standard convention (p„ro) is defined as the Floquet
characterisitc exponent [(FCE) Refs. 10, 11, and
19)] and the arbitrary sign of the exponential argu-
ment is negative. We define the product p„%co as
the Floquet energy (FE), which is also called the
quasienergy. '

Using Floquet theory, Shirley" derived an ex-
pression for the fundamental propagator of Eq. (1).
His approach employs a time-independent infinite
matrix operator HF called the Floquet Hamiltonian.
Shirley's propagator elements connecting molecular
states (i) and (n) are determined from a sum over a
projection onto Fourier modes (m) with a corre-
sponding phase factor [compare with Eq. (7)]:

U' (t
1
to)= g &im

I exp[ iHF(t to)/iit]
I
tto) (10)

where the direct product ~im) = ~i)
~
m); ~i) is a molecular state, and

~
m) is a Fourier expansion "state"

[exp(imtot) is the basis function for
~

m )]. The time independence of H~ was determined through the Fourier
expansion of both the Floquet propagator and H(t), in the molecular-state representation. These expansions,
when substituted into the Schrodinger equation, result in an infinite recursion equation free of the time-
dependent Fourier (e' "') terms. The infinite recursion is recast into the matrix eigenvector equation (45) with
a double index over the molecular basis (i,n) and the Fourier coefficient basis (m, l). Computationally, the
major task is then to diagonalize the infinite (actually truncated) matrix, which can be shown to give N-
independent eigenvector solutions

~ AJO), and 1V Floquet eigenvalues AJO (for an N-molecular-state system; j
ranges froin 1 to N. In terms of the eigenvectors and eigenvalues, U;„(t

~

to) is given by

U,„(t
~
to) = Q &im

I X,, )e '"J7" ""—"&
A,; ~

no)e' "' (11)
mjl

with eigenproperties,

&i,m+p j AJt+p) =&i,m
~ Lit),

'jl =A'jo+ loco
(12) and

p;„{t)= g p;„e' "', (14)

p and I are integers. In the notation of Eqs. (8) and
(9), which will be used throughout, the projection
coefficients in Eq. (11)are

&im
/

A,„o)=y;„,
where [P;„J are the Fourier expansion coefficients
of P;„(t);

A,„o——(p„cu)A . (15)

The most notable utility and attraction of the HF
formalism is its time independence and the similari-

ty between its propagator expression, Eqs. (10) and
(11), and that of the time-independent Hamiltonian
of Eq. (7).

In their development of Floquet theory, Leasure
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4 (0)U(r
i
0)4(0)=e (16)

[Compare Eq. (16}with Shirley's eigenequation (45}
which has additional Fourier states. ] Since the fun-

damental propagator is linearly related by 4 (0) to
the Floquet propagator in the equation

U(t iO)=UF(t i0)4 (0)

=4(tmodr)e ' "'4 (0) (17)

U(t
~

0) is determined for the first optical cycle and

is then used in the inverted form of Eq. (17) to ob-

tain 4(tmod~). Also, note that for the Floquet

and Wyatt' determined the Floquet characteristic
exponents by evaluating U(t

~

0) at t =r in Eq. (27)

and incorporating the periodic condition of Eq. (9}
to obtain the smaller XXX eigenvalue equation

propagator, U (t
~
0), at t=O the initial condition is

fixed by Eqs. (9}and (16):

UF(t =0
~

0}=4(0). (18)

In the Ur approach [named for the matrix in Eq.
(16)], the Floquet energies are clearly seen
"dynamic boundary constraints" because they are
determined by the fundamental propagator only at
time ~.

To obtain U(t
~
0) for the first optical cycle, an

integration of the coupled equations (4) to time ~
provides an "exact" propagator, with numerical re-

sults limited only by the accuracy of the integrator
and the availability of computation time. Also, the
Magnus approximation ' can be used to provide an

analytic unitary propagator of any desired order
(Sec. V).

III. SYMMETRY AND OTHER PROPERTIES OF 4(t)

For the sinusoidal Hamiltonian, such as the semiclassical H(t), or any Hamiltonian having the time depen-

dence shown below in Eq. (19), the Floquet 4(t) matrices have symmetry in time and, therefore, possess spe-

cial properties. These properties, to be derived in this section, constitute a new extension to the Floquet theory

for the periodic time dependence mentioned above. The derivations in this section may be used in a general

fashion to analyze the effects that other periodic Hamiltonians have on the Floquet solutions and on the

dynamics of the system.
Within the range 0 & t & ~, the symmetry in H (t) about t =~/2,

H (r/2 —t) =H (r/2+ t),
is reflected in the fundamental propagator by the equation

U(r/2 t
~

r/2) = U—'(r/2+ t
~

r/2) .

(19)

(20}

(22)

One may arrive at this result by substituting ~/2 and t +~/2 for t0 and t, respectively, in the integral equation

(5), and transforming the integral variable from t' to t"+~/2 to obtain

U(rl2+t
~

rl2)=1 ilfi f H—(r/2+t")U(r/2+t"
~

rl2)dt" . (21)

By transforming t" to —t', changing the limit t to —t, replacing H by its equivalent in Eq. (19), and finally

taking the complex conjugate of both sides of the equation, Eq. (21) becomes

U~(r/2 —t
~

r/2)=1 i/at f H(r/2+t—')U~(r/2 t'
~

rl2)dt' . —

Since U(r/2+t
~

rl2) and U~(rl2 t
~
rl2} obey-

the same evolution equation [Eqs. (21) and (22)] and

boundary conditions, they are equivalent expres-
sions and Eq. (20) is proven.

Although U(r/2+t ~r/2) has symmetry about
t =r/2 [Eq. (20)], it is the fundamental propagator
U(t

~
t0 ——0) which is required for the initial-to-

final-state analysis. One would certainly want to
know whether it, too, is symmetric about w/2 in the
same sense as U(r/2+t

~
r/2), i.e., does

U(r/2 —t
~
0)= U~(r/2+t

~

0)? Besides introduc-
ing symmetry into the dynamics, such a relation

I

would reduce by half the computational task of
propagating over one optical cycle. Therefore, it is

advantageous to see whether manipulation of
U(7/2+ t

~

r/2) .leads to an expression of symmetry
for U(r/2+t

~

0).
By the time-ordered (multiplication) relation of

Eq. (3)

U(rl2+ t
~
rl2) U(r/2

~
0)= U(r/2+ t

~
0),

(23)

where, implicit in the equality, U(r/2
~
0) is deter-
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U'(r/2 t
~

0—)C = U(r/2+ t
~
0),

where

C=U~(0
i
r/2) U (0 i r/2)

= U (r/2
i
0)U(r/2

i
0) .

(25)

Since, in general, C+1, Eq. (25) precludes a sim-

ple symmetry relation in U(r/2+t
~

0). However,
the to ——0 propagator for r/2&t &r [the right-hand
side (RHS} of Eq. (25)] can be simply determined

from the first half of the optical cycle through a
product with the constant matrix C; and, therefore,
this procedure will reduce the computation time to
nearly half. Also, the propagator at the end of the
cycle may be self-consistently checked by the rela-
tion

C = U (r/2
~
0)U(r/2

~
0)= U(r

~
0), (26)

which is determined by setting t to r/2 in Eq. (25).
The symmetry of the Roquet periodic matrix

4(t} will now be determined from the propagator
U(t

~
to) through the defining equation

4(t)e"'= U(t
~
t, )C (t, )e (27)

where a;„=—5;„p„co. We will derive three proper-
ties of the periodic solutions, 4(t}. First, by substi-
tuting ~/2 —t and r/2 in Eq. (27) for t and to,
respectively, replacing the fundamental propagator
by its equivalent in Eq. (20),

4(r/2 t)e '= U~(r—/2+t
~
r/2}4(r/2),

taking the complex conjugate of this equation and
replacing t by —~/2 yields

4~(r)e ' = U(0
~

r/2)@~(r/2), (29)

which, by using the periodicity of qi [i.e.,
4(r) =4(0)] and the propagator inverse,
U (t

~

t')=U(t'
~
t), results in an equation with a

familiar form:

U(r/2
~

0)4~(0)=4~(r/2)e (30)

mined from the fundamental propagator U(t
~
0)

and the initial condition on U(r/2+t ~r/2) is
U {r/2

~
0). Using Eq. (20} and the unitarity rela-

tion Ut(t ~t')=U '(t ~t')=U(t'~t) on the left-
hand side (LHS) of Eq. (23}gives

Ui(r/2 t
i
r—/2) U (0

i
r/2) = U(r/2+t

i
0),

(24)

and by using the time multiplication relation again

4~(r/2) =4(~/2) (Property 1) (31)

provided that 4(0} is real (which we will now
prove).

The second symmetry property is obtained
through Eq. (25) by replacing C by U(r

~
0) from

Eq. {26), multiplying the equation on the right by
4 (0}, and replacing the propagation expression
U(r

~

0)4(0) by its propagated form 4(r)exp(iAr)
to finally obtain

U'(r/2 t
~
0)C (—r)e'"'= U(r/2+t

~

0)C (0) .

(32}

Evaluating this expression at t =—~/2 and taking
the complex conjugate reveals that

U(r
~

0)4~(0)=iP~(0)e

But since U(r
~

0)tP(0) =4(0)exp(iAr),

4(0)=4~(0) (Property 2) .

(33)

(34)

The third property is an important symmetry
about 4(r/2) Taking. the complex conjugate of
both sides of Eq. {28}and using Property 1 leads to

4~(r/2 —t)e'"'= U(r/2+t
~

r/2)4(r/2) . (35)

But, by Eq. (27) the RHS is equal to 4(r/2+t)e~'.
Therefore,

4*(~/2 —t)=4(~/2+ t) (Property 3) . (36)

The above properties provide three computational
aids. First, since 4(0) is real valued, complex diag-
onalization is not required in the eigenvector equa-
tion (16). The equation can be simply separated
into real and imaginary parts. Solution of the real
equation yields 4(0) and cos(2m.M). Second, by the
time symmetry of Eq. (36), it is only necessary to
calculate N(t) over the first half of the optical cycle.
The third concerns the Fourier components of 4(t),
which are used to determine long-time —average
transition probabilities and are written here as an
integral from 0 to w:

T
p;„= J 4;„(t)e' "'dt . (37)

By transforming t to ~/2 —t, substituting 4(~/2 —t)
from Eq. (28), and replacing U~(r/2+t

~
r/2) by

its conjugate equivalent [Eq. (20)] the expression for
P;„becomes

Now, by Eq. (27),

U(r/2
~

0)qi(0) =4(t/2)exp(iAr/2)

[where each column vector of 4{0}is uniquely
determined to within a phase], therefore
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(39)

—T!2
p;„=—f [U{r/2 t —

I r/2)4(r/2}];„exp[ —i(p„+m)cot]e'~ c2dt
—r/2= —f b;„(—t}exp[ i—{p„+m)cot]e' "'ddt . (38)

Since cd(r/2) is real [Eq. (31)], b( —t);„=b~(+t);„by Eq. (20). Also, exp(+imcor/2) =( —l)~. Using these
facts, the integral may be split at t =0, and with a few simple manipulations Eq. (38) becomes

v/2 r/2
( —1} f b;„(t)exp[i (p„+m )cot]dt + ( —1) b;„{t)exp[i (p„+ m)cot]dt

Now, since the two terms on the RHS are complex
conjugates, p;„must be real. Therefore, all Fourier
coefficients must be real valued and any imaginary
part will be an indication of numercial error in the
determination of 4(t).

IV. ENERGY AND THE PERIODIC
HAMILTONIAN

For a time-dependent Hamiltonian H(t), there
are no discrete energies as there are for the time-
independent Hamiltonian of Eq. (7); therefore, the
energies have a width and uncertainty associated
with their measurement. The most practical ap-
proach, then, is to discuss the energy in terms of the
discrete spectrum of some relevant operator. The
operator A, having eigenvectors 4 and FE as
eigenvalues, is a natural choice for discussing the
energy distribution of the molecular states while the
field is on. A was introduced by Sambe' as an ex-
tended Hilbert-space Hamiltonian which includes
not only the configuration (R) but also time (T) in
the function space (R 6 T). The most important as-
pect of this concise mathematical formalism is that
it relates a time-transition operator to the FE, as
shown below. Also, within this space the mean en-
ergies, which were defined by Fainshtein, Manakov,
and Rapoport' as a natural consequence of evaluat-
ing the bracket of H(t), provide a measure of the
time-independent contribution to the energy.

Although the formalism of the configuration-
time R 6 T space is attractive, its use limits the
analysis to the range of only an optical cycle by the
nature of the time integral of the new space [Eq.
{41)]. However, the R 8 T formalism, which nat-
urally defines an{d describes Floquet-state properties
(such as the mean energy), suggests that these prop-
erties might appear in the time averages of the nor-
mal (R) Hilbert space where we determine the
molecular-state dyanmics and formulate the energy
analysis.

To help understand the nature of mean energies,
we present the salient points of the R 6 T Hilbert-

I

space formalism and its application to H(t), as well
as its relation to Shirley's HF matrix. We will show
how the FE's are correlated with the molecular en-
ergies, and later, how they are intimately related to
the mean energies. Furthermore, it will be shown
that the mean energy retains the same meaning
when applied to the solutions derived by Shirley"
or by Leasure and Wyatt'; the mean energy also
serves as a comparative measure of the accuracy of
4(t) calculations. Finally, we will show the unique
character that mean energies and FE's play in the
molecular-state energy analysis.

A. Floquet solutions in R S T
Hilbert space

The formal development of the space-extended
Hamiltonian A begins by substituting the Floquet
states f;(t} [where f;(t} and P;exp( ip;cot) are—the
column vectors of F(t) in Eq. (9)] into the
Schrodinger equation to obtain

(40)

For the operator P, Sambe' introduced the com-
posite Hilbert space R ST of square-integrable
functions tg(r), h(r), . . . ] on configuration space,
with the inner product

&g(r ) Ih(r)&= f g*hdr,

and square-integrable functions [a(t),b(t), . . . ( on
time space, with the inner product

r/2
[ (ta),b(t)]=1/r f a*bdt .

Any function in the composite space may be
formed from the direct product of an orthonormal
basis function in each space. As a consequence, the
inner product of an operator 6,
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defines the mean value of the operator for the Flo-
quet vector {(i;. Sambe further defined the time-
transition operator d'„, which displaces the Floquet
states in increments of v.:

8'„,f (t+nr)=f;(t) (n =0,+1,+2, . . . ) . {42}

Also, 6'„,commutes with A and has the property

for 4(0). Therefore, each p; has multiple values:

1pgpg+Plgsn;=0, +1,+2, . (46)

where 0&'p;&1. If for all p;, the n's are made
zero, the corresponding diagonal matrix 'M of all
p's is said to belong to the first zone, etc. By rede-

fining zones with a factor of fico,

d'„,f;(t)=e'""i"'f;(t), (43)
%coy,; =fico'p;+%con; = j I'j;, (47)

and configuration space by some appropriate vector
basis (e.g., the molecular states}. The FCE's (or
FE's) characterize the irreducible representations of
the time-transition operator d'„,.

Just as the periodic behavior of tgP(t} in R {1}T
space suggests an expansion of the time dependence
by the Fourier representation (functions} of Eq. {44),
the same periodicity permits the Fourier expansion
of both

and

(t) y Hnlelmmf

m =—co

P;„(t)= g P;„e'" '

and the creation of Shirley's "infinite Hamiltonian"
H~ and the eigenvalue equation

X t HF)im, nlknt' ~Broil' &

l

ggl

F jim, sl =Hin +m™inglm
(45)

Again, ~i)
~
m) =

~
im), where ~i) are the molec-

ular eigenvectors of Hc and
~
m) are the Fourier

vectors, such that (t
~

m ) =exp(icomt).
The rearrangement of the Schrodinger equation

to create HF in Eq. (45) is the same rearrangement
used to create A in Eq. (40) and the resulting eigen-
vector equation (45) is the same eigenvector equa-
tion of A in the Fourier representation.

thereby forming an Abelian symmetry group of A
having one-dimensional irreducible representations
involving the FCE. The time space may therefore
be conveniently spanned by

e'""' (n =0,+ 1,+2,. . . )

the I matrix has the units of energy and is ap-
propriately called the Floquet energy matrix. (If
atomic units are used the FCE values are identical
to the FE.) The restriction of I to the first zone is
suggested by the mean energy definition in R 8 T
space; but the confinement to the first zone is by no
means a necessity for the U~ approach in R space.
A general correlation of the y; with the molecular
energies and wave functions upon adiabatic switch-

ing has been investigated elsewhere. ' ' ' ' How-
ever, for low and intermediate ranges of intensity,
the physical significance of y; becomes apparent
when more than one zone is used to define I . One
may establish a one-to-one correlation to each
molecular energy E;, simply by adding n units of
irttu to all 'y to determine the closest (n;%co+ 'y;) to
each molecular energy. The values of n will range
from zero to nf, where (nf —1)hco&E '"&nfAco,
and E '" is the maximum molecular-state energy.
Ambiguity in assignment does occur for pairs of 'y;
at near-resonance frequencies and/or high intensi-
ties, but an assignment may be ascertained by fol-
lowing the correlation through lower intensities and
nonresonant frequencies.

With the extended energy zone the correlation

E;= y;+n;%co —:y;
1 E (48)

HpXg ——E;X; . (49)

Also, the Floquet vector P; is propagated with a
similar form

can be made. This enhances the physical insight.
In the limit of low- or no-field intensity, H(t) ap-
proaches Hp for which

U(t ~0)X;=e ' X;;
where

U(t ~0}P;(0)=e ' P;(t). (50)

B. Floquet characteristic value correlation
with molecular energy

The values p,; are determined using an exponen-
tial, exp( —iM2m), in the eigenvalue equation (16)

When I is used, the limiting process reveals that
exp( —i y; t!A) becomes the molecular-state propa-
gator exp( iE;t/A); P;(t) beco—mes stationary and
approaches 7;. It is evident that the dominant term
in the Fourier expansion of P;(t) [Eq. (14)] is {{};;
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in the zero-field limit. So, in general,

(5&)

for low intensities and nonresonant frequencies.

When co is adjusted to a resonance value, these con-
ditions no longer hold and different (mixing) condi-
tions determine the resonant single and multiphoton
dynamics. The difference between E; and the corre-
lated y;, and the relative size of the 4(0) matrix ele-

ments provide an indication of the molecular-state
interaction.

C. Mean energy

Energy is not a conserved quantity for the explicitly time-dependent Hamiltonian. However, as a natural

consequence of the space extended R 8 T formalism and Eq. (41), a mean energy' «H; » is determined by

the time average over one optical cycle of the bracket (P;
~

H (t}
~ P; ) for all y; in zone I:

«H; » = «'y;
~
H (t)

~

'{{'i;))

='y, +«'y,
~

~—,', ~'y, »

('y; —irtmt0)$
/
'p„; /2, (52)

where, in general, "{{'i; and "PJ,. are determined by the zone of y; in the expression for f;. When all y; are
within the first, second, . . . or nth zone each Floquet state f; (and therefore "{{i;}will be written as

'{I);(t)exp[—i('y;)t/R] = P;(t)exp[ —i( y;)t/A] =,. . . (or} 'P;(t)exp[ —i("y;)t/A],

respectively; and those f, having y s correlated to the molecular-state energies by

P;(t)exp[ —i( y;)t/A'] .

(53}

(54)

In Eq. (52) we see the FE, or the quasienergy, as a partial contribution to the average energy of {ti;. Equally
important for the (average) energy expression is the contribution from the Fourier terms of P;(t).

We will now prove that the optical-cycle average in configuration space of H(t) over the Floquet state f; is
equivalent to the mean energy for the Floquet P; vector, regardless of the zone(s) used. In configuration space
this average I; is defined by

H, =l/r J' (f; ~H(t)
~ f;) . (55)

By the Schrodinger equation the Hamiltonian may be replaced with the time operator i'/Bt. By using the
energy zone, Eq. (55) then becomes

r/2
H;=I/r I exp[i( y)t A/] P; iA P; ex—p[ i( y;)t—/i]}i. (56)

By taking the partial derivative and replacing
~

P;(t)) by its Fourier expansion [g ~ P; )exp(imtot)], Eq.
(56}becomes

H ='y +g( —mr ') &'y
~

'{{) ) (57)

where the superscript E designates that the energy zone was used.

Assuming that ( y;+n;%co) = 'y;, the elements of {{'i; for the mth Fourier component in Eqs. (52) and (57)
are related by Eq. (53):

E~m 1~m —n (58)

Now, returning to Fainshtein s mean energy expression in Eq. (52), the Fourier expansion of the second equali-

ty,
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(('H;))=l/ef {'0; H'+l0—

g/2 ao oo

='p;+l/ef Z X e'" ' '0" ill—pt")e—r/2 at

becomes, upon using Eq. (58) and the zone relation,

«'H, »='y, +ne+ g ( —ma) g 'yg "'yh-

{59)

and by combining the second and third terms, redefining the index, and using vector notation again

«'H~&&=~y~+ y ( — &)& y; ~ y; &.

Since Eqs. (57) and (60}are equivalent, the mean of the Hamiltonian H(t} for the Floquet vector {I};in R 8 T
space is the same as the Hamiltonian average in R space over the Floquet States. Also, since any zone could
have been used in Eq. (56},the equivalence of Eqs. (52} and {60}states that the mean energy is independent of
the particular zone(s) to which y; is assigned.

D. Mean energy and the molecular-state energy

We define the energy for the molecular state Xi(t} as the expectation value of the time-dependent Hamil-
tonian H (t):

&Hi(r) &
= &Xi(r)

~
H(r)

~
Xi(r) & . (61)

~
Xi(r) & =/{(}iJ(0)

~ fj(r) & .
J

By replacing i Xi(t) & in Eq. (61) by the RHS of Eq. (62) and expressing H(t) in terms of the operator P, Eq.
(61}becomes

(Ht(t)) +Pe(0)Pe(0){f(t=) H'+(0 —ft(t)I,a {63}
Ij

g

~ j
orin termsof ~P;(t)&,

(Ht(t)) =gt)tte(0))te+(pent)e(0)t(tt(0)exp[ —((pt —pt)t/0) t(;(tl —0/(t)) .2 a
k ij J

Substituting
~
P„(t)& and its adjoint with their Fourier expansions, differentiating, replacing the brackets by

their component form, and finally, grouping the time-dependent and dependent terms leads to
k+m

&Hi(t) & =+/if(0)HJ —g{{}ii(0)g m %cog/„fp„Jexp[ i(k m)cot]— —

{64)

J km 5

Floquet theory provides insight into the time dependence of the "molecular-state" energies: When &Hi{t)& is
expanded in the Floquet states, the resulting expression has a constant term as well as time-dependent terms
which are related to single and multiphoton resonances. The constant term is just a simple sum of all the
mean energies weighted by the square of corresponding qpt(0) elements.

The evolution of pj(t) is linearly related through Eq. (27) to the Xi(r) [the columns of the U(t
~
0) matrix]

by 4(0}. By the unitary of 4(t) and Property 2, the evolution of the molecular state Xi(t} is

l+
pulpit {0)pfiij {0}gin~+AH)Cpxp[ i {VJ. V )~r]- — .

lJ NS ll

j+' k+ns
All{0)4'lj{0)g ~~gf ift)fexpf i{I1 I i+k-

ij keg s
(65)
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(k and m sums are from —ao to oo.} The constant
term is simply the sum of a distribution of mean en-

ergies, with weights determined by the initial proba-
bility distribution of the molecular state XI in the
Floquet states. In relation to the field frequency co,

the second term has equal or higher oscillating fac-
tors. The third has slowly oscillating terms near
resonances [i.e., when pz is near )lh, ; and the corre-
sponding 4(0) components are large]. The fourth
term might be thought of as a molecule-field in-
teraction term. Near resonance, when the Floquet
characteristic exponent difference pj —p; is close to
the fieldlike Fourier difference k —m, long-time os-
cillations occur. We see then, that the center of the
(field on) energy distribution of the state XI is given

by the constant term and that its width is deter-
mined by the slowly oscillating contributions of Eq.
(65).

V. MAGNUS APPROXIMATION FOR U(t 10)

There are basically two formal approaches to
determine analytic approximations to the propaga-
tor for a time-dependent Hamiltonian. One ap-
proach is through the integral solution

U(t
~

tp}=8'exp[ ilfif —H(t')dt'], (66}

which invokes the formidable Dyson time-ordering
operator. The other is by the differential solution,
Eq. (4).

Q(e
'

)
A(t, to)

)fi =H(t)e (67)

where A (t, tp) is given as an infinite series:

A (t tp)=A](f tp)+Ay(f tp)+ ' ' (68)

The time dependence of A as well as H will now be
suppressed for convenience, except where clarity is
needed.

The truncation of the series at A„ is the nth-order
Magnus approximation. Each A; is anti-Hermitian,
thereby preserving the unitary nature of e" at any
order. In the formation of the nth-order analytic
expression there are two approximations used.
After the RHS exponential in Eq. (67) is expanded

.~ BA H [A,H) [A [A,H]]
Bt 2 12

the first approximation is made by a truncation of
the series. The second approximation is the itera-
tive integral of the truncated equation, which for
Hamiltonians of the from H{t}=Q.O;g;(t}, where

0; is an arbitrary time-independent operator and
g;(t) is solely a function of time, can be performed
simply by successive integrations. This leads to the
expressions

The Magnus ' formulation determines the propa-
gator in an exponential form, U(t

~
tp)

=exp[A(t, tp)], through the differential equation,
i.e.,

t r2

A&(t tp)= f Ck&H(t)), Ap(h, tp)= f dt2 Ck([H(t]),H(t2)], . . .
f1 ~0 2A'

(70)

Since there are multibracket commutators in Eq.
(69) a large number of different permutations in the
arguments are possible and, therefore, the correct
form of the truncated series may vary among au-
thors. Also, the second approximation leads to non-
separable multidimensional integrals, with limits
which present somewhat of a challenge to keep
record of in the higher-order expressions. Deriva-
tions of these expressions have been given by Pechu-
kas and Light, Robinson, and Magnus. ' In Ref.
25 we have found the third- and fourth-order in-
tegral limits to be incorrect; in the iterative integra-
tions the proper lower-order iteration limits were re-
placed by higher-order limits. This error, incorrect
integral limits in the recursion expansion, could ex-
plain the failure to obtain enhanced accuracy or
convergence with this third-order expression in oth-
er works, including our own. ' For completeness

(71)

where the interaction Hamiltonian H (t) is

III(]) e+IEtlhy cos(~])e—)Et/A (72)

I

the A
~ through A5 terms of the Magnus propagator

for time-dependent Hamiltonians are listed in Table
I. The number of integrals and commutators to
evaluate clearly grows rapidly with successive or-
ders of approximation.

The analytic form of A is determined by the
time-dependent "picture" of the Hamiltonian.
Equation (67) is the equation of motion in the
Schrodinger picture; its operators will now be super-

scripted for clarity by the letter s. The transforma-
tion from the Schrodinger picture to the interaction
picture allows the dynamics to follow the equation
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TABLE I. First- through fifth-order A operators for the Magnus approximation, exp(A) =exp(A]+A2+A3+A4+A5),
for the propagator U(t

[ ts). These expressions may be applied to any time-dependent Hamiltonian. '

A, A'=( i )—['H) j
A2ir = (1/2) [ [H),H2] l

A3A =(i /4) [ [[H&,Hz]H3]+(1/3) [H&[H2, H3]] j

Agfi = —(1/8)[ [[[Hi,H2]H3]H4]+(1/3) [[H)[Hp,H3]]H4]
+(1/3) ' ' '[H, [[H„H,]H4]]+(1/3) ' ' '[[H„H,][H„H4]]j

As' = —(i/16)[ 3 2[[[[Hi,H2]H3]H4]H)]+(1/3) ' [[[Hi[H2,H3]]H4]H5]
g(1/3) ' ' [[H,[[H„H,]H4]]H, ]+(1/3) ' '[[[Hi,H2][H3, H4]]H5]
+(1/3) ' ' ' '[H, [[[H,,H, ]H4]H))]+(1/9) ' ' '[Hi[[H2[H3, H4]]H5]]
+(1/3) [[Hi,H2][[H3,H4]H~]]+(1/3) [[[H~,H2]H3][H4, Hs]]
y(1/9) ' '[[H, [H, ,H, ]][H4,H, ]] (1/45)—' ' ' '[H&[H2[H3[H4, H5]ill j

tl,. tl& tl]
'The integral representation dh„. . Ch; . dh2 dhb where the sequence of integration is performed in

to to
'

to to

order from right to left, has been replaced by ' - - 'l; . 'l2'l]. Also, H(h; ) is represented by H;.

for the sinusoidal Hamiltonian H(t). The Schro-
dinger and interaction-picture propagators are relat-

ed by

Us{t
[
t ) iEt/aUI(t —

[
t )e+iEts/it (73)

and by the similarity of Eqs. (68) and (72! the for-
mal expressions in Table I apply to U' when H' is
used, or to U when H is used.

The Schrodinger picture Hamiltonian has a much

simpler, time-dependent form than the interaction-
picture Hamiltonian H [compare Eqs. (1) and (72)].
However, the additional operator (E) makes it seem

formidable to even write out the commutator ex-

pressions (in Table I) for third order and higher A' s.
But because E is diagonal, simplification readily oc-
curs. The first- through fourth-order A' matrix ele-
ments are given in Table II. These expressions are
relatively simple compared to the corresponding
interaction-picture elements. The computation of

even a fourth-order Schrodinger picture matrix ele-

ment takes less than the corresponding third-order
interaction-picture element.

Another feature of the Schrodinger picture
Magnus approximation for A is the form of each
element in the series. The time-dependent factor in
each A, expression (see Table II) always appears
with products {tot) and has no other to dependence,
while the time-dependent factor has a simple co

dependence. For an optical cycle the range of tot{0
to 2n.) is constant and also frequency independent
[because of the boundary condition
4{t+r)=4(t)]. So, in a spectral analysis, using

any arbitrarily chosen set of points within this
range, the computationally time-consuming factor
of each A, term need only be calculated once for
this set of points regardless of the frequency. Also,
the m " terms of the time-independent factors show
that the relative size of co to successive expansion
matrix is important for convergence.

TABLE II. First- through fourth-order terms of the Magnus exponential A matrix, evaluated for the Schrodinger pic-
ture (sinusoidal) Hamiltonian [E+Vcos(tot)]. ' For the following equations U(t [0)=exp(A )=exp(Ai+Az+A3+A4)
and A'=1.

[A i j;„ice'=E;6;„[T]+V;„[S(T)]
[A2 j;„ice =i V;„[E( En l [2[C(T—) 1]+TS(T)j/2—
[A3 };„ice= Vj„[E; E„j [(12—T )S(T—) —6T[C(T)+1]j/12

+ g Vs Vp [E;+E„2E&l [12S(T)—3S(—2T) —T[7—C(2T)] j /24
j

[A4 j;„it0 =i V;„[E; E„j3[24[C(T) 1]~—12TS(T)—2Tt[C(T) —1]j/24—
+i g V(~V/„[E; E„j[E;+E„2EJj [ —18+4C—(T)+—14C(2T)+16TS(T)

j
+10TS(2T)—2T [C(2T)—] j /96
+i g Vy Vjp Vg„[E; 3E/+3Ei, E„}[44——33C(T)—12C(2T)—+C(3T)—4TS(T)]/288

jk

'The product tot=T. The [E;j are the eigenenergies corresponding to the molecular states [ [i ) j. The element
V;„=e.p;„, where 2 is the electric field vector, and p;„ is the i —n molecule-state bracket of the molecular dipole. C(T)
and S(T) are, respectively, the cosine and sine functions of the argument (T).
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In the interaction picture, the commutator expan-
sions of A in Table I are simpler than those of the
Schrodinger picture. Also, under perturbative con-
ditions (i.e.,

~
E;;

~
&

~
V;„(), the solution U (t

~
0)

will be free from highly oscillatory time dependence
of the diagonal energies in the Schrodinger picture.
With the more slowly oscillating propagator
U (t

~

0) fewer time steps are required for numerical
integration of the equations of motion.

The interaction-picture matrix elements for A, in
the molecular eigenstate representation are listed in
Table III. For clarity, the equations retain much of
the form that is derived from the straightforward
integration indicated in Table I. Note that each

I A„ I;„expression, unlike the corresponding
Schrodinger term, is neither a simple function of
time nor of co (greek symbols have a co

' depen-
dence).

Included in Sec. VI will be numerical comparison
of calculations incorporating Magnus approxima-
tions with those based upon exact numerical in-

tegration techniques.

VI. APPLICATION OF FLOQUET ANALYSIS
TO THE HF VISROTOR

In this section, using the Uw Floquet formalism,
both dynamic and time-averaged properties for one-

and two-photon excitations of the HF rotor in in-

tense IR classical fields are determined. The details

of the interaction and the numerical methods are
described first, followed by a discussion of the con-

vergence in the basis set and integration step size.
Next, the symmetry of the Schrodinger picture fun-

damental propagator and 4(t) are compared at res-

onance conditions. Then, time-averaged one-photon
and two-photon transition probabilities are com-

pared at different field intensities and frequencies.
Their spectral widths and shifts at different intensi-

ties are determined and the one-photon values are
shown to agree with two-state perturbation calcula-
tions. The time dependence of states in resonance
with the field is explored by survival plots whose

predominant periodic behavior is predicted by a
two-state approximation for the Rabi frequency.
Next, we show how the resonance frequency (and its
shift with intensity) may be determined from only
the correlated Floquet characteristic exponents. Fi-
nally, the effects of competition between one- and
two-photon absorption is shown to occur in HF (as
well as other molecules) and to be a measurable phe-
nomena.

A. Numerical methods

For the HF rotor, the direct product of Morse os-
cillator and spherical harmonics are used as the
basis. The molecular constants and the matrix ex-

pressions coupling the molecular states to the field
are given in our previous work, as well as the Flo-
quet analytic long-time —average probability ex-

pression. However, the following modifications in
the numerical methods were made. Accurate ma-
trix elements of the vibrational displacement brack-
et, (X;

~

r r,—
~ Xi ), were determined by using ana-

lytic expressions for the Morse wave functions and

integrating the expression on each interval by ana-

lytic integration of a quintic polynomial interpola-
tion. We also used slightly different physical
constants: 2.194746' 10 cm '/hartree,
1.88284)(10 atomic units of mass/amu. We men-

tion this latter change because it has shifted the
molecular energies and the HF spectra as much as
10 cm '. Also, a much faster and more accurate
integrator 2 (Bulirsch-Stoer ) was incorporated to
integrate the equations of motion across the first
optical cycle.

Even though the numerical machinery" may
take a long time to assemble, the computational
procedure can be separated into both conceptual
and developmental stages. In general, the procedure
is to first determine the molecular states and ener-

gies, followed by the construction of the interaction
matrix in the molecular-state basis. Then U(r

~
0) is

calculated in one step by the Magnus approximation
or by numerically integrating the equations of
motion over the first (1/2) optical cycle. Next the
eigenvalue equation (16) is solved for 4(0) and the
FCE. At this point the correlation of the FE may
be made with the molecular states. The propagator
values U(t;

~

0) for n points over the first optical cy-
cle are either calculated by the Magnus approxima-
tion or recalled from the stored numerical integra-
tion results and used in the inverted form of Eq.
(17) to obtain 4(t). The Fourier expansion coeffi-
cients of each 4;„(t) are determined through a (fast)
Fourier transformation (using 2 equally spaced
steps within the first optical cycle). Long-
time —average probabilities and dynamics of the
molecular states for times greater than one optical
cycle are then calculated with N(t), the FE, and the
Fourier coefficients.

Transitions are labeled (vf,Jf~v;,J;), where v is
the Morse vibrator number and J the rotor number;
i and f indicate the initial and final states, respec-
tively. All calculations have been made with the
angular momentum projection number m equal to
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TABLE III. (Continued. )

P,(aPy)
P M, Nr

(E; —Ej)/co
(E,—Ej)/~
(Ek —E„)/~
(Ej—Ek )/a)

(Ej—Eg )/co

(Ek —E„)/co

(b)

(Ej—Eg )/a)
(Ek —EJg )/
(E;—Ej)/co
(Ef —Ej)/co
(Eg —E„)/a)
(Ej—Ek )/co

(Ek —E„)/ci)
(Ej—Ek )/co

(Ej Ek )/co

(Ep —E„)/co
(E' Ej )/N
(E; —Ej)/~

1

0
0

—1

—1

1

1

—1

—1

0
0
1

zero. The choice of both the rotor and vibrator
basis size, and the number of steps for numerical in-
tegration were determined, in part, by the computa-
tional time needed to perform the task. They were
also chosen by the accuracy with which they
represented the converged results. Since the Flo-
quet energies and 4(0) directly determine the
dynamics, as opposed to the long-time —average
probabilities, they are used as a criteria for conver-

gence. Table IV shows the convergence in vibrator
states for the one- and two-photon transitions,
(1,1~,0}and (2,2+-0,0), respectively, having seven

rotors in each vibrational manifold. Since the incre-
ment between the values of the four-, five- and six-
vibrator state basis vary much less than the incre-
ment between the three- and four-vibrator basis,
four vibrator states are used in the calculations of
this section.

Table V shows that only four rotor states in each
vibrator manifold are necessary to attain about the
same degree of accuracy as the four-vibrator state
basis. However, throughout this section, seven ro-
tors in each manifold were used.

Because the fast Fourier method was used in the
analysis it was necessary to numerically integrate
with 2 steps. This means the 64 steps would be
necessary to obtain the next higher accuracy after a
32-step integration. However, for all intensities and

frequencies we found it unnecessary to use 64 steps.
Propagator elements of 64 steps generally changed

by only 10 in magnitude at the most.

B. Symmetry of 4(t)

Figure 1 shows a plot of the complicated struc-
ture in the propagator element U~i~ 00~ for the
ground- (0,0} to-resonant-state (1,1) transition of
HF over the first optical cycle, while Fig. 2 shows
the symmetry (the three properties of Sec. III of the
corresponding element of the correlated Floquet

periodic function 4(ii ~&). [Brackets indicate that

P(t} was determined using the energy correlation, as

explained in Sec. IV.] Note that P(t) is real valued

at times 0, ~/2, and ~. Also, the real component of
P(t} is symmetric about r/2 while the imaginary

part is inverted. Another important property, not
shown by these plots, is that the Fourier expansion
coefficients of P(t} are real; in all calculations the

imaginary components of the largest coefficients
were found to be the order of 10

In the plots of the 4(t) elements which we have

studied so far, the simple sinusoidal character found
in Fig. 2 was prevalent, indicating (as also found in
the numerical results}, that the Fourier expansions
of 4(t) elements are dominated by just one or only a
few terms. It is therefore reasonable to suspect that
models which incorporate only the major com-

ponents should be quite useful and accurate in

representing the major time dependence of 4(t).

C. One-photon transitions

A plot of the (1 1&0) one photon long-
time —average transition probability versus frequen-

cy is shown in Fig. 3. These results were obtained
from the numerically integrated interaction-picture
(NI) propagator. The "field-free" transition fre-
quency is 0.01824909 a.u. As the field intensity is
increased from 0.1 to 1.0 TW/cm, the one-photon
resonance at 0.0182502 a.u. is blue shifted to
0.018261 0 a.u.

According to the two-state perturbative formula
of Shirley" the power broadening for the (1,1+—0,0)
transition is

FWHM =2 V] ~ 00 . (74)

The exact FWHM's were evaluated directly from
Fig. 3. They are 0.754' 10 and 0.234' 10 a.u.
(at 0.1 and 1.0 Tw/cm, respectively) and agree well
with the perturbative predications of 0.752X10
and 0.238)(10 a.u. This type of agreement is ex-
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NI results for the above one- and two-photon pro-
cesses, the correlated Floquet energies and the mean

energies [which will give an indication of 4(t}accu-

racy] are listed in Table VI for both methods.

Table VI shows excellent agreement between the
two methods for the characteristic values and the
mean energies. The Floquet energies vary con-
sistently by only five to six parts in 10 near the

TABLE VI. Floquet characteristic exponents (correlated) and mean energies for the two-photon transition
(v=2, J=2~v=0, J=0): (IM2) determined by the second-order Magnus approximation of the interaction-picture pro-
pagator; (NI) determined by numerical integration in the interaction picture.

fuo (a.u. ) NI
y(p, p) X 10 (a.u. )

IM2 NI
y(z, 2) X 10' (a.u.)

IM2

0.017915
0.017920
0.017926
0.017932
0.017933i 76
0.0179337
0.0179339
0.0179340
0.0179450
0.0179500

0.931 842 271 57
0.931 717079 73
0.931 481 546 93
0.931080 340 57
0.930974 865 09
0.930924 727 64
0.930905 076 74
0.930 895 144 57
0.929 422 409 30
0.928 584 870 63

0.931 842 285 13
0.931 717097 99
0.931481 575 48
0.931080 386 81
0.930974 91549
0.930924 779 92
0.930905 129 74
0.930 895 19793
0.929 422 493 35
0.928 584 961 13

4.519338 362 9
4.519472 754 4
4.519717 8620
4.520 127071 6
4.520233 933 6
4.520 284 669 7
4.520 304 545 9
4.520 314 590 2
4.521 797 052 4
4.522 637 322 4

4.519338 457 1

4.519472 843 8
4.519717 941 1

4.520 127 1330
4.520 233 990 8
4.520 284 725 0
4.520 304 600 5
4.520 3146444
4.521 797 075 9
4.522 637 3394

NI
((Hoo)) X 10' (a.u. i

IM2 NI
((H,z)) X 10' (a.u. )

IM2

0.017915
0.017920
0.017926
0.017932
0.017933 176
0.0179337
0.017933 9
0.0179340
0.017945 0
0.0179500

1.304 234 326 8
1.471 520 649 9
1.837 543 6260
2.465 916006 0
2.613535 9760
2.680 234 930 2
2.705 750408 2
2.712 641 1502
3.809 163 675 4
4.040 633 718 9

1.304221 753 5
1.471 499062 0
1.837 502 680 8
2.465 854 0907
2.613472 432 4
2.680 171 1070
2.705 686 553 6
2.712 706 254 8
3.809 134487 2
4.040 61 7 435 0

4.111972 677 9
3.948 698 798 2
3.587 409 572 5
2.963 697 1964
2.816983259 5
2.750 687 3204
2.725 325 555 3
2.718 511 647 5
1.630 365 478 4
1.402 668 091 8

4.111986439 1

3.948 721 592 8
3.587 451 744 7
2.963 760 356 3
2.817048 050 8

2.750 752 392 7
2.725 390659 6
2.718447 792 8
1.630 395 941 1

1.402 685 6590
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fico near the two-photon (2, 2~, 0) reso-
nance at I= 1.0 TW/cm . The Floquet characteristic ex-
ponents are those correlated to the molecular energies.

resonant frequency while away from resonance the
variation is greater, and as large as nine parts in
10 . The mean energies agree for both methods, but
the agreement is less than that of the FE's. This is
probably due to the fact that in the Magnus A ex-
pressions many of the time-dependent expansion
terms cancel at t =w: These time-dependent terms
evidently converge slowly.

Also, the IM2 long-time —average probabilities
agree with the NI results; they are not plotted be-
cause they are visually identical to the NI results of
Figs. 3 and 7. A more detailed comparison of both
the interaction and Schrodinger picture Magnus ap-
proximations with the NI results will follow in
another paper. '

To accurately locate two-photon resonances in

complex systems, computationally time-consuming
spectra such as Figs. 3 and 7, are usually deter-
mined. However, the correlated Floquet charac-
teristic exponents and the Magnus approximation
provide an efficient method to locate resonances. A
plot of the difference of the Floquet characteristic
exponents for the two states involved in the transi-
tion (2,2~,0) shows a parabolic minimum exactly
at the position predicted by NI time-averaged calcu-
lations, c0, =0.0179332 (see Fig. 10}. For locating
such resonances, then, the Magnus approximation
would be more efficient than the NI method. It is
only necessary to evaluate the propagator at t =~ (as
opposed to integrating across the entire optical cy-
cle), and to solve the eigenvalue equation (16).
However, it is imperative to correctly make the
correlation between the characteristic values and the

molecular energies, because there may be more than
one pair of characteristic values that have a
minimum very close to the resonance in question
[e.g., for (2,2~,0) there were four others].

Also, note that the minimum value is not zero;
the Floquet characteristic exponents do not become
identical at resonance. (In systems which do have

degeneracy in the FCE's, i.e., identical FCE's, the
application of Floquet theory will involve special
theorems for degeneracy. '

At 1.0 TW/cm, the wing of the one-photon
average transition probability versus field frequency
(co) slightly overlaps the two-photon spectrum (see

Fig. 7). At the near-resonance frequencies for the
two-photon transition, there is resonant interaction
(RI) between the two- and one-photon process. The
same effect occurs at 100 GW/cm but it is almost
an order of magnitude smaller. Because the HF
spectra is free from any other comparatively intense
absorption from the ground state and because the
(1,1~,0) structure is drastically changed only at
frequencies near the (2,2~,0) resonance, the in-

teraction can be attributed to competition between
the one and two-photon absorption.

In a previous paper the congested LiH spectra at
0.1 TW/cm showed the same type of interaction,
which we can now attribute to one, two, and three-
photon processes involving resonance interactions.
Also, in the multiphoton vibrational absorption
spectra of OCS (Ref. 31) we have observed the same
effect. Spectroscopically, for molecules with large
dipole moment derivatives and at experimentally
available intensities this structure could be detected.
With HF, the detection of singly excited molecules,
after pumping slightly below and above the two-

photon resonance, should show, respectively, an

enhanced or diminished intensity relative to the
nonresonant shoulder intensity.

Figure 7 shows sharp spikes in the one- and two-

photon absorption. Numerically, the two Floquet
states involved in the resonance are not degenerate
at these frequencies. The occurrence of these peaks
over such a sma11 frequency range is accompanied
by a sharp change in the magnitude of the major
Fourier components of @~» 00~ (from 0.2641 to
0.03644), @t»,oo~ (from 0.6605 to 0.6948), and

4~00 00~ (from 0.6885 to 0.7056). These components
are over an order of magnitude larger than any oth-
ers in the expansions. Also, the change in all other
components is about two orders of magnitude less.
It therefore appears at this point that the sharp
peaks are also valid one- and two-photon resonance
interactions, and are not indicative of numerical in-

stability in the calculations.
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VII. CONCLUSIONS

The application of Floquet theory to the semi-
classical interaction between a radiation field and a
molecule provides a means to analyze the dynamics,
as well as a method to derive all the dynamics
through explicit consideration of interactions occur-
ring within the first optical cycle (one field oscilla-
tion). The discovery of symmetry within the time
dependence of the Floquet solution for Hamiltoni-
ans having the sinusoidal periodicity provides three
new properties. These properties not only render
computational checks but reduce the numerical ef-
fort of solving the equations of motion to only the
first half of the optical cycle. Also, they simplify
the complex eigenequation (used to obtain the Flo-
quet characteristic exponents) into the diagonaliza-
tion of a real matrix.

Using the Floquet characteristic exponents
(FCE), the Floquet states may be labeled or mapped
onto the molecular states by a process of zone ex-
tension of the Floquet energies (modfico) and corre-
lation with the molecular energies. The molecular
dynamics can then be sorted out in terms of the
Floquet eigenvectors and eigenvalues, [4(0}and the
FCE]. Single and multiphoton resonance can be lo-
cated efficiently by the minimum of the FCE
difference for two states associated with a reso-
nance. Also, the mean energies of the Floquet
states simply determine the stationary energy of the

fluctuating molecular-state energy. A study of
these stationary energies should lead to accurate
time-independent effective Hamiltonians.

Exact numerical calculations for intense IR irra-
diation of the HF vibrotor, using semiclassical radi-
ation theory, are in good agreement with the
second-order interaction-picture Magnus approxi-
mations for both one- and two-photon processes.
The largest two-photon excitations from the ground
state to the third vibrator manifold have dominate
multistate contributions as shown by the dynamics.
Within single-photon excitations, the multistate
participation plays a relatively minor role in the
dynamics. Resonance interaction between one- and
two-photon excitations occurs at high intensitites
and causes noticeable asymmetry in the one-photon
long-time —transition profile. This effect is ob-
served in other molecules and should be physically
measurable.
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