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Direct pair production in -5-MeV/amu heavy-ion —atom collisions with uranium target
atoms is calculated with the plane-wave Born approximation and the semiclassical approxi-
mation. Briggs s approximation is used to obtain the electron and positron wave functions.
Since pair production involves high momentum transfer q from the moving projectile to the

vacuum, use is made of a high-q approximation to greatly simplify the numerical computa-
tions. Coulomb deflection of the projectile, the effect of finite nuclear size on the elec-

tronic wave functions, and the energy loss by the projectile exciting the pair are all taken
into account in these calculations.

I. INTRODUCTION

One of the first applications of the semiclassical
approximation (SCA) to electronic excitation in
ion-atom collisions included a calculation of
electron-positron pair production in 1.5-MeV
H+ + Ta collisions. ' This calculation discouraged
further investigations. While previous Born-
approximation calculations gave pair-production
cross sections of the order of 10 cm, the semi-
classical approximation gave —10 cm, far
smaller than one can measure. ' The pair-
production cross section is small for two reasons.
The momentum transferred to the pair q&1022
keV/v, where v is the ion velocity, is more than ten
times larger than the momentum transfer needed to
ionize E electrons, less than 100 keV/v. Since exci-
tation cross sections decrease with a large power of
the momentum transfer, we expect much smaller
pair-production cross sections than ionization cross
sections. Coulomb deflection of the projectile by the
target nucleus also drastically affects the pair-
production cross section'; it reduces ionization
cross sections by one to two orders of magnitude
when the product g of the momentum transfer q and
one half of the internuclear distance of closest ap-
proach in head-on collisions, d, is greater than unity.

Since q is over ten times larger for pair production,

g will be ten times larger, and Coulomb deflection
reduces the pair-production cross section by many
orders of magnitude (by a factor of 10 ' in 1.5-

MeV p + Ta collisions' ).
Bang and Hansteen's calculation' of pair produc-

tion neglected electronic relativistic effects, how-

ever. ' Pair production has recently been observed
in U + U collisions, where electronic relativistic ef-
fects play a major role. Part of the pair production
in U+U collisions is due to pair conversion of
Coulomb-excited y rays. Part of it is due also to
coherent pair production, possible only when the
binding energy of 1s vacancies exceeds 1022 keV.
However, direct excitation of pairs due to the
transfer of the projectile momentum to the vacuum

(a process which Soff et al. ' call "shakeoff of the
vacuum polarization" ) accounts for a substantial
fraction of the observed U+ U electron-positron
pair-production cross section.

Given the successful observation of positrons in

U+ U collisions and the negative results in proton
and a-particle collisions, ' we undertook calcula-
tions of pair production in higher-energy collisions
involving light ions. The maximum bombarding en-

ergy which one can use is near the nuclear Coulomb
barrier, approximately 5-MeV/amu for most heavy
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ions. " If the particle energy exceeds the Coulomb
barrier, positrons due to P+ decay and y-ray inter-
nal pair conversion may exceed the number created
by direct pair excitation. Experience with E-shell
ionization suggests that pair production would be
more likely with higher-Z targets, due to electronic
relativistic effects, and if a particles or heavy ions
are used instead of protons. Equal velocity particles
with Z/A = —, have a smaller internuclear distance
of closest approach than protons; thus Coulomb-
deflection effects are less severe.

The ab initio evaluation of pair-production cross
sections using the SCA (Ref. 1) requires the evalua-
tion of quintuple integrals, integrals over the elect-
ron coordinate r, time t, impact parameter b, elect-
ron energy 8', and positron energy 8'+. Calcula-
tions are greatly simplified, however, if one initially
neglects Coulomb-deflection effects, and does a
plane-wave Born-approximation (PWBA) calcula-
tion. ' Furthermore, we discovered a
high —momentum-transfer approximation which
gives accurate electronic form factors needed for the
PWBA, reducing the number of integrals to two.
Section II of this paper presents the PWBA results.

Of course, the PWBA does not give realistic re-
sults for electron-positron pair production by slow
heavy ions, mainly due to Coulomb-deflection ef-
fects. Rather than abandoning the PWBA, however,
we calculated correction factors fear Coulomb-
deflection and finite —nuclear-size (FNS) effects, as
presented in Sec. III. We discuss wave-function and

projectile energy-loss effects in Sec. IV. In any
slow-ion —atom collision one must take into account
the adjustment of the electronic wave functions due
to the presence of the projectile nucleus. Diatomic
molecular orbitals are often used to evaluate inner-
shell ionization. ' ' For pair production, we used
the Briggs approximation' to take into account
these wave-function effects. In Sec. V it is shown
that no further quantum-electrodynamical (@ED)
corrections to our results are to be expected. Nu-
merical results are discussed in Sec. VI.

Relativistic units (R=m =c = 1) are used
throughout this paper, except for places where we
have explicitly given the units for clarity.

II. PLANE-%AVE BORN APPROXIMATION

Momentum transfer from the projectile to the
vacuum is mediated by the Coulomb interaction be-
tween the projectile nucleus and the electron or posi-
tron. The matrix element leading to pair formation
is proportional to'

where g+ and g are positron and electron wave
functions, r is the electron coordinate, R is the in-
ternuclear coordinate, Z~ is the projectile charge,
and a ' = 137.04. The double-differential cross sec-
tion is given by

d 0'pgjr

dR'+d 8'
8m.Z a

f, . .. I &0&, , I
exp(iq '. r)

I 0,u, , & (q)
PA+, P8

P+,P

where 8'+, j+,m+, and I'+ are the (positive-definite) positron energy (including the rest-mass energy), angu-
lar momentum, and parity quantum numbers; 8,j,m, and I' refer to the electron, u is the ion velocity,
and q is the minimum momentum transfer given by (W+ + 8' )/u.

The angular momentum algebra is easily carried out, and so we obtain' '
d opair

d8'+d8'

where

8mZ a

J+&J
P+,P

I (2j++1)(2j +1)(21+1)—,[1+8+I' ( —l)1],

FJ,J t(e) = &~+ I Ji(m) I
~ &

= J r'iI(er)(g+g +f+f )«,
(4)

/ is the angular momentum connecting j+ and j, and g and f are the components of the Dirac electron and
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positron radial wave functions. We used the Dirac wave functions given in Ref. 17 to calculate the electronic
form factor F(q). The evaluation of F(q) requires integrals such as

lk~ I' ik r
I11—— dr r jI(qr)e 1F1(y+ —i v+, 2y++1, —2ik+ r)e 1F1(y —iv, 2y g 1,—2jk r ),

where yy =K~ —cx Z2, Z2 is the target atomic number, Ir~ is the Dirac quantum number, k+ is the positron
momentum, k is the electron momentum, v+ ———o,'Z28'+/k+, v =aZ28' /k, and 2y=y+ + y, The
large momentum transfer q needed to produce pairs makes the cross section small, but makes possible the ap-
plication of a high-q approximation to evaluate I11. Since q &~k+ and q ~~k, only the small-r part of the in-

tegral in Eq. (5) contributes; hence one can neglect the plane-wave and hypergeometric functions in Eq. (5).
Thus we have

I„=I r rj'((qr)dr=
~ I

x ~j((x)dx= 2, P2y)sin(my), for I=0

which is a formal result for arbitrary y since the integral may diverge, but which agrees with the q~ ao expan-
sion of the exact evaluation of (5).

The double-differential pair-production cross section for l=O excitation is given by

2
+pair

d8 +d8'
8mZ1u

C (I,j,j,W, W,y, y )[(4y+4)q "+ ]
Jy&J
P~,P

where

C(I=O)=& Ã [[(W+—1)(W' +1)]' sing+sing +[(W —1)(W++1)]' cosg+cosg jl (2y)sin(my),1,/2 ~

1 (y++1+iv+)
~&+ —— e -' — — (2k. )'-',

Qnkp . I (2y++ 1)

and g~ is calculated from the expression

lrp i
~

vp/W—p
~

e
yy —1 vy

Much can be deduced about pair production by
slow heavy ions by inspection of Eq. (7).

(i) Only transitions involving the s1/2 and p1/2
electron and positron wave functions are important.
For an s1/2-to-p3/2 transition, e.g., either y+ or y
will be roughly one unit larger; hence the cross sec-
tion will be smaller by a factor of q . For 5-
MeV/amu a + U collisions, the s 1/2-to-p3/2 transi-
tion probabilities are approximately three orders of
magnitude smaller; for p3/2 to p3/2 they are six to
seven orders of magnitude smaller than s1/2-to-s1/2
transition probabilities.

(ii) Confining our considerations to just the si/2
and pi/2 wave functions, we find that dipole transi-
tions are also negligible. This is easily seen from the
transition density r (f+f +g+g ) in Eq. (4). For
small r, f and g vary as rr ' and the ratio f/g is

equal to (y+ ~)/Za. ' Hence we obtain

fiff+f +g+g ——1+—
g~g—

2

y —11+
ZQ

S 1/2 $1/2

y+11+
Z s p1/2 p1/2

(y—1)(y+1)1+ Os $1/2 p1/2(Za)'

In the high-q approximation, the $1/2-to-p1/2 dipole
transition probability is identically zero. Of course,
this is only true to first order. It is possible to ex-
pand the wave functions to higher powers in r, but
each higher power in r gives a factor of q in the
cross section, so that finally the si/2-to-p1/2 transi-
tion probability would have about the same small
magnitude as the si/2-to-p3/2 probability.

(iii) Since q is proportional to the inverse of the
ion velocity, Eq. (7) implies that the cross section
varies as v ~+, i.e., as v to v6, depending on y or Z.
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Coulomb-deflection effects will drastically reduce
the pair-production cross section at small velocities,
however, as we shall see.

(iv) As Z increases, y decreases, so the enhance-
ment due to the use of relativistic electronic wave

FIG. 1. Pair-production cross section for a particles
with v/c =0.1 vs target atomic number calculated with

the plane-wave Born approximation.

functions is of the order (q/k) ~, where k is some
characteristic electron or positron momentum.
Since q/k »1, pair production in U+ U collisions
where y is effectively near zero, is fairly likely, but
in p+ Ta collisions where y=0.85 (y was unity in
Bang and Hansteen's calculations), pair production
is much less likely.

Figure 1 shows numerical calculations of pair-
production cross sections by -5-MeV/amu a parti-
cles as a function of the target atomic number, cal-
culated with the PWBA. This figure shows that
even with the maximum-energy a particles (the en-

ergy being determined by the nuclear Coulomb bar-
rier), the pair-production cross section (without
Coulomb deflection) is not large, 4 nb for a+ U.
This cross section would be measurable, however, if
no nuclear background effects were present.

Finally, we discuss the accuracy of the high-q ap-
proximation. We found that for Z2 ——50, 92, and
130 for the s &&2-si~2 transitions the exact and high-q
approximation pair-production cross sections agree
to within & 4% for v /c=0. 1 and g 20% for
v/c=0. 3. By retaining one further term in the q
expansion of the exact form factor, one obtains
agreement within 1% (for v/c=0. 1). However, the
first-order high-q approximation also greatly simpli-
fies the evaluation of the Coulomb-deflection correc-
tion, so to be consistent, we shall neglect higher
powers of q

III. COULOMB DEFLECTION AND FINITE NUCLEAR SIZE

To evaluate Coulomb-deflection effects, we use the semiclassical theory which in the straight-line case is
equivalent to the plane-wave Born approximation. ' For an arbitrary internuclear trajectory R(t), we have in-
stead of (3),'

2d Opair

dW+dW
=32Zia g g A~ J f bdb ~aq ~

Im l+1 '"-
P+,P

a~= f dq'FJ 1 i(q') f dte' j't(q'R)Yf„(R),

(10)

where co= W++ W, and b is the impact parameter. Inserting the high-q approximation (6) for the form fac-
tor, az reduces in the case l =0 to

0 0 d, „g p 0 v'7l C( l=0)
8y(2y+ 1) I (2y)sin(my)

Thus the dependence on R factors out and we define the Coulomb-deflection correction factor C~ as

f bdb f dte' 'R r
0 00

Cy(R ~)=

f bdb —f dze''(b +z )
0 —oo

(12)

with q=co/v. In the numerator, the time integral is performed along a Coulomb trajectory. Although the
denominator of this expression vanishes as y~0, Cz is well defined; indeed C0 ——1. For y~1, however, C&
diverges. This is because the coefficient of the leading term in q vanishes in this limit [cf. (6)], and higher-
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order terms must be retained to obtain a meaningful result. However, in this limit, 0.~„, becomes negligible
anyhow.

The integral in the denominator of (12) can easily be evaluated by equating (10) together with (11) for a
straight line with the straight-line result (7) (or directly). We get

2
1 f & db

1 f d, q (by 2)y P (2'Y+2)
'

(~Y)
DQ o U -- (y+1)U'q'~+'

For the evaluation of the numerator of (12), we introduce the parametrization of the Coulomb trajectory

R =d(e coshw+1), t =—(e sinhw+ w),
d
V

where

e = [sin(8/2)] ' = [(b /d) + 1]'~

(13)

(14)

(15)

0 is the center-of-mass scattering angle, and d is one-half of the distance of closest approach in a head-on col-
lision. Insertion into (12) leads to

d 4y+4 00 2

Cy D&& z
——f dec f dw(ecoshw+1) y+'exp[i)(esinhw+w)] (16)

Rp(r) = (f+f +g+g )FNS—
(f+f +g+g )PN—(17)

for the special case of k+ ——k =0.25, Z=110, and

s~~2-sj&2 transitions. Here, R& is approximately 7
fm. It was calculated using Rz ——1.07A '~ fm with

Equation (16) with (13) shows that C& depends only
on Y and g=qd and is independent of the electron
and positron momenta and energy and angular mo-
menta ~, except that q depends on W++ W . Al-
though the exact evaluation of the pair-production
cross section using the SCA would involve a qua-
druple integral (over W+, W, b, and t, after the r
integral is evaluated), the use of the Coulomb
correction factor decouples the quadruple integral
into two double integrals. C& can be evaluated as a
function of q for several q, then can be interpolated
at desired q values when the integrations over W+
and W are done.

Until now we have used point-nucleus (PN) elec-
tron and positron wave functions, which vary as
r ' at small r. This behavior leads to the y depen-
dence of C&. With a uniformly charged sphere tar-
get nucleus of radius R~, the wave functions will in-

stead approach a constant for r &&Rz for all Z2. '

The same is true for more realistic nuclear shapes.
Thus the Coulomb-deflection effects and the
finite —nuclear-size (FNS) effects cannot be separat-
ed. The small-r behavior does not affect the FNS
wave functions for r & 10R~, however. For W+
(W )(10, the asymptotically normalized PN and
FNS wave functions are nearly identical in this re-
gion.

Figure 2 shows the ratio of the transition densi-
ties,

I

A=278, appropriate, for reasons discussed in the
next section, for ~Ar+ U collisions 2o At r & 100
fm, the density ratio is nearly unity.

In order to evaluate the influence of the FNS on
the transition matrix elements it is practical to go
over to the coordinate representation by performing

R;

10

10

R

g~ I I I 1 I

0.0l 0.1 1 10 100 1000„t~
FIG. 2. Ratios of transition densities Rq(r) defined by

Eq. (17) (solid line), and transition matrix elements R(R)
defined by Eq. (19) (dashed line) versus electron r or inter-

nuclear R coordinate for Z =110and k+ ——k =0.25mc.
Inside the nucleus (r &RN), the transition density goes to
zero with r faster than r ~, obtained for point nuclei.
For r & RN, however, both the FNS and PNS densities in-

crease as r ";so the ratio approaches unity.
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a, = )"" ted ~mr R
1 1

R FNs
CO r& r

=Xo f dte'"'R (R)R r, (18)

where r &
——max(r, R) and

R~(R) =

FNS

r& r

r& r

and we have used that in the high-q approximation
we have effectively [cf. Eq. (11)]

the q' integral in (10) together with the definition (4)
of F(q) analytically. For the relevant l=0 transition
one then finds

within 10% if a Fermi distribution was taken to
describe the nuclear charge distribution instead of a
homogeneous charged sphere. In conclusion, we
infer that Cr depends just on y, g, and R~, and since
for a given Z one can assume Rz is essentially fixed,

Cr can be taken to depend only on Z and g.
Figure 3 shows numerically evaluated correction

factors for several atomic numbers as a function of
the excitation energy 8'= 8'+ + W for U/c=0. 1.
Neglecting FNS, C~(W) is nearly independent of Z
for y &0.75. For y&0.75, however, the correction
factors vary significantly with y. FNS reduces C&
more at higher Z than at lower Z. One might be
tempted to use the Bang-Hansteen Coulomb-
deflection correction factor for pair production,
which has been used widely to calculate E-shell ioni-
zation cross sections. ' As Fig. 3 shows, however,
this factor would overestimate the pair-production
cross section considerably.

R +
r&

(20) IV. WAVE-FUNCTION
AND ENERGY-LOSS EFFECTS

The reason for subtracting the 1/r term —which ac-
tually does not contribute to the first-order ampli-
tude for inelastic processes —in the matrix elements
will become clear in the next section. Figure 2 also
shows R as a function of R for the Ar+ U
collision system. Both Rz(x=r) and R~(x=R)
vary as x when x &&R~.

The above considerations mandate that the factor
R "in the numerator of Eq. (12) should be weighed

by RM(R) in order to take the FNS influence on the
Coulomb deflection into account. The denominator
is unchanged, though, as long as hydrogenic wave
functions are used in evaluating the PWBA results.
The resultant Cz therefore depends on Rz, in addi-
tion to its dependence on y and g. When necessary,
we shall write the functional dependence of C& on R
as Cr(RMR ). Since RN and d tend to be of similar
magnitude, Coulomb deflection and FNS effects are
not separable. The projectile must almost always
penetrate to distances where the transition matrix
element is reduced by FNS if positrons are to be
produced. If d were always much greater than Rz,
the FNS effects could be neglected entirely.

We have also investigated to what extent the FNS
effects depend on electron and positron momenta,
energy, and angular momenta and on the details of
the nuclear wave functions. This was done by
evaluating the monopole transition form factor Eq.
(4) numerically and comparing with point-nucleus
results. We found the ratio F" (q)/F (q) to be (i)
independent of positron (electron) momentum k+
(k ) for k+ (k )(3, (ii) identical for s»2-s»2 and

p»2-p»2 transitions for Z & 120, and (iii) insensitive

In principle, in the slow-ion —atom collisions
under consideration, one should use diatomic molec-
ular electron and positron wave functions. ' The
relevant electron and positron velocities are always

)p0

Cy

g-4 I I

2 4 w

Fig. 3. Dashed line: Coulomb-deflection correction
factor for 5-MeV/amu a+U collisions versus the energy
transferred to the electron-positron pair W= W++ W
(in units of mc ). Solid lines include the FNS effects for
a+ U (Z =94), Ar+ U (Z =110), and Co+ U
(Z =119). The chain curve gives the Bang-Hansteen
Coulomb-deflection factor exp( —~g ) for a+ U collisions.
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Z&+Z2
(Z„)

1
(21)

where Z„=Z&+Z2, ap=Z2/Z„, and Pp=Z, /Z„.
The resulting pair-production amplitude from (10) is
then replaced by

0 Zg 0
ap(y) ~ ap(y„),

Zi
(22)

where

much greater than the ion velocity, so the electrons
and positrons have time to adjust their motion to the
presence of both the target and projectile nuclei.
However, diatomic molecular orbitals have rarely
been used in calculations of cross sections for pro-
cesses involving high momentum transfer. Various

approximations have been used instead. ' ' ' The
approximation most simply applied to pair produc-
tion is the Brig gs approximation,

' which uses
united-atom wave functions centered on the center
of charge of the two nuclei. We find that only im-
pact parameters of the order of d contribute to the
pair-production cross section. Since d is much
smaller than the distance over which the separated-
atom wave functions evolve into molecular orbitals,
and finally into united-atom wave functions, the use
of united-atom wave functions for all R should be
valid.

In the Briggs approximation, the transition matrix
element in Eq. (I) is modified to [the inclusion of
the (Zi+Z2)/r term is numerically convenient since
it makes the perturbation vanish in the united-atom
limit]

Z (ex Z2cx
t(, (Z„) +

f
r —apR

J /
r+PpR

J

particle total collision energy of a few MeV/amu,
the usual SCA assumption of an unchanged velocity
is not valid. However, it is well known that the
SCA closely approximates the Coulomb distorted-
wave Born approximation if the projectile velocity is
symmetrized between the incoming and outgoing
channels. ' ' This can be implemented by chang-
ing the projectile velocity from v to
v'=v —(W++ W )/4vM, where M is the reduced
mass.

Insertion of this modified velocity into Eq. (7)
reduces the double-differential pair-production cross
section by a factor of (v'/v) ~+ =0.9 for 5-

MeV/amu a+ U collisions for W++ W =4mc .
Since the Coulomb-deflection —FNS correction fac-
tor also depends on v [because q=(%++8' )/v],
the net pair-production cross section is further re-
duced by a factor of 0.6 for W++ W =4mc, giv-
ing a net energy-loss correction of 0.54. A more ac-
curate evaluation of the energy-loss effect may be
desirable if pair production is observed in low-

energy collisions with very light ions.
After inclusion of all corrections to the PWBA re-

sult (7) the differential cross section for positron
production finally becomes

'2

Cr (R RM(R))
Q

2
O'PgjI

dW+dW

d20 PwBA(y 'v')
X

dW+dW
(23)

It should be stressed that because the high-q approx-
imation in this case is a good approximation for the
form factor, this result is expected to be rather accu-
rate.

Zg =Z& (Z2/Z )
"+Z2(Zi /Z )

with y„=(1—a Z„)' . From these expressions we
prescribe the following modifications to Eqs. (7) and
(12) to account for wave-function effects: (i) replace
y(Z2) with y(Z„) everywhere; (ii) replace Z& with

Z~, and (iii) use the sum of the projectile and the
target mass to calculate Rz. The latter prescription
may actually easily be improved upon by calculating
the FNS effects for the monopole part of the two-
center potential from projectile and target, but as
long as one considers reasonably asymmetric col-
lisions, the projectile contribution will only represent
a small correction to the target term; and how it is
incorporated is not critical, since the FNS effects are
fairly insensitive to the adapted nuclear charge dis-
tribution.

Since the minimum energy to create an e+e pair
is non-negligible compared with the proton or a-

V. QED CORRECTIONS

y=N2 —q2=(W++w )2 —
2

——
2c v

——q & —4/v2 2 (24)

Since pair production is a QED process, one
might question if there are sizable QED corrections
to the simple picture of "ionization of the Dirac
sea" that we have used. As judged from the known
corrections to the (united-atom) binding energies due
to vacuum polarization and electron self-energy
(«1%), this may appear unlikely. However, the
binding energies probe the average properties of the
wave functions, while the ionization process probes
the wave functions at large momentum transfer, and
the invariant momentum transfer (squared),
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1s indeed large when U /c (0.1.
In order to investigate these effects in somewhat

more detail, we note that all the relevant potentials
under consideration in this paper have Fourier
transforms of the type (xo ——t, qo ——~,
xq =xoqo —x q)

=4m 8(co,A, q ),
q

where p(q) is the {effective) charge form factor giv-

ing rise to the potential, and

1
8(n), q)= dt e

—i q R ( t)&i~I
v Zm.

(26)

This factor is easily evaluated for a straight-line
path,

U U

if R(t)=b+ure, A. lso for a hyperbolic path, with
the parametrization of Eq. (14), it can readily be
evaluated. %e shall not do this since the explicit
representation is not needed. The important point is
that 8 is peaked at q, =qo/v, so that it is indeed the
large spacelike components of the momentum
transfer that dominate the pair production process.

The QED corrections may now easily be imple-
mented by noting that the vacuum polarization in-
duces an effective dielectric function e(y) for the
vacuum, while the electron self-energy diagrams
give the electron an electric form factor F,(y). The
electron, of course, also acquires a magnetic form
factor, but this represents a small correction to the
magnetic transition amplitude, which is itself negli-

gible for U &&c.
Thus, both the vacuum polarization and the self

energy can be taken into account by modifying the
potentials as

~(qo, q)~ V(qo, q)E, (y)/e(y) .

To the lowest order in Z the QED corrections are
well known,

e(y) =1— lny+5+0Q lny
3m' y

F, (y) =1+—(in@+1)(lny —1)——,(lny) ——, lny+ +0
1T

4 4 12 y' y

Here p is an infrared cutoff, which by the usual arguments is of the order of Z, where Z is the effective
charge corresponding to the potential. The potentials enter our discussion both in determining the wave func-
tions [with A, =O in Eq. (25), 8 (q0, 0)=V 2n5(qo)], and in the transition matrix elements. For the wave
functions, we can approximately estimate the effects of the QED corrections by noting that the corrections are
slowly varying functions of y. Since the relevant portions of the wave functions are situated around q =U/2,
and the effective nuclear potential is proportional to Z„, we can make the following replacement
[in@=ln(Za) =0]:

Z„F,(4/u') 1+(a/~) [ —, ln(4/u') ——,[in(4/u')]'+~'/12 —1I

e(4/U') 1 —(a/3n )[ln(4/u~)+5]

For U/c =0.1 this yields Z„~0.998Z„—thus a
negligible effect. The effects on the transition ma-
trix elements can be evaluated in the same manner,
and also give negligible corrections. The influence
of vacuum polarization and self-energy separately
amounts to about 1% but they cancel each other al-
most completely, as they tend to do for the binding
energies. Thus we conclude that although QED
corrections are larger for the pair-production pro-
cess than estimated from the effect of the united-
atom binding energies, they are still negligibly small
in any realizable experimental situation. This pic-

ture is not changed by higher-order QED effects,
which only become significant if lny -a

VI. NUMERICAL RESULTS

Figure 4 shows pair-production cross sections for
5-MeV/amu heavy ions colliding with U targets.
The P%BA pair-production cross section increases
as Z&, from 4 nb for o. +U to 1400 nb for Sr+ U
Z

&
=38). VAth wave-function effects& o pair in

creases from 6 nb (a+U) to 1.4 mb (Sr+ U). This
is mainly due to the rapid increase of op with Z„,
as was seen in Fig. 1. The Coulomb-deflection,



688 ANHOLT, JAKUBASSA-AMUNDSEN, AMUNDSEN, AND AASHAMAR 27

10

Ch
C

a 5
g 8
CL

D

&0—4

10
2

c 10

Cf

D

10 r

10

10
-1

&0'

10

10

&0'
0-4

3
I

10 20
E t MeV/amu)

)00 FIG. 5. Pair-production cross sections in a+U col-

lisions versus projectile energy. Curves have same mean-

ing as Fig. 4.

20
Z

FIG. 4. Pair-production cross sections for 5-MeV/amu
heavy-ion collisions with U. Dashed curve: plane-wave
Born approximation, Eq. (7). Chain curve: plane-wave
Born approximation, including wave-function effects.
Solid line: including Coulomb-deflection, finite —nuclear-

size, wave-function, and energy-loss effects.

FNS, and energy-loss effects reduce the pair-
production cross section by two to three orders of
magnitude, however. For a+U, the new pair-
production cross section is only 0.14 nb.

Figure 5 shows the a+U electron-positron pair-
production cross section for several projectile ener-
gies. The PWBA cross section and the cross section
including wave-function effects both increase as
v +, the difference between y and y„being negligi-
ble here. When one includes Coulomb-deflection,
FNS, and energy-loss effects, o.~;, decreases very
rapidly with lower projectile energy. It is clear from
Fig. 5 why pairs have not been seen in 2.5-MeV
p+W and 2.5-MeV (0.625-MeV/amu) a+Ta col-
lisions. Heykant et al. find that crz„, is less than 3
nb for 2.5-MeV a+Ta collisions (roughly convert-
ing their thick-target yield limit to a cross-section
limit). We predict that crz„, for 0.625-MeV/amu
a+Ta collisions is much smaller than for 3-
MeV/amu a+U collisions, which is —1 pb. Owing
to the proton's anomalous mass (Z& ——A), d is larger
for protons, therefore the Coulomb-deflection factor
is much smaller, giving small ( g1 nb) cross sec-

tions, even for 5-MeV protons.

Finally, we show the differential pair-production
cross section in Fig. 6. With increasing projectile
energy, positrons can be excited to higher kinetic en-

ergy. As is usual for positron spectra, the differen-
tial cross section goes to zero as W+ goes to zero,
due to Coulomb effects on the positron's wave func-
tion.
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FIG. 6. Differential pair-production cross section in

a+U collisions for different collision energies E, calculat-
ed including all effects.
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VII. CONCLUSIONS

Pair-production cross sections in heavy-ion —atom
collisions have been calculated using a
high —momentum-transfer approximation, and by
making corrections to the plane-wave Born-
approximation cross sections for wave-function,
Coulomb-deAection, and other effects. The
high —momentum-transfer approximation is well
suited to this problem, and gives accurate cross sec-
tions even for the highest energies considered, 5
MeV/amu. It may be objected that the use of
correction factors, which affect the cross sections by
many orders of magnitude, may be inaccurate.
However, we have used the correction factor as a de-
vice for simplifying the numerical problem of
evaluating the quadruple integrals needed to obtain
the pair-production cross sections. Using correction
factors, the quadruple integral decouples into two
double integrals. We have carefully examined the
separability of these integrals. The major approxi-
mations used are the Briggs approximation to ac-
count for wave-function effects and the
high —momentum-transfer approximation. Within
this framework, our evaluation of pair-production
cross sections is nearly exact, equivalent to perform-
ing the quadruple integral over time, impact param-
eter, positron energy, and electron energy. Calcula-
tions similar to these, but using a different wave-
function approximation, have been made by Soff
et al. ' to calculate pair production in U+ U col-
lisions. The only improvements which one might
make is to replace the semiclassical evaluation of the

amplitude with an evaluation using quantum-
mechanical Coulomb waves for the projectile
motion. This would give a better energy-loss correc-
tion, which is important at low projectile energies
with light projectiles.

The experience of Stephens and Staub and Hey-
kants and Niecke indicates that pair-production
cross sections smaller than 10 nb are exceedingly
difficult to measure, even when nuclear-reaction
backgrounds are not present. This suggests that at 5

MeV/amu, direct pair production may be observable
only with projectiles with Z& g10. Positrons from
nuclear processes may give apparent pair-production
cross sections exceeding 10 nb, however. Even with
projectile energies below the Coulomb barrier, y rays
can be Coulomb excited which convert into
electron-positron pairs. Heavy-ion nuclear reactions
with the target nucleus or target impurities can
occur with a small probability at energies below the
Coulomb barrier. Products from such reactions
may P+ decay or y-ray decay by pair conversion,
giving apparent pairs. In conclusion, therefore,
direct pair production can only be observed in very
careful measurements in heavy-ion —atom collisions.

ACKNOWLEDGMENTS

This work was supported in part by the National
Science Foundation Grant No. PHY-80-15348 and
NORDITA (R.A.), by the Gesellschaft fur
Schwerionenforschung, Darmstadt (D.H.J.), by the
Norwegian Research Council for Science and the
Humanities (K.Aa. ), and by the Alexander von
Humboldt Stiftung and NORDITA (P.A.A.).

"Present address.
J. Bang and J. M. Hansteen, K. Dan. Vidensk. Selsk.

Mat. -Fys. Medd. 31, No. 13 (1959).
2%'. Heitler and L. Nordheim, J. Phys. Radium $, 449

(1934).
3W. E. Stephens and H. H. Staub, Phys. Rev. 109, 1196

(1958); Helv. Phys. Acta +0, 261 (1957).
4M. Heykants and M. Niecke, Nucl. Phys. A332, 22

(1979}.
~E. Merzbacher and H. %'. Lewis, Handb. Phys. 34, 166

(1958).
6W. Brandt, R. Laubert, and I. Sellin, Phys. Lett. +1, 518

(1966).
~R. Anholt, Phys. Rev. A 17, 976 (1978); 17, 983 (1978).
8P. A. Amundsen, L. Kocbach, J. M. Hansteen, J. Phys. B

9, L203 (1976).
9H. Backe et al., Phys. Rev. Lett. 40, 1443 (1978).

G. Soff, J. Reinhardt, B. Muller, and %'. Greiner, Phys.
Rev. Lett. +, 592 (1977).

11The Coulomb barrier energy is given by

(A )+A2)
E)LAg(MeVl'amu) =1.44Z)Zp 1/3 1/3

A )A2ro(A ) +A p )

where A
&

and A2 are projectile and target masses. For
heavy ions one can use ro -1.44+0.2 fm: J.R.
Birkelund, J. R. Huizenga, H. Freiesleben, K. L. Wolf,
J. P. Unik, and V. E. Viola, Jr., Phys. Rev. C 13, 133
(1976).
T. Huus, J. H. Bjerregaard, B. Elbek, K. Dan. Vidensk.
Selsk. Mat. -Fys. Medd. 30, No. 17 (1956)~

W. Lichten, Phys. Rev. 164, 131 (1967).
i4J. S. Briggs, J. Phys. B 8, L485 (1975).

P. A. Amundsen, J. Phys. 8 10, 2177 (1977}.
L. Kocbach, Z. Phys. A 279, 233 (1976).

~L. D. Landau and E. M. Lifshitz, Relatiuistic Quantum
Theory (Pergamon, New York, 1971),Part 1, p. 114.

isM. E. Rose, Relatiuistic Electron Theory (%iley, New

York, 1961),pp. 241—244.
t9H. A. Bethe and R. W. Jackie, Intermediate Quantum

Mechanics, 2nd. ed. (Benjamin, New York, 1968).



ANHOLT, JAKUBASSA. -AMUNDSEN, AMUNDSEN, AND AASHAMAR

~OJ. B.Mann and J. T. %aber, At. Data 5, 201 (1973).
~~J. U. Andersen, E. Laegsgaard, M. Lund, and C. D.

Moak, Nucl. Instrum. Methods 132, 507 (1976).
~~R. Anholt, Z. Phys. A 295, 201 (1980).
~3J. E. Potter and J. Macek, Phys. Rev. A 20, 2302 (1979).
~~K. Alder, A. Bohr, T. Huus, B. Mottelson, and A. %in-

ther, Rev. Mod. Phys. 28, 432 {1956).
~5M. Gyulassy, Phys. Rev. Lett. 33, 921 (1975).
~6P. J. Mohr, Ann. Phys. (N.Y.) 88, 52 {1974).
z7C. Itzykson and J.-A. Zuber, Quantum Field Theory

{McGram Hill, New York, 1980), Chap. 7.


