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Most irreducible-matrix representations in point-group symmetries can adopt monomial

form. In that case all representational matrices have only one nonzero element in each row

and column. The so-obtained standard basis choice contrasts with the conventional

Wigner-Racah option. Monomial representations give rise to interesting properties of the

corresponding Clebsch-Gordan series: All coupling coefficients are equal in absolute value

and a natural intrinsic multiplicity separation is obtained. The concept is also useful in

reaching a consistent solution of the multiplicity problem in the reduction of direct

products, involving the fourfold U' representation of the octahedral spinor group. Several

tables of basis transformations and coupling coefficients in octahedral and icosahedral

symmetries are included.

I. INTRODUCTION II. MONOMIAL REPRESENTATIONS

signer and Racah have profoundly influenced
the theory of matrix representations in molecular
symmetry groups, by introducing a set of standard
conditions, known as the

~
JM) basis of angular

momentum theory. ' From this basis set,
irredicuble-matrix representations along a chain of
point groups are easily subduced. This approach
has found general favor for several reasons. ' Cal-
culation of the so-called Clebsch-Gordan coupling
coefficients (CGC's) is amenable to algorithmic
standardization. Moreover, finite symmetries often
arise as small distortions from parent continuous
groups, suggesting an obvious parallelism between
perturbation theory and subduction process. This is
often the case in typical central field problems. As
an example, the present interest resulted from a
ligand-field-theory issue.

The standard basis relationships of the Wigner-
Racah calculus confer interesting mathematical
properties on the corresponding Clebsch-Gordan
series. They impose in the symmetry group a fixed
inner automorphism, carrying all standard represen-
tations into their complex conjugates. As a result,
all CGC's can be chosen to be real. ' Qn the other
hand, a possible drawback of uniform standardiza-
tion is that alternative, equally interesting
mathematical aspects of the Clebsch-Gordan series
may never appear, unless a conflicting basis option
is made. Monomial representations, that apply to
most point groups, offer interesting perspectives in
this respect. Ultimately, they might lead to addi-
tional insight in the coupling process itself.

Let 5 be an Abelian group. A monomial matrix
with respect to 6 is a matrix which contains one and
only one element of 5 in each row and column, the
remaining coefficients of the matrix being zeros. In
the present context, all matrices are unitary, and
hence 5 is the group of unimodular complex num-
bers; elements of 0 will be denoted by greek lower
case characters. A monomial representation of a
symmetry group is a matrix representation, uniquely
consisting of monomial matrices. The concept will
also be used in conjunction with the functional basis
set of a monomial representation. It is by no means
evident that every irreducible-matrix representation
is equivalent to a monomial representation.

Powerful group-theoretical techniques have been
developed that deal with this problem at large. Here
an algebraic outline will be preferred in order to
confront the monomial concept with the convention-
al basis choice. The proof that a given representa-
tion is monomial reduces to verifying that the repre-
sentational matrices of the group generators can be
brought into monomial form, whereas a matrix
product conserves the monomial property of its fac-
tors. If only one generator is present —i.e., in cyclic
groups —the problem is trivial since all irreducible
representations are nondegenerate and de facto tno-
nomial. In the less trivial case of more than one
generator, the problem is to decide whether or not
there exists a single unitary transformation that con-
verts a set of generator matrices simultaneously into
monomial equivalents. To this aim a covering set of
matrix equations has to be solved. The algebra in-
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volved will be examined, starting from the conven-
tional representation standards.

In the Fano-Racah representation, ' one single axis
of quantization, commonly identified with the z
direction, enables to distinguish all partners of a
given J value. In particular, adhering to an active
view of rotations, an n-fold axis K~ rotates the

~
JM) basis according to

ed as a splitting field. Since the splitting field gen-
erates a cyclic subgroup, in this case of order 5, its
only monomial matrix representation will either be
diagonal or homomorphous to a cyclic permutation
of the same order. The former alternative being dis-
carded, let 8 be the unitary transformation,
which carries d into a primed set d ', d '= d 8, with

4»
~

JM ) =
~

JM ) exp i —M2~
n

As an example, a fivefold rotational axis, 4~5, suf-
fices to separate the five d functions. Arranging the
d basis' in a row vector

so that the primed analog of C& has the structure of
a cyclic permutation. That is,

0~000
OOA, OO

BC58= 0 OOIM 0
000 0 v

one obtains

E'
—2

F0000
B 8=88 =I . (4)

where

2'IT'l6= exp
5

2

and the overbar symbolizes complex conjugation.
The matrix in Eq. (2) will be denoted C5 and is mo-
nomial. Limiting the group of all rotations in three
dimensions to its icosahedral rotational subgroup O,
the J=2 basis is subduced in a trivial way, and
without loss of degeneracy, to the fivefold degen-
erate representation V. (The notation follows Ref.
4.)

@ can be generated by only two elements, includ-
ing @~5. However, with the exception of 4~5, the
Fano-Racah representation does not allow other
generators of g to yield monomial matrices. The
reason is obvious. Monomial matrices are
homomorphous to permutational matrices and map
basis functions precisely onto each other, changing
phases when necessary. Clearly irreducibility
presupposes that all components take part in this
mapping. On the other hand, no symmetry element
can perform a congruence operation between the

~
10) function and any other component, because of

the unique functional form of the M =0 partner.

~
d0) will always either be invariant, or transform

into a linear combination of more than one basis
function. Hence, to arrive at a monomial basis set,
one is forced to take a stand that is exactly the op-
posite of the conventional choice. Now it is re-
quired that all basis functions coalesce under the
very symmetry operation that was previously select-

In Eq. (4), 8 denotes the complex conjugate tran-
sposed of 8, I is the 5 g 5 unit matrix, and the Greek
lower case characters are unimodular parameters,
satisfying the closure relation ~Ape. =1. The per-
mutational sequence in Eq. (4) is arbitrary, since d '

can only be defined within monomial equivalence.
(Two monomial matrices are said to be monomially
equivalent if they can be transformed into each oth-
er by a monomial matrix. ) Equation (4) can be
solved in a straightforward manner. Four new uni-
modular constants appear" (a, P, y and 5 i:

e PPA,
18=

v5
fK X

@5' A.

(5)

This result is quite general: Any t ~
JM) I basis,

with integral J value, can similarly be transformed
into an equivalent orthonormal basis of indistin-
guishable partners. The loss of individuality in the
partners reveals a true characteristic of a monomial
basis, e.g., all V components have the same self-
repulsion integral.

Still 8 has a considerable internal degree of free-
dom, since all phase factors in Eq. (4), e excepted,
are as yet undefined. The next step is to obtain the
8 transform of the other group generator representa-
tions, yielding matrices containing the unknown
phase factors as variables. The problem whether or
not these phases can be fixed so that the resulting
matrices are monomial, can now, in principle, be
solved by linear algebra, although the resulting
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TABLE I. Behavior of basis kets belonging to irreducible monomial representations of the

octahedral ( G! and icosahedral (O) group under useful symmetry elements. (See also Fig. 1.!
The monomial E components can be obtained from the real quadrupole functions:

~
Ef, ) =1/&2(

~

d z) +i
~
d z z) ). For the relation between the monomial V components and

the d functions, see text. All rotations are counterclockwise and rotate functions, not coordi-

nate systems, e.g., 4f ~
Ea ) =G

~
Eb ); co = exp(2m i /3).
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equations are rather intricate because of the large
number of unknowns.

At this point it is preferable to recur to the
group-theoretical results, that allow to predict when
and how a given irreducible representation can be
made monomial. First we note that an induced'
representation always will be monomial if it is in-
duced from a one-dimensional or monomial sub-

group representation; however, will it be irreducible?
%hile this is not necessarily so, the reverse implica-
tion is an important lemma of induction': any ir-
reducible monomial representation is an induced mo-
nomial representation. This lemma provides a suffi-
cient criterion to determine the monomial represen-
tations in the point group of interest.

As an example, all more-dimensional irreducible
representations in the group 6, describing the rota-
tions of the octahedron, can easily be induced from
one-dimensional subgroup representations, and are
consequently monomial. Corresponding standard
basis choices are listed in Table I (see also Ref. 4}.
T~ and 12 are induced from, respectively, the Az
and 82 representation in the dihedral subgroup E4.
E can be obtained by induction from the one-
dimensional complex representation I 2 in the
tetrahedral subgroup X. The same I z representa-
tion also directly induces V in O. Hence the fivefold
degenerate representation in the icosahedron is mo-
nomial. Table I contains the transforma, tional
properties of V for several generators of O. Their

orientation in a dodecahedron is displayed in Fig. 1.
From Table I both representations (E and V} in-
duced from I 2 are seen to be monomial with respect
to the cyclic Abelian group @3

——tco, tu, 1 ]. Having

FIG. 1. Coordinate system in a dodecahedron. The z
direction coincides with a fivefold rotation axis, the y
direction with a twofold axis of rotation (cf. Table I).
S3" and 4'3" are generators of a tetrahedral subgroup.
The Miller indices in superscript refer to the standard
coordinate frame for this subgroup;
tan8=2(V 5 —1)/(v 5+1).
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established the representational matrices, we can
identify ~, A, ,p, v from the table and use common
projection techniques to solve 8 completely. A new

unimodular constant ( thereby appears:

(V 3,v'5) = ( I+ sco+ e'm
1 — 1

+6 cg 1E' 6)),

yt y2

Define a supermatrix 3, with elements

—Q I )(9P), I 2(A'), I (,iF)~,1

r r

(103

I

—eg

e 2g

—gN —E 0 —E (CO

Most point groups are completely covered by mo-

nomial irreducible representations. Quite remark-

ably O is an exception. Indeed, since X is its largest
nontrivial subgroup, the dimension of the left-coset

space of X, i.e.,
l O l

/
I

Y.
l
=0, puts a lower limit

to the dimension of induced representations. ' Con-

sequently, induction cannot generate the icosahedral
three- or fourfold degenerate representations directly
in reduced form. Therefore according to the lemma,

these representations cannot actualize monomial

form.

III. COUPLING OF MONOMIAL
REPRESENTATIONS

~
l
"))') ) = X I )(~) ~

l

"))'') ) .
I

The inner Kronecker product of two irreducible rep-
resentations I i and I 2 can be decomposed accord-
ing to the well-known formula,

r, Xi,=pc, l,
I

c~ being a multiplicity index, denoting the frequen-
cy of I in the decomposition. The CGC's, denoted

are elements of a transformation matrix, that
reduces the direct product ' as expressed in Eq. (9):

A. Preliminary definitions

Let
l
I ) y) ) be a ket function transforming as the

y &
component of I &. I &(9F), is an element of

yl y I

the corresponding representation matrix for symme-

try operation H in S. That is,

where the labels g and g' are shorthand notations for
the triads yiy2y and y~yzy', respectively. Hen-

ceforth, 3 will be limited to a submatrix of 3,
formed by those g values, for which the diagonal
elements 3 differ from zero. Indeed the remaining

part of 3 only contains zeros. The selected labels

will be called "allowed" g values.
The CGC's that appear in Eq. (9) can be calculat-

ed fairly easily:

(I,),i,);l I) ) =
)
1/2

where
l

I
l

ts the dimen»on of I . In Eq. (I I), t e
primed label can be any allowed triangle y '~y &y ', its
choice corresponds to a phase choice for the entire
Clebsch-Gordan series. ' According to the equation,
coupling coefficients that describe the coupling of
I i and I 2 to a resulting I are proportional to ele-

ments of A. The entire Clebsch-Gordan series is
contained in every column of A.

In a previous communication, several general
properties of 3 have been reported: 3 is Hermitian,
idempotent, and its trace equals its rank, ci-. Simi-
larly, Damhus investigated the Ieality of 3, in con-
nection to the %igner and Racah basis choice. The
formalism will now be further specified to deal with
monomial representations. If I"(N) is monofnial,
one has

I (A') =&(H ),.5(y, ~,"."'),
I (~~

—)) —(~) g( rI97 )))

—(~) g( r PA))

g(;3') 1s a vector, carrying the nonzero elements of
I (A~), ordered as they occur from left to right in the
matrix; e.g., for the V representation matrix in Eq.
(4) one could write

g(g &5) =(m, a.,k,p, v) .

cry"
' symbolizes the permutation, associated with

I (A), operating on the y' component. Of course
the inverse rotation A induces the inverse permu-
tation.

The coupling of monomial representations is
characterized by two interesting properties.
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B. Property 1: If ci- ——1 and A is the projection
matrix of three monomial representations, all elements

of A are equal except for phase

Proof: In the definition of A [Eq. (10)] A can
safely be replaced by P' 'O', P' being a fixed ele-
ment of S. Factorization yields

of unimodular constants. Hence A~ and A~ g are

equal in absolute value, but may have different
phases. Similarly column indices can be changed,
substituting A' by 8'A:

g r,(Aw), r,(A'p'), r(SF/')~
16)l ~

=z,(), +,(), +(A), A, (15)

Next consider completeness. Given two elements
in the same column, A ~ and 3 -, assume that
there is no P' in 8 that can turn g into g". More
precisely, for all P' in OI,

I'»(~) I 2(~) p(~)6(yi, o )5(y2, o „)6(y,o - )=0. (16)
~l ' y2'

xr, (w '9F), r(p' '9F)

Again o.
&

symbolizes a contraction of a triad,
I'»(~ ] F2(~ ) p(~ ) From the definition of monomial matrices [Eq.

(12}] the off-diagonal dement A - can be written
Inore explicitly:Thc product of g elements in Eq. (14) is a pI'oduct

@ +[pi(~) „p2(~) .p(~)„„5(yi,o,', )5(y o2,', )Ny, oy' ')] .

Clearly, in view of the assumption in Eq. (16), all
Kronecker deltas in Eq. (17) will be zero, and hence
A -=0. Consequently, the 2X2 minor in Eq. (18}
does not vanish, since both g and g" are allowed la-
bels:

A~ A~-
—AggAg~~g~~/0

g g

If el- ——1, this result is contradictory. Hence our
premise was false, and this completes the proof for
cr- ——1. Table II provides an example of the A ma-
trix, for T~ XE=Tq.

C. Property 2: If ci- g 1, and A is the projection
of three monomial representations A %'ill be

in reduced form. Each block in A will have rank one,
and hence property 1

Proof: The preceding equations [(14) and (15)]
have sho%'n ho%' to change, rcspcctivcly, row and

column labels and effectuate vertical and lateral
shifts in A. %C now add one more type of operator,
corresponding to diagonal shifts. Indeed, if one sub-
stitutes A by its P transform in the definition of
A, one obtains

xr(p' '9p.&)~

=Pi(~)r, yi(~), P2(~)r,P2(~)„,

XP(~)rP(~)r &,

Combining Eqs. (14), (15), and (19) into one
mInors yleldS ZCIO:

TABLE II. 3 matrix for the coupling T» 'xE = T2 in the octahedral group 6, All represen-
tations are in monomial form, as defined in Table I. All matrix elements are to be divided by
6; [co= exp(2ni/3)].

XQJZ X&PZ ybxz

XQQZ

ZQXP

xbyz

g&XJ

Z&XP
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A~ Ag~,

A~g A~ ~
g g

S1ncc 8 Imnof of 2 g 2 vanishes, this can only
IDcan that thc labels involved cifcuIDscribc 8 block
of rank 1. Completeness is easily established as well.
If two allo~ed labels g and g" cannot be connected
by symmetry clcIDcnts, they w111 belong to scpafRtc
blocks„since in that case, according to Eqs. (16) and
(17), their off-diagonal dement A~- will equal zero.
Consequently A is fully reduced into submatrices of
rank 1.

XPZ

JZX

ZXP

XZP

ZPX

gXZ

XgZ

l

1

0
0
0

PZX ZXg XZP ZPX PXZ

TABLE III. A matrix for T g T=2T in the tetrahedral

group. The behavior of the T components under relevant

group generators (43"~,/~2) is consistent with the x, y,
and z functions in Table I. All matrix elements are to be

divided by 3.

D. Discu.ssion

Thc QlonoID181 concept 1IDparts 8 pcculiRf tfan-
sparency to the coupling phenomenon. According
to the first property, the coupling problem is limited
to 8 problem in phase space. The phases of interest
belong to the direct sum of the Abelian groups that
constitute the field of the monomial matrices in-
volved. According to thc second pfopcfty, non-
simply-reducible groups will, in fact, be reduced.
Thc irreducible foIm of A 1"cpfcscrlts thc Qatuial 1n-

trinsic multiplicity separation, and no recurrence to
extrinsic labeling criteria, e.g., those involving
higher-order groups, is required.

Two examples will be commented upon. First
consider the triple product Ty T=2T in the
tetrahedral group X . The A matrix is resumed in
Table III. All even permutations of component la-
bels go together into one block, Rnd all odd ones into
the other. This multiplicity separation differs from
thc class1CR1 diffc1cntiatlon 1nto 8 syIDIDctrizcd and
an antisymmetrized direct product, [T j and (T ).
Instead in thc picscnt classification 8 triple syID-

metrization is achieved based upon the permutation-
81 stfuctUic of thc T IDatricc. Thcsc RI'c hoIDQI'-

phous to permutational matrices of the alternating
group of three elements. Hence they do not provide
odd permutations that could turn a label of the first
block into one of the second. Such labels thus must
belong to disjunct blocks.

A somewhat similar cause differentiates the
VX V=ZV direct product in the O group. Again A

is reduced into two blocks.
(i) There is one block of dimensions 20)& 20, based

upon all g values of the type (iij ), where i and j
stand for any component label of V. (i,j=a, b, c, d,
or e, and i&j.) Each element in this block has ab-

solute value

(ii) There is one block of dimension 60&60, based
upon all possible g values of the type (ijk ).
(i,j,k=a, b, c, d, or e, andi&j&k. ) Each element

l

has Rbolsutc value

Moreover, the only phase factors that occur in A,
belong to the cyclic group of order 3: (m, G, 1). The
V matrices (see Table I) are isomorphous to the per-
mutational matrices of the alternating group in five
dimensions. Hence they can perform all even per-
mutations of a given quintuple (ijklm ), and thus
certainly generate all even and all odd permutations
of a triad (ijk ). However, they cannot turn a label

(iij ) into (ij k ), and therefore such labels will cause
a natural multiplicity separation.

Turning attention to spin irreducible representa-
tions, based on half-integer J values, at first sight,
the monomial concept does not appear to be very
pI'oIDis1ng. A fundamental fcpicscntatlon, sUC1l Rs
E' in 6', describing the electron spin in an octahe-
dral field, defies RH attempts to monomial reduc-
tion. ' Indeed one can find pairs of octahedral group
generators (e.g., two fourfold axes, 4~4 and K4), for
which the E' representational matrices have nonzero
character. Matrix homomorphism to the permuta-
tional group of order 2 is therefore impossibl. Qn
thc othcf hand spiIloI' subgI'oups, such as 2 3 and

Z4, have monormal spin representations. Neverthe-

less, even in the octahedr'a, l spinor group 9' the mo-
nomial concept is not devoid of interest, as we in-

tend to show in this section.
In thc ~ gloUp, thc foUrfold dcgcncfatc fcpfc-

sentation U' poses a rather unique problem of direct
product mUltip11city. Fouf cases of fcpcatcd icpfc-
scrltRtions occuf:

U' g U'=2TI, U' g U'=2T2,

U' X T I
——2U', U' g Tp ——2U' .

These cases are of considerable importance in the
description of spin-orbit coupling interactions for
odd-electron systems in octahedral fields. ' Several
criteria for multiplicity separation have been pro-
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posed. For the resolution of the product
U')(T& ——2U', one can make profitable use of the
continuous parent group labels. T& corresponds to
J=1, and U' (the quartet spin state) has a value of
J= —,. According to the well-known %'igner rules,

these J values couple to J= —,(U'+E"), J= —,(U'),
and J= —,(E'). Hence the two resulting U' represen-

tations can unambiguously be distinguished by their
J parentage.

Another type of differentiation is possible for the
case U'X U'=2T2. Indeed the resulting kets can be
resolved in a symmetrized [U' ] and an antisym-
metrized (U' ) direct product. ' Either of these
multiplicity separations fails, when applied to the
other cases, and ad hoc procedures have to be in-
voked. A satisfactory solution of this problem can
only be achieved if the A matrix can be reduced. To
that end T~ and T2 will be represented in monomial
form (cf. Table I). The U' matrix cannot be reduced
in the same way, but an alternative to the standard

basis choice can be considered. Note that
E XE'= U' ( U' contains the spin-orbit components
of a E state). So in the construction of U', we
can—at least partially —introduce monomial proper-
ties by using the monomial E components

~

Ea ) and

~

Eb ). Consequently we define

~

U'1) =
~

«)
~

E'tt ),
I

U'»=
I
Eb &

~

E'~ &,

~

U'3) =i
~

Ea) [E'P),

[
U'4) = i —

(
Eb )

)

E'13 ) .

(22)

In Eq. (22) the U' component labels are mere
sequential numbers. This choice explicitly intends
to preclude any reference to extrinsic labeling cri-
teria. The U'(A) matrices can now be obtained
from E(A) and E'(A), as expressed in Eq. (23) (the
A' argument is not repeated in the right-hand side of
the equation):

U'(0') =

E E'

Eb,E'

—iE~Ep

iEb, Ep

E~b E~(,

Ebb E~a

—iE bEj

iEbbEp

iE„E~p

iEb E~p

—iE,bE~p

—iEbbE~p

E~Epp —E,bEpp

E~Epp Ebb Epp

(23)

New standard basis relations for the modified U'

basis are represented in Table IV. In the Frobenius-
Schur classification U' is an irreducible representa-
tion of the second kind, ' ' and has an antisym-
metric conjugating matrix, for example, Q. That is,

0 0 0 —1

0 0 1 0
Q=o —lO O

1 0 0 0

(25)

QU'(9F)Q '= U'(A') . (24)

Since the present choice is incompatible with the
Fano-Racah convention, Q does not coincide with
U'(4~2), but, nevertheless, it meets the standard for-
mat: U '(%),J ——( —1)'+ U'(A)-, . —. . (26)

Introducing the tilde to symbolize reflection of row
or column indices, k =5—k, Eq. (24) can be rewrit-
ten as follows:

TABLE IV. Behavior of modified basis kets belonging to the fourfold spin-irreducible rep-
resentation U' of the octahedral group under useful symmetry elements; g= exp(2@i/243.

3

i

U'1)

i

U'2)

i

U'3)

(

U'4)

(1 —i)
~

U'2)
2

(1 i)
~

U'1)—
2

1 (1+i)
~

U'4)
2

1 (1+i)
~

U'3)
2

(ii"
~

U'1)+i)'~ U'3))
2

(q'
~

U'2)+q"
~

U'4))
v'2

( i) "~ U'1)+it '
~

U'3))
2

( rT'
~

U'2) +ii "
~

U'4) )
2

i
~

U'3)—
i

~

U'4)

—i
)

U'1)

i
)

U'2)
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TABLE V. Nonzero blocks in the 3 matrix for the coupling U'&( U'=2T&. All matrix elements are to be divided by 12;
co = exp(2mi/3).

11x 11y 13z 22x 22y 24z 33x 33y 31z 44y 42z

11x

11y

13z

22x

22y

24z

33x

33y

31z

44x

44y

42z

—ICO

I CO

—I N

IN

IN

—ICO

—I CO

—IN

—I N

—IN

IN

—ICO

ICO

ICO

IN

I CO

0—ICO

—IN

ICO

—I N

—I N

—N

—IN

—ICO

—I CO

—ICO

ICO

0—IN
I—ICO

—ICO

—ICO

ICO

12x 12y 14z 21x 2 ly 23z 34x 34y 32z 43x 43y 41z

12x

12y

14z

21x

21y

23z
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34y

32z

43x

43y

41z

Surprisingly, this is not the only type of conjuga-
cy relationship that can be defined for U'. At this
point, the partial monomial character of the newly
defined U'(9F) matrices [Eq. (23)] appears on the
scene. This character can take on two different
forms, according to whether A' does or does not per-
mute the partners ~Ea) and ~Eb). The former
symmetry elements will be called odd, A, the latter
even, A~, :

SU'(A'. )S ' = U '(H, ),
SU'(A~. )S-' = —U'(A~. ), (28)

where S is the standard counterdiagonal symmetric
matrix

(27)

Combining Eqs. (26) and (27) a new type of conju-
gacy relationship results:

000 1

0010
0100
1000

(29)

The parity property is a true group characteristic.
The even elements form a subgroup, and all odd ele-

ments are contained in one single coset of this sub-

group. This result can directly be obtained from Eq.
(28). The proof is very similar to the resolution of
the permutation group into its alternating subgroup
and a coset of odd permutations.

These results will now be introduced in the
relevant A matrices. The summation over A in A

can thereby be partitioned in partial sums, A' and
A', over A', and A', respectively. First consider the
coupling U'X U' [Eq. (21a)]. i,j and i 'j ' are,
respectively, row and column labels of U', t, t' refer
to T& or T2.
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A J„J,'—5—(1,( —1)'+' )5(l, ( —18+1 )AJ„J';+5(—1,( —1)'+' )5( —1, ( —1)'+~ )A~jr, ; J',

=5((—1)'+', ( —1)'+' )A;p, ; J',

= 6(( —1)'+', ( —1)' +j )A;,, ;,', . (30)

A
U'T'U'

( 1 y'+J'A U'U'T
itj,i'tj'' & j ti'J 't' (31)

Equation (30) requires that the sum of row indices

i+j has the same parity as the sum of column in-
dices i'+j'. No intertwining elements will occur.
Accordingly, A will be reduced. This is confirmed
in Tables V and VI. Surprisingly, A also incorpo-
rates property 1 of the projection matrix of monomi-
al representations (see Sec. III). Only part of this re-
sult can be explained from monomial features.

Several further observations can be made.
(a) The A matrices, pertaining to the coupling

U'XT [Eq. (21b)] can easily be derived from the
present set. Indeed, using Eq. (26), one will verify

(b) We recall that the A matrices give rise to the
construction of Clebsch-Gordan series [Eq. (11)].
Therefrom the resulting ket vectors can be obtained
[Eq. (9)]. That is,

In this case the additional label g' symbolizes the
triad i'j't'. Notice that g' not only reflects a phase
choice but also a multiplicity choice. The latter
choice basically consists in the parity ( —1)' +J . The
summation is restricted to those i,j combinations
that conserve this parity. Evidently (i ~j) ex-

TABLE VI. Nonzero blocks in the A matrix for the coupling U'& U'=2T2. All matrix elements are to be divided by

12; co= exp(2mi/3).

1lyz llxz 13xy 22yz 22xz 24xy 33yz 33xz 31xy 44yz 44xz 42xy

11yz

11xz

13xy

22yz

22xz

24xy

33yz

33xz

31xy

44yz

44xz

42xy

12yz 12xz 14xy 21yz 21xz 23xy 34yz 32xy 43yz 43xz 41xy

12yz

12xz

14xy

2 lyz

21xz

23xy

34yz

34xz

32xy

43yz

43xz

41xy
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change in Eq. (32) does not alter this multiplicity
choice. The resulting T ket vectors are therefore
necessarily symmetric or antisymmetric with respect
to product symmetrization.

(c) More importantly, the resulting T ket vectors
also diagonalize the Kramers star operator. First
consider the effect of the Kramers star operator on
the basic components. The spin functions

~

E'a )
and (E'P) still are in the Wigner convention and
therefore

~E'a)*=i ~E'P),

~

E'P ) *= i
~

E'a—) . (33)

x
~

U'i )
~

U'j ) . (36)

The
~

Ea) and
f
Eb) representations were defined

from real functions (Table I) and hence

~En)~= ~Eb),

)Eb)*= )Ea) .

Combining these results with Eq. (22) yields the ef-
fect on the U' components:

i
U'k)~=( —1)"

i

U'k) . (3S)

The ket products in Eq. (32) are thus transformed as
follows:

component, expressions for the other components
can simply be obtained by permuting terms in the
solution. Evidently a monomial basis choice is ex-

tremely well oriented to meet this criterion. Typical
examples are offered by Jahn- Teller problems, where
two vibrational modes of different symmetries are
both active. In their original paper on the
TX(e+ t) Jahn- Teller coupling in cubic symmetries,
Opik and Pryce suggested to replace the usual non-

monomial e coordinates, transforming as z and
x —y, by a new set of three more symmetrical
coordinates, transforming as x, y, and z . Howev-

er, these new functions are not normal coordinates

in the Lagrangian sense. Hence the most satisfacto-
ry solution of the problem can be arrived at by using
the true monomial e components, that are given in

Table I.
Finally it should be noted that the multiplicity

separation proposed here also has clearcut advan-
tages when dealing with chains of groups. Indeed in
this case Racah's lemma, that relates coupling coef-
ficients in continuous groups to their finite group
counterparts, takes a particularly simple form.
Usually the lemma implies a summation over all re-
peated representations of a product multiplicity.
However, in the present formalism, where a com-
plete multiplicity separation has been achieved, only
one term of this sum will survive, as determined by
the particular triad ( y~ y2y ), one is looking at.

VI. CONCLUSION

Again this transformation is not able to change the
parity condition, implied in the multiplicity choice.
Indeed

The resulting ket vectors thus are invariant under
the star operation, except for a phase factor, depen-
dent on the choice of g'.

V. PHYSICAL APPLICATIONS

In practical calculations the use of a Wigner-
Racah basis usually is preferable whenever the phys-
ical operator can be characterized by a definite sym-
metry. In that case the operator acts as a splitting
field and a symmetry-adapted basis will diagonalize
its interactions.

However, if several operators with different sym-
metries are considered simultaneously, there is no
distinct advantage in using a basis that is adapted to
only one operator. One rather tends to construct an
interaction matrix that is "highly symmetrical" in
appearance. Here symmetrical refers to the require-
ment that if the interaction matrix is solved for one

In an algebraic sense monomiality is a joint prop-
erty of a limited set of matrices. In an enlarged
group-theoretical sense the concept refers to a pecu-
liar set of totally equivalent partners, somewhat
similar to the geometric points that give rise to point
groups.

Clebsch-Gordan coefficients, based on monomial
representations, adopt an especially simple form,
somehow reminding the simplicity of Wigner's
grand orthogonality theorem. The 3 matrices,
displayed in Tables V and VI, suggest that these
properties might even be extended to triple products
of other representations as well.
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