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Scaling-variational treatment of anharmonic oscillators
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The scaling-variational method is applied to anharmonic-oscillator models with the
Hamiltonian H =p +hx'+gx to enable the discussion of two important aspects not pre-
viously analyzed. First, it is shown that the introduction of a scaling factor which is varia-
tionally optimized assures us of the correct dependence of the approximate eigenvalue with
g. Second, it is shown that quantities E„={P„~HP„) are very good approximations to the
exact eigenvalues whenever the trial function P„satisfies the quantum virial theorem.

I. INTRODUCTION

The application of the scaling-variational method
(SVM) was first introduced by Fock' and then it
was analyzed thoroughly by Low'din. This author
applied the SVM to the bound states of atoms and
rnolecules. The application of this method has been
restricted in practice to the ground state because, in

this case, the expectation values of the Hamiltonian
operator give upper bounds for the eigenvalues re-

gardless of what the trial function is. As a general
rule, the variation method yields an upper bound
for the lowest eigenvalue corresponding to a given
symmetry class whenever the trial function
possesses the appropriate symmetry.

Recently, some interesting applications of the
SVM have been reported. For example, Kreuzer
et al. used it in order to increase the rate of conver-

gence of a 2X2 algorithm. Dmitrieva and Plin-
dov ' combined the SVM with perturbation theory
to study the quartic anharrnonic oscillator, i.e.,

H=p +x +gx, p= —i4 . d
dx

ously. For the aim of discussing these points, we
will consider at present the applications of the SVM
to an even anharmonic oscillator with the Hamil-
tonian

H =p +hx +gx (4)

E„=(P„~HP„) (5)

are very good approximations of H eigenvalues E„
for the complete range of n and g values whenever
the trial functions P„satisfy the quantum virial
theorem (VT) (n denotes the number of zeros of P"-).
In a more precise manner: We will prove that E„
increases with n at the same rate as E„(especially
when n is large), i.e.,

First, we will demonstrate that when one intro-
duces a scaling factor that is variationally optim-
ized, a proper g dependence of the approximate
eigenvalue is assured. This fact explains in a simple
manner the success of Killingbeck's results. Then,
we will show that quantities

H'0n =Enon

H =p+x
(2)

(3)

The purpose of this communication is to show
two aspects related to the SVM, which are of ex-
treme importance and have not been noted previ-

By way of a nonlinear transformation on g, these
authors arrived at a perturbative polynomial which
is valid for large and small values of this parameter.
Killingbeck obtained an excellent approximation to
the lowest eigenvalue associated with the Hamil-
tonian (1) for the whole range of g values considered
through a scaling transformation of the harrnonic-
oscillator ground-state function Pc,

lim E„/E„=const~0.
n~oo

This result is obtained for two quite different basis
sets: the harmonic-oscillator basis set IP„I and the
particle in a box basis set IP„). This property sug-

gests that the aforementioned behavior does not de-

pend on the chosen basis set. Furthermore, when g
and n are large enough, the two main terms in E„
are identical (except for the numerical coefficients)
to those obtained from the WKB method. In
Sec. II, we present briefly the SVM which is applied
to the pure 2k oscillators [h =0 in Eq. (4)] and to
the anharmonic oscillators (h~0) in Secs. III and

IV, respectively.
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II. SCALING-VARIATIONAL METHOD

6 =—G {a)=—(lna)(xp +px) .
2

The parameter a is adjusted in such a manner that
the functional energy

E(a)= ((j)(a,x)
~
H(t)(a, x) )

possesses an extremum

(ao) =0 .
Ba

The function (!)(ao,x) calculated by this method will

fulfill the VT:

([H,G] &(a, ) =0,
2(r)(a, ) = (xV')(a, } .

(1 la)

In what follows, we will use the following nota-
tion to denote the expectation value of any operator
U:

From a normalized function ()()(x) belonging to
the Hilbert space associated with our problem, we

can construct a variational function ()t(a,x) by
means of the introduction of an adjustable parame-

ter a in the following way':

(}()(a,x) =a '/ (}))(ax)=e ()()(x),

Owing to the fact that the potential energy is a
homogeneous function with degree 2k, Eq. (15)
gives us

E(a ) (k(/(k+1)+k kl(—k+1))( 2)kl(k+1)

2k)(l(k+1) 1/(k+1)

The correct dependence of E(ao) with g is due to
the fact that the approximate function ())(ao,x) sa-

tisfies the VT (Ref. 11) &just the same as the exact
function does). If we use the unscaled function

(((x), then (H ) has a linear g dependence for any k
value. The second following result is perhaps even

more important than the preceding one. If
(t)(x)=P„(x) is an eigenfunction corresponding to
the harmonic-oscillator model then, for large
enough n values, it is deduced that

(p') =(n +0.5),
(x2k) =(2k)!(k!) 2 "(n +0.5)" .

Under these conditions, Eq. (18) predicts, in addi-

tion, the correct dependence of the eigenvalue with

the quantum number n:

+0 5)2k/(k+1) 1/(k+1)

(k 1/(k+1) +k —k/(k+1)
)k

+ [(2k)1(k()
—22—k]1/(k+1)

( V)(a)—:(())(a,x}
~

Usts(a, x) ),
(U&—= (U&(1) .

(12) So we see that the SVM predicts the proper
behavior of the eigenvalues of H for large values of
n (regardless the value of Ck ) and

%hen V(x) is a homogeneous function of s degree,
the optimum ao is obtained at once from Eqs. (11},

a, = [s ( V&/(2(r &)]'"*+".

The substitution of (14) in Eq. (9) gives us the ap-
proximate energy E(a() } as a function of (T) and

( V), i.e.,

E(a ) [(sg2)2/(s+2)+(2/s)s/(s+2)]

lim (n +0.5} "l' + "E„(ao)=const+0 .

Perhaps one might suspect that this last result is a
consequence of the choice of the basis set I()))„].
However, this is not the case, as we will show in the
following. Let us consider the set of eigenfunction
corresponding to the particle in a box I (})„):

X ( Z ) /( +2)( y)2/( +2) (15)

E(ao) represents the minimum value of E(a) when
s 0 —2p because

p st)„(b,x)=E„(t)„(b,x), xE[ b,b], —

(t)„(b,b) =(t)„(b,—b}=0 .

{24}

8 Es

Ba
(a())=2(s+2)(r) &0.

III. PURE 2k OSCILLATORS

In this section we discuss the pure 2k oscillators
whose general Hamiltonian is

The average value of the Hamiltonian (17) in this
basis set

E„(b)= (y„'
~

Hy„')

satisfies the following equation:

b E„(b)= —2( r)(b)+2kg (x2")(b) . (27)
8b
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E'(&o)=08
(28)

This last condition gives us the result
' 2k/(k+1)

(k1/(k+1)+ k —k/(k+1))
2

X (x2k)1/1k+11(n + 1)2k/(k+11 1/1k+11

Obviously, in order to satisfy the VT [Eq. (I I)], it is
necessary to choose b =bo in such a way that

correct one, we restrict ourselves to displaying the
behavior of the approximate eigenvalues with the
quantum number n. In Table I, we show the ener-

gies E„(ao) and E„(bp) calculated via Eqs. (18) and
(29) together with the exact values E„given by
Reid. ' The quotients E„(ao)/E„and E„(bp)/Egg
are close enough to one (especially for the former
case), which clearly demonstrates that the SVM al-
lows one to approximate in a satisfactory way the
calculation of any eigenstate. However, the proper-
ty of the SVM that we are particularly interested in
is self-evident when one considers the ratios

where

(x2k) (x2k)(b and

E„(ap)/E„1(ap)

Again, the VT produces the correct dependence of
E„(bp) with g. %'hen n ~~1,

(x")—=(2k+1)-'

and E„(bo) satisfies Eq. (23), because

C&(+ + 1)2k/(k+ I ) 1/(@+1)
' 2k/(k+1)

(k1/(k+1) + I
—k/(k+1)

)k 2

(31)

~(2k + 1)—1/(k+1)

En
hm

1f, Jtl ~ ce E Egg
(33)

regardless of which basis set is employed to calcu-
late E„and E~ provided, of course, that the func-
tions (t obey the VT. Furthermore, with these func-
tions it is possible to estimate properly the relative
transition frequencies

E„—E

J

in those cases where n, m, i, and j are large enough.
In order to verify these conclusions, we employ

the quartic oscillator (k =2). Owing to the fact
that the g dependence of E„(ao) and E„(bo) is the

Therefrom, two basis sets which are essentially
different lead to identical results when the VT is
fulflllled (llldepelldelltly of tile fact tllat Ck+Ck ).
As an immediate consequence, we can expect that
(H) wiH behave in the manner denoted by Eqs.
(21) and (31) whenever P(x) possesses n zeros (n
large) and satisfies the VT. These results enable one
to conclude not only that Eq. (6) will be satisfiml
but that

E„(bp)/E„ 1(bo) .

For large n values, such ratios are practically identi-

cal to the exact ones. The ratio

coincides with E„/E„1up to the fourth figure for
n) 5.

According to expectations, the relative frequen-

cies R;"J are also in excellent agreement with the

exact values (see Table II). This behavior is not due

to a fortuitous cancellation of errors. The SVM
predicts the proper variation of E„with n, for n

large enough. This remarkable property of the

SVM could be very useful, for example, in vibra-

tional spectroscopy.
Since the exact and trial functions satisfy the re-

lation

E„=g(k+1)(n ix i
n),

it follows at once that the appropriate average
values of x show the correct behavior with respect
to n and g. A natural inquiry consists in asking
about the degree of exactness of variational eigen-

values for other 2k oscillators. In order to make

this point clear, we present in Table III the coeffi-
cients Ck and Ck, together with the semiclassical
ones Ck (Refs. 7,8) and the ratios Ck/Ck and

Ck/Ck . Results show that, for the four cases
considered,

E„~E„ for n large .

Table III also shows, that [1t)„I yields better results
when k ~5, while 1I)„permits a better approxima-
tion when k &5. This particular behavior can be
explained because, when k is large, the potential

gx is more like that of the particle in a box model

than that of the harmonic-oscillator model.
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TABLE I.

E„(ao) En (bo) En

Energy eigenvalues of the quartic oscillator (g = 1).

E (Qp)/E„E (bp)/E E (ap)/E l(ap) E (bo)/E l(bp) E /E

0 1.0817
1 3.8474
2 7.4370
3 11.5739
4 16.1383
5 21.0607
6 26.2948
7 31.8069
8 37 5714
9 43.5676

10 49.7789
11 56.1913
12 62.7928
13 69.5732
14 76.5234
15 83.6356
16 90.9026
17 98.3182
18 105.8765
19 113.5724
20 121.4012
21 129.3584
22 137.4400
23 145.6424

1.1909
4.2173
8.0721

12.2709
16.7879
21.5889
26.6501
31.9481
37.4646
43.1843
49.0940
55.1827
61.4406
67.8592
74.4309
81.1490
88.0075
95.0009

102.1243
109.3730
116.7430
124.2304
131.8317
139.5435

1.0604
3.7997
7.4557

11.6447
16.2618
21.2384
26.5285
32.0986
37.9230
43.9812
50.2563
56.7342
63.4030
70.2524
77.2732
84.4575
91.7981
99.2886

106.9233
114.6969
122.6046
130.6421
138.8051
147.0901

1.0201
1.0126
0.9975
0.9939
0.9924
0.9916
0.9913
0.9909
0.9907
0.9906
0.9905
0.9904
0.9904
0.9903
0.9903
0.9903
0.9902
0.9902
0.9902
0.9902
0.9902
0.9902
0.9902
0.9902

1.1231
1.1099
1.0827
1.0538
1.0324
1.0165
1.0046
0.9953
0.9879
0.9819
0.9769
0.9727
0.9690
0.9659
0.9632
0.9608
0.9587
0.9568
0.9551
0.9536
0.9522
0.9509
0.9498
0.9487

3.5568
1.9330
1.5563
1.3944
1.3160
1.2491
1.2100
1.1815
1 ~ 1598
1 ~ 1427
1.1288
1.1175
1.1080
1.0999
1.0929
1.0869
1.0816
1.0769
1.0727
1.0689
1.0655
1.0625
1.0597

3.5413
1.9140
1.5202
1.3681
1.2860
1.2344
1.1988
1.1727
1.1527
1.1368
1.1240
1.1134
1.1045
1.0968
1.0903
1.0845
1.0795
1.0750
1.0710
1.0674
1.0641
1.0612
1.0585

3.5833
1.9622
1.5619
1.3965
1.3060
1.2491
1.2100
1.1815
1.1598
1.1427
1.1289
1.1175
1.1080
1.0999
1.0930
1.0869
1.0816
1.0769
1.0727
1.0689
1.0656
1.0625
1.0597

IV. ANHARMONIC OSCILLATORS

For anharmonic oscillators with a Hamiltonian
operator

Substituting (39) in (37) and retaining up to the two
largest terms, we obtain

E„(t)= (n +0.5)

p2+~2+gx2k (36) X[k 1(k + 1) 1/(k+I)+ I/Ik+I))

q
1 /( k + 1 ) + ( k + 1 ) lq 1 /( k + 1 )

~ (39)

the condition (10) also leads to a minimum which is

given by the following equations:

E„(t)=(t+t ')(n+0 5)+gt (.x' ), t =ao,
(37)

t"+' t ' —q =—0, q =kg(x k)(n +0.5)
(38)

The eigenfunctions of H were chosen as trial func-
tions P„(x). For large g (or n) values, it is deduced
at once that

When n is large enough,

q —gk(2k)f(k ))
—z2 k(n +0 5)k —1

and Eq. (40) becomes

E (t)—= ak(n+0 5) ' +"g' ' +"

+b ( +0 g)2/(k+1) —1/(k+1)

where

~k =(k+1)k-'bk-',

[(k f)22kk l[(2k)l) —I) I/(k+1)

(40)

(41)

(42)

(43)

(44)

TABLE II. Relative frequencies for the quartic oscillator (g =1).
+23 22 g 23,22 ~ 23&22

23,20 23,21 ~ 22, 2O
+23 22

22, 2 I

Eq. (29)
Eq. (18)
Exact'

0.3382
0.3384
0.3389

0.5036
0.5037
0.5037

0.5111
0.5114
0.5114

1.0145
1.0149
1.0149
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Ck

TABLE III. Coefficients Ck for several oscillators.

CwKB Ck /C CB CBICwKB

2.163 374
2.206 501
2.215 734
2.213 356

2.185 069
2.264 971
2.309 757
2.338 265

0.9901
0.9742
0.9593
0.9466

2.018077
2.123 853
2.189099
2.233 455

0.9236
0.9377
0.9478

0.9552

For the quartic anharmonic oscillator (k =2), the

asymptotic formula (42) adopts the following form:

E„(t)= 2. 163374(n +0.5) g' '

ak= (k1/(k+1)+ k
—k/(k+1))

)((2k+ 1)—1/(k+1)
2

2k/(k + 1)

{48)

+0.693 361(n +0 5) g (45)

1/(k+1) . . 2/(k+1)
1 2k+1 m

3 k 2
(49)

The preceding expression is very similar to that de-

duced from the WKB method

E = 2. 185069(n +0.5) g'"

As a particular case, when k =2 we obtain a very
similar expression to (45) and (46), but with numeri-

cal coefficients which are slightly smaller in both
terms:

E„(bp)= 2.018077{n+1) g'

+0.675 5458(n +0.5) g
'

~ (46) +0.611 325(n + 1) g (50)

+b B( + 1 )2/(k+1) —1/(k+1)
s (47)

This agreement explains the similarity between vari-

ational and exact values in the whole range of n and

g values.

The suitable dependence of E„{t)with g is not
really surprising because the variational functions

P„(tto,x ) satisfy the VT and the Hellmann-

Feynman theorem (HFT), and it is well known that
such theorems determine this particular depen-
dence. " However, the special point that had not
been discussed previously, and that we wish to bring
out in this work, consists of the fact that the SVM
yields the proper asymptotic behavior of E„. In a
more precise manner: Equation (42) assures us that
Eqs. (6) and (23) will be satisfied. Equation (42) is
also useful for estimating in an approximate fashion
the eigenvalues of any anharmonic oscillator when
the quantum number n is sufficiently large. It is

hoped that the conclusions presented up to now are
independent of the chosen basis set.

We will use the basis set corresponding to the
particle in a box model in order to verify such in-

dependence. A simple and direct calculation gives
us the following result for the variational eigen-
values (for large g and n values):

(b ) B( + 1)2k/(k+1) 1/(k+1)

The dependence of E„(ap) with g was formerly
verified by Killingbeck numerically for the ground
state of the quartic anharmonic oscillator (k =2).
Hence, we shall restrict ourselves to verify our con-
clusions with regard to the relationship between

E„(ap) and n. In Table IV, we present the varia-
tional eigenvalues computed for k=2 and g=l
from Eqs. (37) and (38) [E„(ao)] together with the
asymptotic formula (45) (E„"" ) and the exact re-

sults (E„)reported previously in Ref. 13. The ratio
E„(ap)/E„clearly shows that the SVM allows one
to estimate the eigenvalues of the quartic anhar-
monic oscillator with a maximum error of about
l%%uo. With the sole exception of the ground state,
the same results are obtained via formula (45).
These results clearly demonstrate the usefulness of
Eq. (42). In agreement with the model discussed in

Sec. III the approximate ratios E„/E„1 are close
to the exact ratio when n & 5. This behavior sug-

gests that, for this case, the SVM permits one to
calculate the relative frequencies with a high degree
of accuracy. Since anharmonic oscillators are fre-

quently employed for studying molecular vibra-

tions, the conclusions derived in this section would

be of utility in this field. We have shown by way of
Eq. (42) that E„(t) reproduces in a satisfactory
manner the behavior of E„when g is large. If g is

small enough, so that q && 1, then Eqs. (37) and (38)
describe the correct conduct of E„also:

where E„(t)=2n+1+g(x ")+O(g ) . (51)
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TABLE IV. Energy eigenvalues for

E„(ao) E„"" ~ E„E„(ao)!E„
the quartic anharmonic oscillator (g = 1).

E„"y pals„F.„(a,)yE„,(a, ) F.„"~ pgF. „"~-,&

0
1

2

3
4
5
6
7
8
9

10
11
12
13
14
15
16

18
19
20
30
40
50

100

1.4033
4.6782
8.6470

13.1095
17.9677
23.1619
28.6514
34.40S9
40.4019
46.6207
53.0469
59.6673
66.4709
73.4480
80.5902
87.8899
9S.3405

102.93S9
110.6707
118.5399
126.5389
212.8884
309.0250
413.2499

1025.7900

1.2953
4.6232
8.6176

13.0946
17.9623
23.1634
28.6581
34.4166
40.4160
46.6375
53.0660
59.6885
66.4938
73.4725
80.6160
87.9170
95.3686

102.9651
110.7007
118.5708
126.5706
212.9255
309.0652
413.2921

1025.8371

1.3924
4.6488
8.6550

13.1568
18.0756
23.2974
28.8353
34.6408
40.6904
46.9650
53.4491
60.1295
66.9950
74.0359
81.2435
88.6103
96.1296

103.7953
111.6018
119.5442
127.6178
214.7797
311~ 8315
417.0563

1035.5442

1.0078
1.0063
0.9991
0.9964
0.9940
0.9942
0.9936
0.9932
0.9929
0.9927
0.9925
0.9923
0.9922
0.9921
0.9920
0.9919
0.9918
0.9917
0.9917
0.9916
0.9915
0.9912
0.9910
0.9909
0.9906

0.9303
0.9945
0.9957
0.9953
0.9937
0.9942
0.9939
0.9935
0.9933
0.9930
0.9928
0.9927
0.9925
0.9924
0.9923
0.9922
0.9921
0.9920
0.9919
0.9919
0.9918
0.9914
0.9911
0.9910
0.9906

3.3337
1.8484
1 ~ 5161
1.3706
1.2891
1.2370
1.2008
1.1743
1 ~ 1539
1.1378
1.1248
1.1140
1.1050
1.0972
1.0906
1.0848
1.0797
1.0751
1.0711
1.0675

3.5692
1.8640
1.5195
1.3717
1.2896
1.2372
1.2009
1.1743
1 ~ 1539
1.1378
1.1248
1.1140
1.1050
1.0972
1.0906
1.0848
1.0797
1.07S1
1.0711
1.0675

3.3387
1.8618
1.5201
1.3739
1.2889
1.2377
1.2013
1.1746
1.1542
1.1381
1.1250
1.1142
1.1051
1.0974
1.0907
1.0849
1.0797
1.0752
1.0712
1.0675

Consequently, we conclude that the insertion of a
scaling factor in the trial function adjusts the
behavior of the eigenvalues in the complete range of
g values. Recently, Bozzolo and Plastino' present-
ed a new and interesting method to study a per-
turbed harmonic oscillator with a Hamiltonian
operator

The procedure followed by these authors consists
in relating the eigenstates %„ofH and P„ofH by
means of a mapping operator F„:

4„=exp(iF„)$„.

When V(x) is even, E„(x)has the following expres-
sion:

F„=i g h„j(At J A2~), — (54)
j=l

where A and A are the creation and annihilation
operators

Retaining only the first term in the expansion

(54)

F„=ih„(A —3 ),
Bozzolo and Plastino' obtained an excellent ap-
proximation for the first two states of several per-
turbed oscillators and for the complete range of
values corresponding to the perturbation parameter
g. The success of this method can be explained im-

mediately, because it coincides with the SVM when

F„has the form (56). In such a case,

lI'„=—2l'A„{xp+px ) = —(lnQ )(xp+px ),

Hence we see that a or h„can be used as variational
parameters.

V. FURTHER COMMENTS

A =p+ix, A =p —ix

and I h„j I are variational parameters.

(55)
Results presented in this work show clearly that

the possibilities of the SVM are not restricted to
providing an upper bound for the first two states of
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the even anharmonic oscillators, but allow one to
estimate accurately the change of eigenvalues with g
and n for the whole range of variation of such
parameters. Apparently, this property does not de-

pend on the chosen basis set. We believe that a
rigorous mathematical demonstration could yield a
deeper knowledge about eigenfunctions and eigen-
values associated with anharmonic oscillators.
These relevant aspects of the SVM have been
demonstrated only for Hamiltonians with a general
form {4), but there are certain evidences that their
validity may be more general.

our assertion that E„depends on n and g in a
correct manner means that Eq. (6) is fulfilled (and a
similar one for g~ 00). However, it is necessary to
point out that the VT and HFT properly determine
this dependence, but they cannot afford the exact
value of the coefficient Ck. This coefficient de-

pends on the chosen basis set (as shown in Secs. III
and IV). Naturally, when this set is more close to
that one corresponding to the model under study,
then the accuracy is greater in the estimate of C~.

The marked usefulness of the SVM does not lie in
the possibility of an individual estimate of the
eigenvalues, but in the calculation of relative quan-
tities, such as R;z'". Furthermore, this method is
very easy to be applied to a wide number of prob-
lems. We deem that results presented here possess a
real theoretical interest because they plainly show
the important role that plays the VT in the deter-
mination of the functional dependence of the eigen-
values with respect to the quantum number.

Finally, we wish to point out that scaling
transformations have a marked utility even in prob-
lems with wholly different characteristics to those
discussed here. Recently, they have been applied
with a great success to quantum systems that obey
nontrivial boundary conditions, such as those of
Dirichlet and von Neumann' and for models with
a potential that has a discontinuity. In both cases,
the introduction of a scaling factor in the trial func-
tion which is variationally optimized permits one to
reproduce the essential aspects of the physical prob-
lem.
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