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Fourier transform of a two-center product of exponential-type orbitals.
Application to one- and two-e1ectron multicenter integrals
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A new formula for the Fourier transform (FT) of a two-center RBF (reduced Bessel func-
tion) charge distribution permitting partial-wave analysis is derived with the use of
Feynman s identity. This formula is valid for all quantum numbers. It is also independent
of the orientation of the coordinate axes. A new representation for the two-center overlap
integral (to which the kinetic energy, two-center attraction and Coulomb repulsion integrals
can be readily reduced) and for the three-center attraction integral is obtained with the help
of the FT. It is stable for all values of the orbital exponents. The method developed by
Qraovac et al. for computing repulsion integrals for s states is generalized to include all
states. Numerical test values of several one- and two-electron integrals are also reported. A
strategy which should enhance the efficiency of computation by making maximal use of the
FT's already computed is suggested.

I. INTRODUCTION

Reduced Bessel functions (RBF's}, proposed by
Shavitt' with a view to facilitate the evaluation of
molecular multicenter integrals over exponential-
type function (ETF) bases, have been investigated by
Filter and Steinborn and by %eniger. Applica-
tion to H2+ and HeH + systems were carried out by
Steinborn and %eniger. ' Numerical aspects were
also studied by Antolo vie and Delhalle and
%eniger and Steinborn. The two-center overlap in-
tegral was found to be the basic building block ap-
pearing in the kinetic energy, the two-center nuclear
attraction, and the Coulomb repulsion integrals.

In this paper we apply the Fourier transform
theory to the RBF's. The Fourier transform of a
product of two ETF's with centers separated by R is
of interest in its own right in fields such as x-ray
crystallography and electron diffraction off mole-
cules. It also forms the basic building block of the
multicenter electron repulsion integrals. Further, it
provides a framework which is readily extended to
accommodate the treatment of three-center nuclear
attraction integ rais. The two-center overlap in-

tegral, itself of considerable importance as just men-
tioned, immediately follows as a special case of the
two-center Fourier transform with zero momentum
transfer. For all these reasons, Sec. II is devoted to
the two-center Fourier transform with RBF's. The
RBF's also happen to be the ETF basis with prob-
ably the simplest structure under Fourier transfor-
mations. In Sec. III we consider the two-center
overlap integral. A new formula is presented along

with some numerical aspects and results. The
three-center nuclear attraction integral is treated in
Sec. IV while the general two-electron multicenter
integral is considered in Sec. V. %e conclude with a
summary and discussion in Sec. VI.

II. TV'-CENTER FOURIER TRANSFORM
%'ITH REDUCED BESSELFUNCTIONS

For two-center charge distributions described by
the product of two ETF's, Fourier transforms have
been difficult to compute until recently. Junker'
was able to formulate a compact explicit expression
(requiring a one-dimensional numerical integration)
for Slater-type orbitals (STO's) by using elliptical
coordinates. He has also programmed his expres-
sion. " Unfortunately, this expression is unsuitable
for a partial-wave analysis of the Fourier transform.

Bonham et al. ' ' derived an explicit expression
(also requiring a one-dimensional numerical integra-
tion) using the so-called Feynman identity. Their
expression lends itself readily to partial-wave
decomposition but is restricted to combinations of
s-type orbitals only. Guidotti et al. ' were able to
generalize this expression to states of higher angular
momentum but only on a case by case basis by re-
peated differentiation with respect to the Cartesian
components of the momentum-transfer vector.
Predictably, this results in a rapidly lengthening list
of formulas, one for each combination of the two
STO's. The list also grows in complexity quite rap-
idly with higher quantum numbers of the STO's.
Finally, the momentum-transfer vector appears in
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this formulation in terms of products of its Carte-
sian components which must be regrouped to per-
form angular momentum analysis.

Here we derive a compact, general expression
along the lines of Bonham et al. ' ' which is cap-
able of angular momentum decomposition and is
valid for all quantum numbers and orbital scaling
parameters of the participating orbitals. Like all
other expressions mentioned above, it also involves a
onc-dlmcnslonal numerical 1ntcgI ation.

k ~~2(X)=e "/X,

k„~«2(x)=(e "/x)g, ', 2J
(2n —j—1)!

(2.4)

(2.5)

A. Definitions

The ETF's used here are the 8 functions of Filter
and Steinborn with an RBF describing the radial
dcpcndcncc

8„I(pr }= [2"+'(n +l }!] 'O'P( pr )k„,«~(pr ) .

The symmetric Fourier transform of B„«(pr), which
we shall denote by S„~(p,k ), is given by '

S„((p,k)= (2m—)
«2 J dr e '"'"8„((pr)

2n —1

( 2+k2)n+l+1

Hclc thc $0Ad harmonic

where FI (r) is the usual spherical harmonic with

the phase convention of Condon and Shortley. '

Also, the RBF

k„(x)=(2jn. )'«x "K,(x), (2.3)

where E„(x) is the modified Bessel function of the

second kind. ' The following representation and re-

currence relation are also known:

Consideration of other types of ETF's *' generally
yields a function of the type above multiplied by a
hypergeometric function characteristic of the poly-
nomial part of the radial function describing the
chosen ETF.

For adair of mutual Fourier transforms u(pr)
and u(p, k ) related to each other by the relations

u(p, k) =(2n ) « Id r e ' "'u(pr ),
u(pr)=(2m) «Jdke'"''u(p, k), (2.8)

it can be shown that

(u~(p~r) le
'"''

l u2(p2(r —R)))-, =e '"'"
(u~(p~, q) le

' '
l u2(p2, q+k))- .

(The vector subscript denotes the variable of integra-
tion. ) The pairs ui, u1 and u2, u2 are related as in
Eq. (2.8). The first matrix element is, apart from
the missing factor (2~), the Fourier transform
of a two-center charge distribution defined as the
product of u ~(p~r) centered at the origin and

u2(p2(r —R)) centered at R.

B. App)ication to B functions

In the above section, specializing a, (p, r)
8„,1,(p)r) and up(p2(r —R)) to 8„,'I, (p2(r —R)), we

get from Eqs. (2.2) and (2.7)—(2.9) that

2nl - I 2n2-1 g

&&n, «, (pir) le ' '
l&n, «, (p2(r —R)))-, =(2«'&)p( p2 (+ipse) '( —(p2)'

Xe ' I,, +t, ~I „,+«, +)(k,R),

I«, «,(k,R)= Jd q (2.11)
(pi+q } 'lp2+(q+k)'I"

the subscripts J~ and Jp on fhe !eft-hand side of Eq. (2.11) being the powers of (p&+ q ) and [p2+(q+ k)J~

respectively, in the denominator of the integrand on the right-hand side. %'c note that the integral IJ, J,(k,R)
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is a function of I1, m1, p1, l2, m2, and p2, in addition to the explicitly indicated indices and variables. It is ob-
vious that

(2.13)

I+J2
g J1 —1

~
'
j2 —1

(2.12)J'J' ' (j1-1)I(j2—1)f Bp21 ap22

It turns out that one can find an expression for I1 1(k,l) and differentiate it vnth respect to pi and p2 repeated-
ly.

Following Bonham et al. ,
' ' we make use of the so-called Feynman's identity'

1

(ab) '= f da[a+(b a)a—]
Applying it to the inte~rand of I, , (k,R) and translating the momentum space origin so that q~ q —a k, we
obtain, by setting a=q +p1 and b=(q+k) +p2,

e 'q'"9'~, '(q —ak)$'~, '[q+(1—a)k]
I (k R)=f dae' "'" dq

[q +p'(a}l'

f da eia k R ~(p)

p (a)=k a(1—a)+p1(1 —a)+p2a {2.15)

e 'q'"9'I, '(q —ak)PI, '[q+(1 —a)k]
w(p)= fdq ~2+p2

Noting that

8
'
j1—1

BP1
'
j2—1

l3p2

gp2 g 1

BP1 BP

Qp2 Q
2

BP2 BP

1

Qp2

j2 —1

j&—1

Qp2
(2.17)

and combining Eqs. (2.12},(2.14},(2.16), and (2.17), we get

1
J1+J2+1

(j1—1)!(j2 —1)!

jl+j2 —1

Now it is necessary to separate out the angular dependence on k from the integrand of Eq. (2.16}so that the q
integration may be explicitly carried out to evaluate Jr(p). We use the addition theorem of the solid spherical
harmonic' '2

(lm
~

l'm'
~

l —l'm —m') O'P (r1)$'P I™(r2)
9'~ (r 1+ r2) =err(2I+1)1I ~

(2l'+1)!![2(l—l')+1)]!!

where the Gaunt coefficient

(llml I l2m2 I12m3)= f ~l, (r)YI (r)~l

Additionally, we use the easily derived recombination result '

9'(, '(r)9'(, '(r)=g{l2m2
~
l1m1

~
lm2 m1)8'1 ' —'(r)r '

I

(2.20)
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and arrive at

W(P) =(4n )'(21, + 1)!!(21,+1)!!
1'

(limi
~

1'~m'~
~
li —1'~mi —m'~ ) m —m

X
(21( +1)!![2(li—1', )+1]!!

l~ 1~

12 Om~ ———l~

(12m2
~
12m2

~
12 —12m2 —m2 ) m2 —m29', ', , '((1—a)k)

(212 + 1)!![2(12—12 ) + 1]!!

&&+(lzmz
~

1'&mi'
~

!m2 —m'& )G(1;mIII,m 12'2P, R) .
1

(2.22)

Here

1 q. R W™2 ml - 11+12 1
e ' q' 91 (q)q

G(l;m &1'&,mzl2, P,R) = fdq 2~2 +p 2
(2.23)

By expanding e ' q '
in spherical waves and using the relation

dq q =(—1) —R p kl+&/2(pR ), m =012,. . .
0

q +p 2

it can be shown that

(2.24)

G(l;mI1', ;mal P2, R)=2mi'( —1). ' ' R ' 'Yi '(R)(P ) 'ki+i/2(PR), (2.25a)

51=(l', +I', —l)/2, 0&El &min(l', , I' ) . (2.25b)

Noting that the differential operator in Eq. (2.18) operates on G(l;m 'il'i, m 212,'p, R) only, we consider

n
n

[(P') 'ki+i/2(PR)l= gap' j=o j
by Leibniz's formula. Making use of

n

a 2 k„(PR ) = ( —R /2)"k„„(PR),

J
(P2)a/

QP2

n —j
ap' ki+ i/2(PR ) (2.26)

(2.27)

and

k —(1+]/2) {x) (x ) kl+1/2(+)

J
(P2)hl (i ). (P2)hl —j

Bp' (&1—j)!

(2.28)

(2.29)

and defining hn=n —(l &+I&+3), Eq. (2.26) simplifies to

(Ql )t(R 2)n —hl hl n { 1/'2)n —j
gp2

[ P I +I/p2(']=
5+2iai+azi ~ j ~

&
n al+—2ja+5/2(PR ) (2.30)

Identifying n in Eq. {2.30) with j~+j2 —1 in Eq. {2.18) and further identifying ji and j2 with n~+li+1 and

n2+l2 + 1 in Eq. (2.10), the con.piete expression for the Fourier transform of a two-center product wave func-
tion emerges. After minor algebra, the result is most concisely expressed as
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(8 I (p(r) Ie '"' l8. I (p2(r —R))&-.

(g&+l&+n2+lz+1)! 2n, +l, —I 2n, +l, —i=(—1) '(4~)'(2l, +1)!!(2l,+1)!! p& pz(n, +l, )!(n,+l, )!

(l(m 1 I
1(m 1 Ill —1'(m1 —m1) m, -m"

, -
X (k)'( —1)

(21'1 + 1)!![2(11—11 )~ 1]!!
I

(12m2 I12m2 I 12 —12m2 —m'2) m, -m', -
(21;+1)!![2(l,—1,')+1]!!

I I

xg(l', ; Il;; Il ', — ', )' ' '( —1) '

+12+I)—l l
1

ni+li+12 —12
—i(l —a) k R 0.dae (1—A)

O ]2(n(+I(+n2+l21 —(I(+l2 1+1

. Al
X g ( —1) 8„, „'al (,I(P(a)R)

j=0

with

p (a)=k a(1 —a)+(1—a)pl+ap2,
hl =(I ) +12 —l)/2,

(2.31a)

(2.31b)

(2.31c)

halo ——(I)+12—l)/2 . (2.31d)

Evaluation of the integral in Eq. (2.31a) has been elaborately discussed by Guidotti et al. ' and by Monkhorst
and Harris. The sum within the square brackets persits in all formulas and merits attention. This is dis-
cussed in Sec. III.

Integral (2.31a) is readily decomposed into constituent angular momentum partial waves. This property will

be especially helpful for the multicenter repulsion integrals (Sec. V).
Expanding the imaginary exponential in the a integral in Eq. (2.31a) and combining all the angular momen-

turn functions in k, Eq. (2.31a) can be written in terms of its partial-wave components

(8„,I, (p(r) Ie
'"'' I8„,1,(p2(r —R)))-, —:g(8„,1 (p, r) Ie '" ' I8„1 (p2(r —R)))LsIFL (k),

LM

where

(8,1, (plr) I
e ' "'

I
8.,1, (p2(r —R)) &LM

l'
(llm(

I

1', m', Ill —1'lm( —m', )

(211+1)!![2(11—11 )+ 1]!!

(l,m, I
1,'m,'

I 1, 1,'m, m,')— —
(21', +1)!![2(l,—1,')+1]!!

I I

xg(12m2 I
1', m',

I
lm2 —m'I )I ' '( —1) '

l

x g(12 —1'

Xg( —1) '"(112m(2ILMI 1 123m3(2)Yf (8)
123

1 n2+l2+l, —l', n, +l, + l2 —l2

x I daj I ((1—a)kR )
a (1—a)

]2(n(+I(+n2+l2) —(I( +l2 1+1

m2'- ',

X g ( —1)' 8„,'+„,+2al, +(,,1(p(a)R)5) n2 0 —J, (2.33)
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~ i2 = fn2 —Pl 2
—(ill I

—Pl ] )&

N=(-1)'2(4~)4(2/1+1)tf(212+1)ii ' ' i' '
i pi

' ' p2' '
~

(n,

+!i�

)!(n2+l2)!

The two-center overlap integral appears as a building block in the kinetic energy, two-center nuclear attrac-
tion, and Coulomb integrals. Filter and Stcinborn derived several formulas to evaluate it; each formula being
the most suitable according to whether pi/pz-1 or pi/p2p& or g~ l. Antolovic and Delhalle as well as
%eniger and Steinborn have considered the numerical performance of these formulas.

Here we derive yet another representation for the two-center overlap integral over 8 functions. This results
from simply letting k~0 in the two-center Fourier transform expression Eq. (2.31a). %C get

(n i +1i +n p+ it+ 1)! 2n, +i, - i 2n, pi, —i

(n I+ I) )f(n2+ 12)!

82+ I2 Pl ) +I )

X g(lqm2 j limi
~
lm2 mi }J da—

I [P (a)] I 2 1 2

(3.1)

(3.3)

For p~
——p2 this reduces to the known result

(S„,I, (pr) ia„,,', (p(r —R))&=(—1) '4np 'g(l, m, ilim, elm, —m, )

BI
f82 —Ptl (x g ( —1)' 8„,'+„,+2ai, +i J i(pR)

j=0

The sum in the square bracket [Eqs. (2.31a), Q. 1),
and (3.4)] appears repeatedly and deserves considera-
tion. The alternating sign with the combinatorial
indicates possible loss of significant digits. This ls
indeed borne out by experimenting with n I+n2, II,
I2, and pE. values. It turns out that the number of
significant digits lost increases as hlo increases to
(dd&&)~» [=min(li, l2)] but is insensitive to the value

of the arguInent pR and to ni+n2. For /I ——I2 ——4
and AID ——4, one loses four significant digits. For
I I ——I2 ——20 and hlo ——20, one loses 18 digits. Unfor-
tunately, the contribution of the sum increases as
AIo approaches (halo), „. The difficulty therefore
cannot bc lgnorcd. In practice, wc have skirted
around this problem by evaluating the quantity in
the square bracket of Eq. (3.1) in higher precision.
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Using single precision (which is greater than 10 but
less than 11 decimal digits on our machine) for the
rest of the calculation, we were easily able to com-
pute the overlap integral (3.1) to relative accuracy of
one part in 10 (see TaMe I). The integration was
performed with the help of the subroutine DOADRE

of the IMSI package. The definite integral had to
be computed numerically, but this presented no
problems. [In contrast, the same integration in Eq.
(2.31) requires care' as k is nonzero. ] Equation
{3.1) is staMe for all values —except zero —of orbital
scaling parameters p1 and p2, and the time taken to
evaluate the integral is insensitive to the ratio p1.p2.

IV. THREE-CENTER NUCLEAR ATTRACTION
INTEGRAL

The two-center Fourier transform [Eq. (2.32)]
provides the starting ground this time. The three-
center nuclear attraction integral with the center of
attraction at R, is written as

TABLE I. Overlap integral

(8„'i (p, P) ~8„ i (pi(r —R))) with ni ——li ——ni)

=ni ——li ——mi ——5, (R,8,$ ) =(2,45', 0'), and fixed p, =1.5
for various p2 values between 1.5 and 9.0. Average time 3
sec/integral. '

1.5
1.6
1.7
1.8
1.9
2.0
3.0
4.5
6.0
7.0
8.0
9.0

This paper

9.867 702 185y 10-'
8.502669 245 X 10-'
7.255486069' 10 '
6.144 525 625 X 10-'
5.173375 779y 10
4.336429110'10-'
6.919278951@10-'
5.467 156782 g 10
6.472563755g10 "
1.901023 397' 10-"
6.364 670 749g 10
2.380365 441' 10-"

Exactb

9.867 702 185~ 10-'
8.502669244' 10-'
7.255486068 y 10-'
6.144 525 629 g 10
5.173 375 778 x 10
4.336429 110'10-'
6.919278951'10 '
5.467156782' 10-"
6.472 563755' 10-"
1.901023397' 10-"
6.364670749&(10 "
2.380365 441' 10-"

'As a guide to the speed of our Telefunken TR 440 com-
puter, a square-root evaluation takes 0.43 msec.
"Exact results (to ten digits) from Ref. 5, Table 6.8.

8., &, (p, r) &.,t, (p,(r —R)) =, f „, (&„,I, (p, r) ~e '
~a„,', (p,(r —R)))

r —R,

using the formal identity

~
—l k f

dk
p 2 2 k

Substituting for the Fourier transform from Eqs. (2.32) and (2.33) we eventually arrive at the result that

(4.2}

(I)„) (p, r) 8„ f (p,)r—R)))n) )
~

(

lip g

I 2 (n1+ I1+n2+ I2+ 1)! 2n&+I& —1 2n2+12 —1= ( —1) '8(4m) (211+1)!!(212+1)!!P1
' '

P2
'

(n1+I1)!(n2+l2)!
t

(limi
~

l'im'i
~
li —limi —mi )

(2l i + 1)!![2(li—l t )+1]!!
gt

( l2nl2
~
l2m 2 ~

l2 —l 2m 2
—m 2 )

X
(21', +1)!![2(l,—l', )+1]!!

( —1) (l', m', ~l', m', ~lm, —m, ).li +l2+ 1 (I i +l2 +l)l'2

I
X g( —i ) (l2 —l2m2 —m2~ li —limi —mt~ li2m2 —mp —mi+m i)

f d ))y+li+I) —I
)
( I )n) +1)+li—12

0
m —m' —m +m',

2 2X~)
a)R—R, i

k' ' ' 'jt (k((1—a)R —R [)
X dk

0 2(n
&
+I

&
+n2+ 12 )—( I

&
+12 )+ 1

p(o. )

X g( —1)1 &„,+„,+2at, +i,,t(P(tx)R) . (4.3)
j=0
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We recall from Eqs. (2.31b)—(2.31d) repeated below,
respectively, that

P (a )=k'a(1 —a )+(1—a )p|+ap~

&I=(l ) +12 —1 )I2 Lip = ( l ] + /2 —l )/2 .

Here j& (x) is the spherical Bessel function of the
12

first kind of order l i2.
Performing the k integration first has distinct ad-

vantages, for the two-center Fourier transform is a
very complicated function of k. ' 9 We know that
the (single-center) Fourier transform of a ls orbital
decreases as k for large

~

k
i [Eq. (2.7)] and as

k '"+" in general for an nl state. A two-center
transform is roughly similar but has local modula-
tions of complicated structure superposed on it,
which often bring about sign changes as k increases.
Numerical integration of such a function over the

I

semi-infinite interval (0, 00), taken together with its
slow decay rate as k, poses immense problems. In
contrast, carrying out the k integration first has the
advantages that (i) the term in the square bracket de-
creases exponentially as k increases, and (ii) the
structure of the integrand is sufficiently well under-
stood for convergence acceleration techniques ' ' to
be employed with reasonable confidence.

We present some numerical results for the three-
center nuclear attraction integral computed using
Eq. (4.3) in Table II~ We had no difficulty obtaining
values correct to eight places despite the double in-
tegration. The use of Shank's acceleration tech-
niques ' was made with great profit.

V. MULTICENTER REPULSION INTEGRAL

The application to a multicenter repulsion integral
is straightforward:

8„,I, (p|(r, —R|))&,,I, (p3( ~& —R3)) B„,i, (p2( r, —R2))&„,'&, (p4( rs —R4) )
"ab

with

R,J ——R; —RJ (5.2)

Substituting from Eq. (231a) for the two-center
Fourier transform yidds the desired expression for

I

the multicenter repulsion integral.
We note that the problem is separated into two

one-electron problems (a property of Fourier
transform). This means that in a large molecular
calculation one can "assemble" multicenter integrals

TABLE II. Three-center nuclear attraction integral

(&., i, &p~&~ I
&

I
r —R. I )

' l&.,i, &pal r —R
I ))

for s states (I 1
——m ~

——I2 ——m 2 ——0). Estimated relative error 10 8. Average time 65
sec/integral.

0.2

1.0

0.2
10.0
0.2
5.0
1.0
5.0
1.0

R,&R„e„p,)

(2.0,90',0')

(S.0,90',0')
(0.5,90',0')

(0.5,90', 180')

R&R,e, p )

(2.0,90', 60')

(5.0,90', 60')
(2.0,90',0')

Integral

1.810 1838y 10
7.5742801 g 10
1.275 4128 X 10-'
7.1732965X10-'
3.4102136 X 10-'
4.1166529)&10 '
4.499 5538 X 10-'
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out of two-center Fourier transforms, which implies
that the latter can be computed and stored as "inter-
mediate information" which can be repeatedly
drawn upon as and when needed.

One approach is to break down the exponential
factor and the two Fourier transforms in the in-

tegrand of Eq. (4.1) into partial waves whereupon
the angular integration is readily performed, leaving
behind two infinite sums over radial integrals in the
most general case. This problem along with the at-
tendant numerical considerations is treated at great
length by Graovac et al. ' and wiH not be dis-
cussed here.

Another approach, which we have investigated in
a preliminary fashion as a possible alternative, is to
move the k integration within the integrals over
Feynman's dummy variables —one each for both
Fourier transforms —i.e., a in Eq. {2.31a). The k in-
tegration is carried out first and has good conver-
gence properties as noted in Sec. IV. The two dum-

my integration variables are now parameters of the
k integral. The remaining double integral is the
price to be paid for avoiding partial-wave expan-
sions in infinite series.

The k integration was performed with the help of
the subroutine DO1AAF (Clenshaw-Curtis method) of
the NAG library. Accelerated convergence tech-
niques were again profitably implemented. The
double integral (over dummy variables) was evaluat-
ed with the help of subroutine DBLINT. For
homonuclear molecules this approach works satis-
factorily as seen in Table III where we present some

two-, three-, and four-center results. As in the case
of three-center attraction integral, the time taken de-
pends on the accuracy desired as well as on the
geometry. For significant deviation from the
homonuclearity constraint, however, problems with
the accuracy of the double-integral soon arise. A
detailed investigation is necessary to determine how
this difficulty can be economically overcome.

VI. DISCUSSION AND SUMMARY

We have derived a compact, general expression
for the Fourier transform of a charge distribution
described by the product of two 8 functions with
their centers separated by R. The final expression
holds for all quantum numbers and orbital scaling
parameters and involves a one-dimensional numeri-
cal integration. We also point out that the expres-
sion (2.31a) remains valid not only for all non-
negative values of n I and n2 but also for

The result, Eq. (2.31a), is a systematic generalization
of the Bonham, Peacher, and Cox result. ' ' This
new formula is then applied to one- and two-
electron multicenter integrals. A useful strategy for
the evaluation of the multicenter repulsion integral
along the lines advocated by Graovac et aI. is also
indicated. Numerical test results are also reported.

TABLE III. Some special eases of the general two-electron integral

m4
(B„,i, (pi(r, —Ri))B„,i, (p3(rg —R3)) i

rg'
i B„,I, (p2(r, —R2))B„,i, (p4(rg —Rg))),

k integration performed first. All states

p Ri' R2' R3'

are 1s and pi ——p2
——p3 ——p4

—p.
R4' Integral TPPC

10 (000)
1.2 (0 0 0)

( l.5,0,0)
(2.0,0,0)

(0,0,0)
(0,0,0}

(1.5,0,0) 0.296 835
(1.O, 1.O, O) 0.194469'

T%o-center exch.
Three-center exch.

1.0 (0,0,0) (1.0,0,0) (0, 1.0,0) (0,0, 1.O) 0.3455 Four-center
integral

1.0

2.0
3.0

4.0
5.0
6.0

'R =(R„,R,R, ).
bComparison Ref. 28; average time 65 sec.

(1.0, 1.0,0} 0.3927

0.2738
0.1091

0.0335
0.0089
0.0021

(tiInc dccrcasing
from
27 to
6 sec)
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