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The relationship between densities and density matrices is explored in the case of a
finite-basis-set expansion. The space of one-electron density matrices can be divided into
two orthogonal subspaces with elements in one of them in one-to-one correspondence with
densities. A component in the other does not contribute to the density. The set of densities
is convex but there may be densities which cannot be obtained from a density matrix. The
matrix of a local potential has a component only in the first subspace, and any such matrix
can be obtained from a local potential. It is possible for Hamiltonian matrices differing by
the matrix of a local potential to have a common ground-state eigenvector, so a
Hohenberg-Kohn theorem cannot always be established. When it can, the explicit local po-
tential with a given ground-state density can be formally obtained when appropriate condi-
tions are satisfied. The details of the decomposition of the space of matrices and of subse-

quent developments depend on linear-dependency relationships among basis-set products,
and are thus basis-set dependent.

I. INTRODUCTION

In previous papers in this series' (referred to as
GDM I—III} density matrices defined with respect
to a finite basis set have been treated as elements in
Euclidean vector spaces. ' The mapping relationship
corresponding to reduction of a density matrix has
been considered, and the advantages of a special
choice of basis demonstrated. Irreducible tensorial

spin components have been defined for density ma-
trices for any number of electrons, and relationships
among them have been explored. In the finite-basis
case, each spatial density-matrix component can
again be considered as an element in an appropriate
vector space. In the present paper, the relationship
between density matrices and densities will be con-
sidered in terms of finite-basis-set expansions.

The one-electron spinless (or charge) density is of
considerable contemporary interest. In contrast to a
wave function, the density is in principle observable.

Many molecular properties can be expressed in
terms of the density, and it is the fundamental
quantity in density functional theory. It is clear
that the density contains less information than the
density matrix. If primed and unprimed variables
are regarded as continuous matrix indices, then the
density (in which the primed variables are equal to
the corresponding unprimed variables} is the "diag-
onal" part of the density matrix. In a discrete
basis-set representation it is not at once apparent

what this means. Indeed, an exploration of this
concept is a major purpose of this paper.

It will be shown that in general a density matrix
can be divided into components in two orthogonal
subspaces. The component in one subspace is com-
pletely determined by the density, with which it is
in a one-to-one relationship. The component in the
other subspace does not contribute to the density
and is in no way determined by it. This is similar
to the decomposition of a density-matrix space into
subspaces with elements in one-to-one correspon-
dence with fewer-electron reduced density matrices
as developed in GDM II. An important difference
is that the present decomposition depends critically
on certain features of the basis set. The previous re-
sults depended only on the number of basis func-
tions, so long as they were orthonormal. Much of
the formal development herein presented is indepen-

dent of which density-matrix component is involved
or even the number of electrons. We could be deal-

ing with charge density matrices, spin density ma-

trices, two-electron charge density matrices, etc.
%'hen appropriate, discussion will be specialized to
a particular case.

This paper continues in Sec. II with a brief re-
view of the relevant features of the GDM treatment
and other background development. The results for
the density are developed in general and illustrated

by an example in following sections. It is shown in

Secs. V and VI that in the finite basis case the
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Hohenberg-Kohn theorem does not always apply
and not all densities are n representable. The U-

representability problem is considered in Sec. VII,
and the paper concludes with a review and discus-
sion in Sec. VIII.

II. MATHEMATICAL PRELIMINARIES

consists of R XR Hermitian matrices IU, V, . . . ]
with scalar product

(U, V)=trUV= g Up Vgq .
j,k

It can be divided into a one-dimensional subspace
of elements proportional to

%e begin by reviewing the starting point of the
GDM treatment. It is assumed that we have a set

of R orthonormal functions I@J(r)], where r has

been introduced to represent the variables of which

the 4's are functions. Normally it is assumed that
there is a set of r orthonormal spin orbitals and that
the many-electron basis functions are built up as
determinants so that for n electrons, R=('„). A11

operators are restricted to the space spanned by the

[4&], so that they can be replaced by R XR ma-

trices.
The R -dimensional, Euclidean vector space 8'

I

and an (R —1)-dimensional subspace. 4 orthogonal
to X. It is readily shown that trX=1 and that any
element of M has trace zero. Additional partition-
ing is possible and will be referred to in Sec. V.

In order to establish a relationship with densities,
we use the integral-operator kernels associated with
the matrices in 8'

U(r;r') = g Uk(@k(r)4( (r') .
k, l

A simple basis then consists of

Ak(&, &')=4k{~)4*k{~'), 1&k &R

Bkt(r;r') = [4k(r)4f (r')+4((r)4'k(r')],
2

1&k &l &R .
Ckl (r;r ) = [@k(r )4I (r )—41( r )4k (r )],

2

The kernel corresponding to X is

R
X(r;r')=R ' g A (k; r'r)

k=1

and the basis elements of f can be chosen to corre-
spond to the 8's, C's, and R —1 linear combinations
of the A's orthogonal to X, denoted by Ak,
k=1, . . . , R —1. (Ao=vRX is the normalized
basis element corresponding to X.) A linear map-

ping of 8' into a space W of real functions is now

introduced. It will be called "collapse" and denoted

by the symbol 5. It consists of setting ~'=r in each
of the integral kernels. Thus

5Ak(+~+ )
I
@k(r)

I

'

58k((r;r') =V 2 Re@k(r)4( (r),
5Ck((r;r') = —~2 Im@k(r)4( (r) .

The space W has a maximum dimension R . If
there are / independent linear-dependency condi-
tions among the functions defined in Eq. (6) W has
dimension R —l. [If the original functions and
matrices are real, the C's drop out as do the 5C's.
The dimension of M is then 8 (R + 1)/2 —I, where l
is the number of linear-dependence conditions
among the 5A's and 58' ] sWe retain Yo ——

Ao ——R ' 2X=R '
1 as the basis element for W. It

is possible to make a unitary transformation of the
basis of..&to a set IY„,x=O, . . . , R —1],with

5Y„=—0, x=8 —I, . . . , 8 —1 . (7)

The l equations giving these Y„can be taken as
the linear-dependency equations. Orthogonalization
of the remaining basis elements of M will give the

These functions will not in general be normalized,
orthogonal (with respect to the usual integral scalar
product), nor even linearly independent.

having all their 5Y„as linearly independent. (It is
not in general possible to make them normalized or
orthogonal by a transformation which preserves the
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orthonormality of the Y„, since the same transfor-
mation would have to be unitary in the latter con-
text and nonunitary in the former. ) By the transfor-
mation to the Y„'s, we have divided ~ into two
orthogonal subspaces: M spanned by the

Y„,v=1, . . . , R —I —1

and A spanned by the

Y„,v=R —1, . . . , R —1 .

An orthonormal basis for ~ can be introduced,
and will be denoted by Ifk(r)]. It is convenient to
take one of the basis functions to be

cp R

fo(r) =co&&(r;r') =—g ~

~ k(r)
~

',
R k

where cp is a normalization constant. It follows
from the normalization of the I C&k ] that

co
' f fp(v)dr=1 . . (9)

This function is proportional to the sum of the
squares of all the basis functions of 8' and is thus

appropriately referred to as the average density.
The remaining basis functions are collapses of ele-

ments of M, and thus of A, so they will have the
property

If„(r)dr=0, s&l . (10)

If we denote by W the subspace of M orthogonal to
fo (and thus spanned by the f„,~ & I), then we note
that the collapse mapping 5 is a one-to-one map-

ping from M onto K or from 8' —A =MS W
onto W. As a mapping from M to P, 5 is many-
to-one.

It must be noted, of couse, that in computational
practice "linear independence" is not as clearly de-

fined as it is in formal mathematics. In practice,
functions which are very nearly equal to linear com-
binations of others must be treated as exactly so.
The remainder will span the space P "well

enough. "

f p(r)dr=C& fix the Yo component of y and the

fo component of p. Let yEM and p C P be the
remaining components of these quantities. A fun-
damental result can now be stated.

If y (r;r') is any charge density matrix consistent
with density p(r), so that 5y=p, then the com-
ponent of y in .W is completely determined by p
and the component of y in A has no effect on p.

The charge-density matrix y can be combined
with a spin-density matrix y' or, alternatively, re-
placed by the a-spin density matrix y+ and the P-
spin density matrix y (with densities p+ and p
respectively) to give the full density matrix y(x;x')
corresponding to a spin-dependent density p(x).

The decomposition of a density matrix into com-
ponents in 9,M, and A" can be combined with the
results of GDM II to divide any p matrix with p (n

(n is the number of electron in the system) into a
component completely determined by p and a com-
ponent of which p is independent.

Of course all elements of W are not densities, nor
all elements of 8' density matrices. If we ignore
normalization constraints, which are easily dealt
with, then the essential characteristic of a density
matrix is positivity in a matrix sense. Let H be the
set of all positive, Hermitian, r Xr matrices. It is
well known that H is a convex subset of 8' but is
not a linear space. Correspondingly, the defining
characteristic of a density is that it must be positive
as a function, i.e.,

p(r))0, all r .

We will denote by P + the set of all functions in W
which are nowhere negative. This is a convex set as
well, and

5&cm, . (12)

p(r)=ap&(r)+Pp2(r) &0, pEW+,

The convexity of ~+ is trivially established. If
pi(r) and p2(r) are both non-negative for all r, then

III. THE RELATIONSHIP BETWEEN
DENSITY MATRICES AND DENSITIES

a,P&0, a+P=1, (13)

Let us now specialize to the case of one-electron
spatial functions or orbitals I 4;(r ) ] and one-
electron, spin-independent operators. The space 8'
(=8'i „) then includes the charge-density matrices

y (r;r'), and densities p(r ) are elements of P
(=P &,). Normalization conditions try =Cr and

and this is just the definition of convexity. Equa-
tion (12) means that for any D&A~, 5D&~
This follows from the fact that for any DH H there
is a natural expansion

(14)
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5 'g={Ge@~5G=g] . (15)

Although density matrices are confined to H and
A

densities to P +, the mappings 5 and 5 are de-
fined for all 5' and W, respectively. If, for some
gEP,

GE5 g, (16)

then in general G can have components in W, M,
and A . A one-to-one mapping, 5, from W into
8' can be recovered by eliminating the A com-
ponent. It can be expressed in several ways, such as

5 g=-
=5 'gA(9 SM), (17)

where the ellipsis represents the element of 5 'g of
minimum norm. It does not follow, however, that
5 5G=G.

To obtain explicit results in a particular case, one
can use the following procedure. The given func-
tion g is expanded in terms of the linearly indepen-
dent basis {5'],

r2 —I —i

g= g C„5F„, (18)

uniquely determining the expansion coefficients C„.
Then

r —I —1
2

5 g = g C„1'„,

and any element of 5 'g can be expressed as

with A.k & 0, all k. Then it is obvious that

5D= +414k(r) I'
k

cannot be negative anywhere.
Only the inclusion relation of Eq. (12) has been

established. If it could be shown that for each

pe&+ there is at least one DEN, such that
5D=p, then it could be said that 5%=P +. This is
closely related to the n-representability problem for
densities, and has been established when the densi-
ties and density matrices are not restricted to
finite-basis-set expansions. In Sec. VI, it will be
shown by a counterexample not to be true in general
for the finite-basis case.

Corresponding to the density-matrix reduction

mapping I.~~ considered in GDM II& it was con-
venient to define an inverse mapping I &. In a simi-
lar way we can define an inverse mapping for 5,
denoting it by 5 . For any function g EP,

where the coefficients C„with x &r —/ are arbi-

trary. A transformation from the {F„j to any oth-
er basis for 8' can always be carried out.

IV. AN EXAMPLE

As a simple example to illustrate the relation-

ships discussed above, we consider the spaces gen-

erated by five real, orthonormal functions on the
line segment —m &x (m".

{P;]={(2n) '~, m
'~ isnxn '~ cosx,

n '"sin2x, m-'"cos2x] . (21)

= —,[P)(x)P((x')+ . . +Pg(x)(tg(x')]

( —, +sinx sinx +cosx cosx
5m

2

+sin2x sin2x'+ cos2x cos2x')

1
[ —, +cos(x —x')+cos2(x —x')] . (22)

5m

In this case the average density is simply a constant

f0~5~=
2m

The choice of the Ak is of course somewhat arbi-
trary. As they have been chosen here, two of them
collapse to zero and are thus appropriate basis func-
tion for A . In addition, the following linear-
dependency conditions can be written (by inspec-
tion):

~2573+SBis =0,

~25B„+5Bp5 5B34 0, — ——

V 25B)3 5B24 —5B—35 ——0,

5B)4 ~25B23 ——0,

The basis kernels for 8' are given in Table I, as are
the results of collapse. Simple trigonometric rela-

tionships can be used to simplify the results. For
example,

1I= ~30
5

so that in this example, 1=6. An orthonormal basis

for M can be taken as
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1 1
Ap = ( 2 + s1nx slnx + cosx cosxv3~ '

+ sin2x sin2x'+ cos2x cos2x')

TABLE I. Basis elements of 8' and their collapses.

vs
5Ap ——

27T

1 1—(2—sinx slnx —cosx cosx
2V5 4r

—sin2x sin2x
' —cos2x cos2x ')

5A) ——0

A2 ————( sinx sinx'+ cosx cosx'
2 m'

—sln2x sln2x —cos2x cos2x )

1 1—( —sinx sinx'a+ cosx cosx')

Aq = —( —sin2x sin2x'+ cos2x cos2x')
2 rr

1 1
5A4 —— —cos4X

B12 = (s1nx+ s1nx )2' 5B12 =—slnx

5B13=—cosx

B„=—(sln2 +»n2x')
2~

A 1 ~

5B&4———sin2x

B)g = (cos2x+ cos2x )
1

2' 5B15=—cos2x
m'

8qq = —(sinx cosx '+ cosx sinx')
2 rr

1 1
5811= —sin2x

2 rr

Bq4 —— —(sinx sin2x'+ sin2x sinx'}
v2 rr

].
5B24—— —(cosx —cos3x )

V2 4r

B25 = (slnx cos2x + cos2x s1nx }
V2 rr

5B„= —( —sinx+ sin3x)

B34 —— —(cosx sin2x'+ sin2x cosx') 5814—— —(sinx + sin3x)
2 rr

1 1
835 = —(cosx cos2x'+ cos2x cosx')

fr

1 1
5B35—— —(cosx + cos3x)

V2 4r

1 1
B45 = —(s1n2x cos2x + cos2x s1n2x )

V2 4r
5845 = S1114x

2 rr

If1,A, =0, 1, . . . , 5)

slllx, cosx, s1112x, cos2x, s1n3x, cos3x, s1n4xy
1 1 . 1 1 . 1

The corresponding basis dements for M and W are
included in Table II, along with those for A .

It is readily verified that the elements in Table II
represent an orthogonal transformation of the origi-

nal basis elements for 8', so that they are again
orthonormal. The basis for M S W happens, in
this case, to collapse to an orthogonal basis for P .
In general, only linear independence can be attained.
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Fo ——Jp
1/2

fo
5

TABLE II. Basis elements for W, M, and 4, and

their collapses.
a density matrix. All matrices of the form
Do+D'(n, P,y) will also have the same density as

D, for any values of the real parameters u, P, and y,
but they will not in general be positive.

1 1 1

&12——&2S+—»42 2

1 1
1'2 —— 812+ 824+ —8ss

2

&2 =(—) &«+ &22
1/2

3 3

1'4 —— /t 2+( —, )' 81s
3

1 1
ys = ~ &s+ ~ &2¹

2 2

1 1
F6 ——— B24+ B

V'2 V' 2

I /2

f1
2m

' j/2

f22'
' 1/2

A
5Y'2 = — fs

2K

' l/2

f42~

' I/2
251's = — fs2~

1/2

fs2~

V. LOCAL POTENTIALS AND
THE HOHENBERG-KOHN THEOREM

Density functional theory is based on the
Hohenberg-Kohn theorem, which says that for
Hamiltonians of the form (in atomic units)

A = ——, g V';+ gu(r;)+ g—
j~j EJ

differing only in having different "local potentials"
v(r), there is a one-to-one correspondence between
the ground-state density po(r) and the potential
U(r ). Hohenberg and Kohn then go on to establish
the existence of a functional F[p], which is "univer-
sal" in the sense that it does not depend on U, such
that

E„[p]=I v(r)p(r)dr+F[p] &E&&
—E„[po] .

~7=B4s

' 1/2
1()1'2= — fs2~

' 1/2
1()1's= — fs

2%

F9 ——A]
~]0=~2

1 1 1

~11 1t12+ 1t2s 1)3¹
2

t 1 I

~[2= Bi3——Bz4 ——B3s2 2

&14—( —, )
1/2

3

1'1¹=(—) 4—1/2

3

'All elements of A collapse to zero.

A particular matrix is presented in Table III,
with its expansion in the various bases and its col-
lapse. The matrix of minimum norm within the set

]
generated by 5 ', which is the result of 5 '

acting
on the density corresponding to the original matrix,
and an element of A" are also given in Table III.

The original matrix D is positive, symmetric, and
of trace 1, so it is a density matrix. The matrix

A ]Am
Do——5 5D is not positive, however, so although it
collapses to the same density as does D, it is not

&arious approximate forms for the functional F[p]
have been used in variational calculations to deter-
mine po and Fo. It is implicitly assumed in doing
such calculations that densities in the neighborhood
of po are "u representable"; that is, that any such
density is the ground-state density for some Hamil-
tonian with a local potential.

In ordinary quantum mechanics (in the coordi-
nate representation of the Schrodinger picture) it is
clear what a local potential is. There is an electro-
static potential in real, three-dimensional space
which we denote by U (r ). This defines a function in
the n-electron configuration space

V(r„r2, . . . , r„)= g v(r ) . (28)
J =1

One term in the Hamiltonian is then an operator V
which acts on an n-electron function simply by
multiplying it by the function V(r&, . . . , r „). We
can also write

V= g vj. ,
j=l

where UJ is a one-electron operator involving the
coordinates of electron j. It can be characterized as
the operation of multiplying by the function u(r~)
or expressed as an integral operator
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TABLE III. Some related matrices in various representations.

10

21
4

15

2

21

2

7

2

15

6
35

2

35

1

15

2

35

29 37 v2 1 2v2g 2v213 2V213 2V2B+ ~ )+ 2+ 3+ ~ 4 +
7

13+
21

l5+
15

34+
35

35

6+2v2- 4-v2- 8 - 1
Yo + Y2+ ~ Yg — Y6— ~ Fs

29 Y 37 Y 6—2V2Y 2+2V2Y+ ~ Y9+
1

Yio+
1

Yi2+ ~ Yi4

=D(W)+D(M}+D(A )

D,=D{W)+ D(m)

1

. v3

1 1

v5 2v3

1 1

0

1 1

V3 2v 3

1 1

2v2

1 1 1

vS 2v3 V2
0

1

v3

1 1

2V2
0

1 1 1

v5 2v 3 v2.

uP(x, )= f u(x~, xJ )P(xj )dxj

As usual, x =r, g represents the position and spin

coordinates of one electron, and the kernel is

u(x, x')=u(r)5(r —r')5lg —g') . (31)

In any formulation, the operator V is determined by
the function v(r).

When a finite basis set is introduced and one
deals with matrices, this clarity is blurred. It is
necessary to have criteria for determining if a given
matrix V is the matrix of an operator of the form
given in Eqs. (28)—(31). Two caveats must be ob-
served as a consequence of restriction to a finite
basis. Operators which differ in the full Hilbert
space may be the same when restricted to a finite-
dimensional subspace. In particular, a nonlocal

operator may, when restricted, be completely
equivalent to the operator determined by a local po-
tential. Secondly, operators which commute in the
full Hilbert space may have restrictions which do
not commute. Any two local potentials Ui(r) and

v2(r) obviously have operators V& and V2, defined

by Eqs. (28)—(31), which commute, but their ma-

trices Vi and V2 in the finite-dimensional space may
not commute.

Epstein and Rosenthal, and Katriel et al. , '

have considered finite-dimensional matrix problems
in connection with the Hohenberg-Kohn theorem
and related matters. They take diagonal matrices to
be analogous to local potentials. This is appropriate
in their context, since a diagonal matrix can be re-
garded as a discrete approximation to a local poten-
tial, and since all diagonal matrices commute. If



GEOMETRY OF DENSITY MATRICES. IV. THE. . .

TABLE III. (Continued. )

another element of M:

D'=& Yii+PY)3+) Y)g ——

v3
P y

v3 v3

y

a
2v2

fD gD g'(D +Di) l I 12+4v 2 f 4—v 2 ()v 2

1 (5+3V2cosx+v2cos2x)'+ (2sinx+sin2x}'.1

105m. 15m

where 8'„consists of those elements A'"' ' of 8'„
such that

I w —&A(n, n)
OPl

I e~(n, w)~0
(33)

one wishes to establish a connection with specific
physical operators restricted to a finite basis, how-

ever, there are difficulties with this analogy. On
one hand, an appropriate choice of basis will make
any (Hermitian) matrix diagonal, and, on the other,
finite matrices corresponding to different local po-
tentials will not necessarily commute. A different
criterion for local character mill therefore be
sought.

We have already noted that the V of Eq. (29) is a
"one-electron" operator —i.e., although it acts on
n-electron functions, it is a sum of operators each
depending only on the coordinates of a single elec-
tron. This means that the matrix element of V be-

tween two n-electron basis functions can be ex-

pressed in terms of the one-electron reduced
transition-density matrix between those basis func-
tions. The Hermitian matrix V is an element of the
space 8'„of such matrices. In GDM II it is shown
that 8'„can be decomposed into a series of orthogo-
nal subspaces

= f PJ(x)u(r)gk(x)dx, (34)

where {P;j is the one-electron basis. The spin
dependence could be separated, by the techniques of
GDM III, but we wi11 not be concerned with these
details here. We will simply ignore spin and replace
xby r.

We now have a criterion for identifying the ma-
trix of a one-electron operator, but not yet of a local
potential. This criterion can be established in terms
of v. From the results of Sec. III, the space 8'= 8'&,

of which v is an element, can be deomposed into
three orthogonal subspaces, 8' =W 6M 64,
where W is a one-dimensional space with basis Fo
[in the notation of Eq. (32), W is 8'& p] and
M 6 4"=M. The space M, of dimension
r —I —1 (r is the number of one-electron basis
functions), is in one-to-one correspondence with the
space W of densities integrating to zero, and any
element of A gives zero on collapse. The criterion
that will be used to define a local potential is that

where I.~ is the reduction mapping from g„ to 5'&.

It follows that the matrix of a one-electron operator
such as V has components in 8'„~ (and in general in

8'„o) but not in the 8'„with m~ 1. In addition (as
a consequence), all the matrix elements of V can be
expressed in terms of v, a matrix in 8'& with ele-

ments

u k
——f f PJ (x)u(x, x')Pk(x')dx'dx
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or

and

ujk =(uj.k +ukj. )~+2

ufk= —i(ujk —ukj)/v2 (if keg).
These components are, for example,

v)~= f f u(r, r')2"(r, r')dr dr'

= f u(r)5A "(r)dr (35)

with similar expressions for ujk and uj'k. If we use

for ~', not the A, B,C basis but the {Y, { basis, it is

apparent that

v„= f u(r)5Y„(r)dr (36)

and thus that u„=O for v~r —h —1, so v has no

component in M. If u(r) is modified by the addi-

tion of a constant, only the a=O component of v

(the component in W) will be changed.
The function u(r) can be written as

r —l —12

u(r)= g Pg„(r)+ui(r), (37)

where uz(r ) is orthogonal to the space
spanned by the {f„]or the {5Y„].Any such com-

ponent, if present, will not affect v at all. Suppose
now that v is a given matrix with no component in

A, so that it can be written as

the matrix v have no component in A . The ap-
propriateness of this criterion is readily established.

Equation (34) gives expressions for the elements
of the matrix v. When we think of v as a vector in
8'&, it is more convenient to think of the com-
ponents

uJ'=uij ('f k

can say that v is the matrix of a local potential if
and only if

5 (5v)=v .

In the example of Sec. IV, if we think of the density
as corresponding to the local-potential function, B„
is the matrix of a local potential but D is not.

Equipped with a suitable definition of a local po-
tential, we are now prepared to investigate the
Hohenberg-Kohn theorem in the finite basis case.
Hohenberg and Kohn began the proof of their
theorem by introducing 4' and 4" as the ground-

state wave functions of A and A ', respectively,
where the two Hamiltonians differ by having dif-
ferent local potentials u(r) and u'(r). They then

state, "Now clearly [unless u'(r) u(r—)= const] 4'
cannot be equal to '0 since they satisfy different
Schrodinger equations" and proceed with the now-

well-known proof. A corresponding statement is

not true in the matrix case. It is easy to construct

many matrices having the same ground-state eigen-

vector. Of course we might not expect this to hap-
pen for matrices of operators which differ only by a
local potential, but it can. In consequence, there is
in general no Hohenberg-Kohn theorem for finite-
basis-set models.

We consider a simple example to illustrate the
breakdown. Take a "particle-in-a-box'* problem
wth u(x)=0 for —mgx gm and u(x)=ca for

~x
~

&m. In the inner region

4 =a = ——,(d /dx )

in appropriate units. As a basis set we introduce
the first three odd eigenfunctions

{P„(x)=(I/~m. )sinnx, n =1,2,3j .

Then

r —h —1
2

v= g aY„,
x=0

i.e., u„=a„for

0&sr& r —1 —1

H=T=

1

0 0
2

4
0 2 0

9
0 0

(40)

and u„=O for x&r —l. A potential function u(r)
can be defined by Eq. (37) with vi:—0, and the {P„}
given in terms of the {a„~ and the transformation
linking the bases {5Y„{and {f„{for W, such that
Eq. (36) will reproduce the expansion coefficients
u„=a„. The given matrix is thus the same as the
matrix for a local potential, even though this may
not have been its origin.

In terms of the mappings defined in Sec. III, we

has eigenvectors (1,0,0), (0,1,0), and (0,0,1).
Now introduce a potential

u'(x) =cosx +cos3x

for —m &x &m [with again

u'(x) =u (x)= oo

for ~x
~

&mj. The only nonzero matrix elements of
this potential for our basis set are V2 3 —V3
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H'= T+V'=
0 0

1

4 1

0 2 2

dependent, Eq. (45) leads to

(y",—W, +b,E)4„=0, all ~.
If we define he=hE/n, these equations can be
written

This matrix also has (1,0,0) as its ground-state
eigenvector. [This vector is associated with the

]
eigenvalue —, for both H and H'. The other eigen-

values of H ' are (13+~29)/4 =4.596. . . ,
1.908. . . .]

It may be worthwhile to establish the validity of
the Hohenberg-Kohn assertion for the true problem,
i.e., the Schrodinger equation. We will use a nota-
tion slightly different from theirs and let

A;=M+ k+P";, i =1,2 (42)

where (in atomic units)

a = ——,
' gvj2,

j
+= g 1/rjk,

j&k

&;= gu;(~r ). .

j
Assume that %'; is an eigenfunction of A; (not
necessarily the ground state):

m, %, =E,%, .

Now suppose that %I ——%'2 ——O'. Then

(A )
—A p)%=(E) E2)%—

but

so, with E2 —E] ——4E,

(m, —m, +EE)%=0.
In the case of a single electron ( k is then omitted)
F;.=u;(r) and Eq. (45) requires as a consequence of
the assumption 4& ——4'2 that u](r)=u2(r)+~ ex-
cept possibly where 4'(r)=0. We expect %' to be
nodeless for the ground state, and in any state 4'

will be different from zero and thus permit u2 to
differ from u& +const only on a set of measure
zero. In the many-electron case, let

4= g4„(r~, . . . , r „)o„,

where the [e„]are an orthonormal set of spin func-
tions. Since the 4; are (by assumption) spin in-

g [v, (~r) v2(~r—)+he]4„(r,, . . . , r „)=0.
j=l

(48)

Fix the values of r2, . . . , r „at some set of constant

vectors. Then

u2(r))=u](r))+e . (50)

If the constant values of r2, . . . , r „were unwisely

chosen it would be possible that P„(r& )
—=0 for some

and possibly all a. They certainly can be chosen so
that this is not the case, and such will te assumed.
We then expect that all the P„(r&) will not vanish

over some range of r] values, but at most on a set of
measure zero. It has been shown that, if two Ham-
iltonians of the form given in Eqs. (42) and (43)
have any eigenfunctions in common, then the local
potentials u& and u2 differ only by a constant, ex-

cept possibly on a set of measure zero. If the poten-
tials are required to be continuous, even the latter
possibility ceases to exist, and the potentials are
essentially the same.

Now we return to the finite-basis-set case, but
consider a more realistic many-electron situation.
We will determine the circumstances under which a
vector can be an eigenvector (possibly the ground
state) of two Hamiltonians differing only by the
matrix of a local potential. We can parallel the
preceding treatment, replacing operators by ma-

trices defined with respect to the n-electron basis.
If C is an eigenvector of two Hamiltonian matrices
H and H ', then

(51)

where

hV =V—V'+(E' —E)1

is the matrix of a local potential:

Au(r)=u(r) —u'(r)+(E' —E)/n . (52}

g [u, (~r ) u, (~r .)+—b,e]=c,
j—2

p„(r~,r2, . . . , r „)=p„(r& ),
and for all values of r, for which P„(r, )&0 for any

K,
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Let R I——1 =s [or ( —,)R (R —1)—I —1 =s in the
real case] so that the dimension of P is s+ 1 and
there are s orthonormal functions If„j providing a
basis for P. Then

&u(r )= g b u)(fg(r )+b,u) (r ),

where huz(r ) is the component (if any) of b U {r )

orthogonal to W. It will not contribute to hV and
will thus have no effect on the matrix problem.
The effective information about EU{r) is contained
in the coefficients

%e now specify that the basis labeled by (J) be the
reducing basis defined in GDM II, and further that
the dements with m. =1 be grouped to separate
(=M) ) into M and 4 as discussed in Sec. II. The
only nonzero components of hV will be the m=O
component and the %=1 components ieduciilg to
components in M. Only those same components of
P(A) need be considered, and these are just the
components which contribute to a density corre-
sponding to P(A ),d(A ) with

dr(A ) = g ( ~ )~,(J)~(J)(A )

(J)

hu =(EUO, EU&, . . . , AU, ) .
%'e have seen above how hu(r) determines the

n-electron matrix hV. If the components of hV
with respect to an appropriate basis for 8'„(to be
specified later) are labeled by an index (J), we can
write

The "inverse" relationship implied by the use of
T ' is symbolic, but appropriate. In particular,
P (A ) can be replaced in Eq. (58) by P(A ) with

~(J)(A ) = g ~(z),~d~(A )

and thus Eq. (58) becomes

The transformation described by IT(J) „) includes
the invertible but not unitary transformation be-
tween the I5Y„) and If„I as well as possible uni-

tary transformations of the basis for the matrix
space.

Equation (51) can be written in terms of com-
ponents of hV and C defined with respect to the n-
electron function basis (referred to as the configura-
tion space) as

g~vmc)r=o.

= g h, u„S„gdg(A )

where

~ak g ~(J),x~(J),A.

(J)
(62)

Let A be an arbitrary vector in this n-electron con-
figuration space. From Eq. (55) and the fact that
AVis Hermitian, we have

is dependent on the nonorthogonality of the one-
electron basis-function products, and

g ~VJsPn(A) =o
J,K

(56)

(63)

PJK(A ) =A J CK+AKCJ (57)

is, apart possibly from a constant, a "transition den-
sity matrix" between the pure states A and C, which
has been symmetrized so it is in 8'„. Equation (56)
follows from Eq. (55) for any A. If Eq. (56) is satis-
fied for each A in a basis for the configuration
space, then Eq. (5S) must also hold.

Equation (56) is in the form of a scalar product
of 8'„, so it can be written as well in any other
orthonormal basis:

X~ v( J)~(1)
(J)

Equation (61) is of the form of a scalar product
in W. Given some n-electron eigenvector C, we can
construct a set of vectors d(AK) where AK ranges
over a complete set of n-electron basis vectors. The
vectors d(A K) will surely be linearly dependent, and
they may or may not provide a basis for W. If they
do, then any AU orthogonal to all of them must van-

ish so C cannot be an eigenvector of two Hamiltoni-
ans with different potentials. However, if the
Id(A +) j do not span P, then a nonzero b, u orthog-
onal to all of them can be found, and C can be an
eigenvector of of H and H ' differing by a local AV.
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VI. n REPRESENTABILITY

By analogy with the terminology used in
density-matrix theory, ' a density is said to be n

representable if it can be obtained from an n-

electron (antisymmetric) wave function. This could
be referred to as pure-state n representability, with
an ensemble n-representable denstiy being one
which can be obtained from an ensemble (but not a
pure-state) n-electron density matrix. When a
basis-set expansion is not involved, any density, i.e.,
any element of W+, is pure-state n representable
and the functions from which it can be obtained in-

clude single determinants. "' This is not the case
with a finite-basis-set expansion.

Suppose that a particular basis has been chosen
and a density is given in terms of basis-set products
or some equivalent basis for W. We ask whether
there is always a density matrix from which this
density can be obtained. The negative answer is
readily provided by a simple example.

Take as a real basis set

fi=ir siilx, fi=ir cosx—1/2 . —1/2

and

p(r)=cd(r)+ g p„f„(r),
»=1

u(r)=c„fp(r)+ g u„f„(r) .
»=1

(66)

that any density, at least in a neighborhood contain-
ing the true ground-state density and an initial
guess, is the ground-state density for some local po-
tential. The question of whether this is in fact the
case has been referred to as the v-representability
problem. ' It remains open.

We have seen in the preceding sections that in the
context of a finite-basis-set expansion the
Hohenberg-Kohn theorem does not always apply
and that there can become densities which are not n

representable. Suppose, however, that for an ap-
propriately chosen basis set we can find a subset
WH~CW such that every appropriately normalized
density in P H~ is n representable and that within
this subset the Hohenberg-Kohn theorem can be es-
tablished. In this case we can state an explicit, al-
though formal, relationship between p and u.

For functions p(r) and v(r) expressible in terms
of the basis for W,

y, =n.-'"sinZx,

and consider the density

p( )= (1+b —2b i 2x)2'
1 (1+b cos4x)

2m'
(64)

The fp components are fixed by the normalization
condition on p and the choice of the zero of energy
for U. The remaining coefficients are restricted only

by the requirement that p remain in P HK. They de-

fine vectors p and u in X, and the energy functional
of Eq. (27) simply becomes a function of the expan-
sion coefficients:

on the interval —m(x (m. This function will be
positive, and thus an acceptable density, so long as

~

b
~

& l. It is readily shown, however, that the
only real symmetric matrix in this basis for which
D(x,x)=p(x) is

1+b
2

0 0

1+b
2

0 —b

(65)

VII. 0 REPRESENTABILITY

As noted above, in the variational implementa-
tion of density functional theory, ' is it assumed

This is not a density matrix because it has a nega-
tive eigenvalue for b & 0. We conclude that this p is

not even ensemble n representable within the given
basis.

E(u,e) =c„c&+g u„p„+F(e) .
»=1

(67)

For a given v if p is chosen to minimize E, certain
conditions must be satisfied. It is convenient to de-
fine a gradient vector F' and a Hessian matrix F"
with components

so that

BF F„BF
Bp Bp Bp~

(68)

BE, B2E
=U»+F»

p» p» pA,
(69)

At a minimum of E the first derivative must be
zero, ' implying that F'= —U, and the Hessian ma-
trix F" must be positive. There is nothing in what
has been presented thus far to prevent these equa-
tions from being satisfied for more than one p: E
may have local minima, but one of them is presum-
ably a global minimum unless there are degenera-
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C1CS.

Now let us ask what properties a Hohenberg-
Kohn function I' and a domain set a Hz must have
it the densities in the set are to be u representable.
If every p in ~ H~ is to be the ground-state density
for some potential, then F"(e)yo for all p in a HK.
The potential will be given by

u= —E'{p) .

Suppose that two dcnsltlcs p and e glvc thc same u

i.e., F'(p) =F'(p'). Then either

E(u,p) =E(u,p')

and there is a degeneracy or one of the densities
(e.g., p') is not the ground-state density for u. But
since E'(p') = —u, there can be no other potential
for which Eqs. (69) will be satisfied at p', and thus

p cannot be the ground-state density for any poten-
tial. We conclude that another requirement for u

representability is that, in the absence of degenera-

clcs, F (p) must bc dlst1nct foI' all p 1n M H~.

VIII. DISCUSSION

When a finite basis set is introduced, Hermitian
matrices replace operators. These matrices can be
considered as elements in a vector space. Densities,
obtained by "collapse" of a density martrix, can be
considered as elements of a related vector space.
The relationship between these two spaces depends
on the linear-dependency conditions among prod-
ucts of basis functions.

It has been shown that a density matrix can be
separated into coInponents in two orthogonal sub-
spaces. The component in one subspace is in one-
to-one correspondence with the density while the

component in the other space does not contribute to
the density and is not restricted when a density is
specified. A many-to-one mapping of the space of
matrices to the space of densities is thus defined.
An inverse Inapping generates for any density a set
of matrices leading to that density. The matrices in
this set are not necessarily density matrices, howev-
er, since they need not be positive. The reduced
density matrices leading to a given density lie in the
intersection of the inverse mapping of that density
with the space of n-representable reduced density

IIlatrlccs.
A similar decomposition of the space of matrices

can be used to define a local potential. It has been
shown that any local potential has a component in
only the subspace of nonvanishing densities, and
that any such matrix can be reproduced as the ma-
trix of a local potential. These relationships are
basis-set dependent, however. In the extreme case
where aB basis function products are linearly in-

dependent, any operator is equivalent to (i.e., has
the same matrix as) as local potential. In this case
it also follows that the density completely deter-
mines the density matrix.

It has been shown that two or more Hamiltonian
matrices, differing by matrices of a local potential,
can have the same ground-state eigenvector. This
means that a Hohenberg-Kohn theorem cannot be
established in general. A criterion has been
developed which can be applied to vectors in the n-
electron space to determine which of them could be
eigenvectors of more than one Hamiltonian. A
more convenient characterization of such vectors
and of the densities corresponding to them would be
desirable, however. It was also shown that there are
densities which are not n representable within the
given basis-set model. A convenient way of identi-
fying such densities is desirable but has not been
developed.

Of course the Hohenberg-Kohn theorem is true
and any density is n representable if basis-set re-
strictions are not introduced. We thus expect that,
as a basis set becomes "almost complete" in a prac-
tical sense, these problems will disappear. It would
be of interest to be able to show how this happens.

When a basis-set expansion is involved, the
Hohenberg-Kohn functional becomes a function of
the expansion coefficients of the density. If such a
function and a domain set in which the
Hohenberg-Kohn theorem is valid can be establish-
ed, then u representability would further require
that the matrix of second derivatives be everywhere
positive and the gradient be distinct at each density,
except when there are degeneracies.

The results of this paper have established connec-
tions between some aspects of density functional
theory and the results of density-matrix theory ex-
pressed in geometric terms.
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