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%'e derive a new Hamiltonian, for a charged particle in a time™dependent applied elec-

tromagnetic field, which depends on the fields E and 8 directly rather than on the potentials

P and A. The Hamiltonian is "nonlocal" in that it involves E and 8 at all points in space, in

contrast to the usual "local" Hamiltonian, which only involves P and A at the position of
the charge. The new and usual Hamiltonians are compared, and the canonical transforma-

tion which connects them is presented. We discuss the physical interpretation of the in-

teraction terms appearing in the canonical momentum, angular momentum, and the Hamil-

tonian. A relativistic generalization is given.

I. INTRODUCTION

The vector potential appears immediately in most
discussions of the Aharonov-Bohm effect' be-

cause it is the eanonicaI momentum p that is re-

placed by —ikey' in quantum mechanics, and the
canonical Rnd mechanical momenta dif fer by
(elm)A(q, t),

p =m q+ —A(q, t), (1.1)

where q is the position of the particle with charge e
and mass m. Throughout this paper
we will consider only the motion of a particle in a
classical, applied electromagnetic field. Trammel
has shown that, if the Coulomb gauge
[V A(r, t) =0] is adopted, Eq. (1.1) is equivalent to

p=mq+ f 8'(r —q)XB(r, t)dr,
4&c

where 8( r, t) = V' g A( r, t), and

(1.3)

Equation (1.2) does not involve A explicitly, and at
least to lowest order in

~ q ~
/c &&1, admits of a

simple physical interpretation: Since in that limit
the dectromagnetic field from a point charge con-
sists only of an electric field equal to 8', the part of
the momentum of the total electromagnetic field due
to the field from the charge in the presence of the ap
plied field would, in usual =lectromagnetic theory, be
wntten as

p;„,= f 8'(r —q)XB(r, t)dr .
4mc

Refernng to Eq. (1.2), the canonical momentum can
hence be considered as consisting of a mechanical

part mq, plus the "interaction momentum" p;„,.
Peshkin, working in the Coulomb gauge, has used
such a decomposition and iniepretation of the
canonical angular momentum J to shed some light
on the connection between the Aharonov-Bohm ef-
fect and the usual quantization conditions of quan-
tum mechanics (see also Casimir and Kunstatter
8t QI. ).

Now it is easy to see that, if V A&0, an extra
term appears in Eq. (1.2); Eq. (1.1) is in general
equivalent to

p=mq+ f 8'(r —q)XB(r, t)dr4'
f 8'(r —q)V A(r, t)dr .

4~@

Tllls lllay bc vcflfIcd by scttIIlg B= V X A 111 Eq.
(1.5), performing two partial integrations, using

q- 5 (r —q) =4we5(r —q),

or,. ' Bq;
8' (r —q)= — 8' {r—q), (1.6)

e8'.(r —q) =-
"dr; /r —q[

and assuming that the applied fields are sufficiently
well behaved at infinity to neglect the surface in-
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tegrals which appear. The last assumption, of
course, was also required in deriving Eq. (1.3) in the
specif&c case of the Coulomb gauge. Looking at Eq.
(1.5) it is natural to ask if a different canonical
momentum p

' can be found which does not involve
the vector potential A(r, t) explicitly, but only the
magnetic field B(r,t), regardless of the gauge chosen
for the applied field.

In this paper we show that a whole class of such

p
' exists, each p

' related to the usual p by a canon-
ical transformation. Any one of these tfansforma-
tions leads to both a canonical momentum p

' and
angular momentum J ' which do not depend expli-
citly on the potentials, but only on the electro-
magnetic fields E(r, t) and B(r,t). In addition, this
is also true for the new Hamiltonian H'. Thus we
can present for the first time a canonical formula-
tion of the motion of a charged particle in a time-
dependent applied field involving only the applied
electromagnetic fields E{r, t) and 8( r, t) and which
is hence manifestly gauge invariant.

Of course, since the new quantities p ', J ', and H'
are related to the old ones by a canonical transfor-
mation no "new results*' are found: The new canon-
ical equations still lead to the Lorentz equation of
motion

Iq =eE(q, t)+ —
q XB(q,t),

C

and the correspondence of canonical transforma-
tions in classical mechanics to unitary transforma-
tions in quantum mechanics guarantees the usual
equivalence of H and H' if the particle is treated
quantum mechanically. Since the new quantities

p ', J ', and H' reduce to the old quantities p, J,
and H, if a Coulomb gauge is adopted, this
equivalence is explicitly confirmed by noting that all
measurable quantities are invariant under gauge
transformation. Nonetheless, it is interesting to note
that a potential-free canonical formulation of the
motion of a charged particle in an applied field is
possible. This explicitly confirms that reference to
the vector potential is not essential in understanding
the Aharonov-Bohm effect: in a discussion of the
effect using H, which is just as valid a Hamiltonian
as the usual H,

2

p ——A(q, t) +eP(q, t), (l.8)
2m

only the fields E(r, t) and B(r,t) appear. Further,
we extend the idea of Trammel and Peshkin in be-
ing able to identify in greater generality the interac-
tion terms in the canonical momentum, angular
momentum, and Hamiltonian as resulting from the
field of the charge in the presence of the applied
field. This identification and its limitations, along

with suggestions for future work along these lines,
are given in Sec. IV. %e begin in Sec. II by deriving

perhaps the simplest Lagrangian, for a charged
particle in an applied field that depends on E and 8
directly. The corresponding Hamiltonian H' is
found in Sec. III, where we also present the canoni-
cal transformation that leads directly from H to H'.
A relativistic generalization is given in Sec. fV.

II. THE LAGRANGIAN

The equation of motion (1.7) may be derived by
requiring the action S to be stationary 5S =0, where

S=J Ldt,

and where the usual Lagrangian 1. is given by'

L =La+ A—(qt) , q —eP(q, t),
C

=Lo+ —I j (r).A(r, t)dr —Jp(r)$(r, t) dr .

(2.2)

Here

p(r ) =e5{r —q ),
(2.4)

j (r) =eq5(r —q),
where we do not explicitly indicate the dependence
of p and j on q and q. Now the variation of S
does not involve the endpoints of the integral (2.1),
so a Lagrangian which differs from I. by a total
time derivative,

will lead to the same equation of motion: if "polari-
zation and magnetization potentials" P and M can
be found such that

j (r)=p(r)+c V &M(r),

p(r)= —V P(r),
(2.6)

where the dependence of P and M on q and q is not
explicitly indicated, a choice of

G = ——JP(r) A(r, t)dr
C

in Eq. (2.5) leads to

L'=Le+ JP(r).E(r, t)dr

+ JM(r) B(r,t)dr, (2.8)

Lo= 2plq

is the free-particle Lagrangian, and the charge and
current densities are given by
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and therefore in general the Lagrangian (2.8) will
not lead to the Lorentz equation (1.7) for arbitrary
functions E(r, t) and B(r,t), but only for functions
satisfying

0

c V gE+8=0,
(2.10)

V 8=0,
and corresponding to physically possible applied
f1clds.

The use of functions of the form (2.7) for the
derivation of ncw Lagranglans was 1ntroduccd by
Goeppert-Mayer, " in the course of developing a
multipole Hamiltonian for applications in molecular
physics (for recent work, see Refs. 12—17); for a
neutral molecule, P and M may be expanded in
series involving the Dirac delta function and its
derivatives, with coefficients that are identified as
the electric and magnetic multipole moments of the
charge distribution. In our problem, however, we
seek a set (P,M} satisfying Eq. (2.6) for the point-
charge-current density (2.4). To find such a set, it is
useful to note that while only the exact electric and
magnetic fields generated by the charge (plus an
arbitrary freely propagating field) satisfy all the
Maxwell equations

V.e 4m.p, (2.11a)

cV&b —e=4m. j, (2.11b)

V b=0, (2.11c)

(2.11d)

with Eq. (2.4},many sets of fields (e, b) satisfy Eqs.
(2.4), (2.11a), and (2.11b) alone. In particular, any
e =e(r —q) satisfying Eqs. (2.4) and (2.11a) and a b
given by

b=-'qx-,
c

together satisfy Eqs. (2.4), (2.11a), and (2.11b). Thus
if we take 8'(r —q) given by Eq. (1.3) and

a Lagrangian involving E and B rather than P and
A. In obtaining Eq. (2.8) from Eqs. (2.5)—(2.7) we

have performed partial integrations, assuming that
(P,A) vanish sufficiently rapidly as

~

r
~

~oo. We
have also used

1-E=—VP ——A,
c

V 8'(r —q}=4mp,
(2.14)

c V X 9f ( r —q; q )—Ã ( r —q ) = 4' j
with (p, j } given by Eq. (2.4); 8', and A are, of
course, the electric and magnetic fields that would

result, in the zeroth and first order of
~ q ~

jc,
respectively, from a charge moving with a velocity

q. However, the terms defined by Eqs. (1.3), (2.4),
and (2.13) satisfy Eq. (2.14) exactly, for any q(t), re-

gardless of the velocity or acceleration of the charge.
Comparing Eqs. (2.6) and (2.14) we see that we

should choose

(2.15)

in Eq. (2.8); wc then find a Lagrangian

L'=Lo — J g (r —q) E(r, t)dr
4~

+ JA(r —q;q) B(r,t)dr,
4m

involving only the electric and magnetic fields, and
not the potentials. Using Eqs. (2.14) and the
Maxwell equations (2.10) for the applied field, along
with the assumption that E and 8 vanish sufficient-

ly rapidly as
~

r
~
~00, the Lorentz equation of

motion (1.7) can be recovered from Lagrange's equa-
tion

d BI.' BI.'

with L' given by Eq. (2.16). The last-mentioned as-
sumption [previously used, see comment after Eq.
(2.8)] is crucial, since 5' and 3f only drop off with
increasing distance as

~

r —q ~; E and B must
drop off fast enough that the integrals in Eq. (2.16)
are well defined. As an example, we cannot use Eq.
(2.16) for a charge in an electric field which is sup-
posed to be uniform over all of space, for the first
integral is then poorly defined; however, that equa-
tion can be used for a charge inside a parallel-plate
capacitor finite in at least one direction, regardless
of the size of the capacitor.

III. THE HAMII. TONIAN

Since the Lagrangian (2.16) leads to the desired
equation of motion (1.7), we may obtain the desired
Hamiltonian from it in the usual fashion; we have

4'(r —q;q)—=—q)& 8'(r —q),
c

we find

BI.'p'-==
Bq

=mq+ J 8'(r —q)XB(r, t)dr,
4mc



and we find

H'= p 'q —I.'

=T+ f g'(r —q) E(r, t)dr,
4m

comparing Eqs. (1.5) and (3.1); the same is true for
the canonical angular momenta J = q & p and

J '=quip

'2

T= p' — f P(r —q)XB(r, t)dr
2m 4'

(3.3)

is numerically equal to the kinetic energy of the par-
ticle, as is clear from Eq. (3.1). As expected, the
new Hamiltonian (3.2) involves only the applied
electric and magnetic fields, and not their potentials.

The Hamiltonians H' and H [Eq. (1.8)] may easily
be coInpared by noting that H' can be obtained
64Pectlp froIIl H by R cRIlonical transformation. Re-
call that in general, given a Hamiltonian H(p, q, t),
new coordinates and momenta (q ', p ') and a new
Hamiltonian H'(p ', q ', t) may be obtained from a
generating function F(q, p ', t) through the equa-
tions

BF, 8Ip=, q
p

and

+ f rX[&(r —q)XB(r,t)]dr, (3.9)
4&c

where the second line of Eq. (3.9) follows from Eq.
(3.1) and the fact that

0= f (r —q)X[@'(r—q)XB(r, t)]dr . (3.10)

Equation (3.10) may be verified by using Eq. (1.3),
performing a partial integration, and noting that
V.B(r,t) =0.

IV. CONCLUDING REMARKS

%c fiirst summarize our main 1csults: For Rn Rp"

plied electromagnetic field E(r, t), B(r,t) satisfying
Eq. (2.10), thc canonical equations

aH' . , aH'q=, ~ p
p q

when used w1th thc Hamilton1an

H'(p ', q, t)

p
' — f 8'(r —q) X B(r,t)d r

2m 4m@

F= q p
' — f 5'(r —q) A(r, t)d r,

4m'e

and Eqs. (3.4) yield

p
'= p ——A(q, t}

C

while Eq. (3.5) gives

Using Eqs. (1.8), (2.9) and (3.7) in Eqs. (3.8) we re-
cover Eqs. (3.2) and (3.3). %C note that the numeri-
cal value of p

' —p depends on the choice of gauge
ln H, as docs that of H —H. Us1ng the th1rd equa-
tion of (1.6) in Eq. (3.8), and performing a partial in-
tegration, we see that H' and H are numerically
equal if the Coulomb gauge, or any gauge with
A=O, is chosen in H. Only in the case of Coulomb
gauge will p and p

' be identical, as is clear from

f g'(r —q).E(r, t)dr,
4m

where 8' is given by Eq. (1.3), lead to thc Lorentz
equation of motion (1.7). Equations (4.1) and (4.2)
thus constitute a potential-free, canonical formula-
tion of the dynamics of a charged particle in an ar-
bitrarily time-dependent apphed electromagnetic
field. The only assumption is that E and B are suf-
ficiently well behaved at infinity so that the surface
integrals which result when Eq. (4.1}is applied with
Eq. (4.2), and the necessary partial integrations are
performed, vanish. These conditions &nelude such
extended fields as those present in a parallel-plate
capacitor (infinite in two directions), and in the in-
finite solenoid appearing in discussions of the
Aharonov-Bohm effect. ' Subtleties arising in
passing to the limit of such geometries are discussed
by, e.g., Peshkin.

The I.' [Eq. (2.16)] and H' [Eq. (4.2)] given here
are not the only potential-free Lagrangian and Ham-
iltonian that can be constructed, since Eqs. (2.6)
do not uniquely determine P and M. In fact, a
whole class of such Lagrangians and Hamil-
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tonians exists, since if fields (P,M) satisfy Eqs.
(2.6), then fields (P ', M ') given by

P'=P+VXg,
(4.3)

M'=M ——g+Vh,
c

where g is any vector function and h any scalar
function, also satisfy Eqs. (2.6). Thus the gauge
freedom of (P,A) in Eqs. (2.2) and (1.8) has in some
sense been replaced by the gauge freedom of (P,M)
in Eqs. (2.16) and (4.2).

For the Hamiltonian H' of Eq. (4.2), let us

separate the "mechanical" and "interaction" contri-
butions to p', J ', and H'. Setting

All the "interaction" terms on the right-hand sides
of Eqs. (4.5) can be interpreted physically, in the
limit

~ q ~

/c &&1, as discussed in Sec. I: They may
be considered due to the usual momentum, angular
momentum, and energy densities arising from the
field of the particle in the presence of the applied
field. It would be interesting if a canonical formula-
tion could be found in which this physical interpre-
tation would hold for arbitrary q, but this does not
seem possible, at least in a simple way. First, note
that in our formulation the form of the interaction
terms (4.5) do not arise simply because we started
from a nonrelativistic Lagrangian (2.2), (2.3); if in
place of Lo we substituted

I
p m~h

——mq,

J ~~h
——q Xmq, (4.4)

Lo= —mc(1 —q c ) (4.6)

1

mech

from Eqs. (3.1), (3.2), and (3.9) we have

p' —p~«h= f F(r —q)XB(r, t)dr,
4~c

in Eq. (2.2) and carried on the derivation of Secs. II
and III as before, we would arrive at a Lagrangian

L ' =Lp„— f 8' ( r —q ) E( r, t )d r
4m

f rX[&(r—q)XB(r, t)]dr,
4m.c

(4.5)
H' —H' „&—— f 5'(r —q) E(r, t)dr .

4m

+ f 4' ( r —q; q ) B( r, t)d r,
4n

and a Hamiltonian

(4.7)

H„' = m c +c p' — f 8'(r —q)&&B(r, t)dr
4~c

2 1/2

+ f @(r—q).E(r, t)dr .4' (4.8)

Both of these lead to the exact relativistic equation
of motion for a charged particle in an applied elec-
tromagnetic field; nonetheless, we still find Eqs.
(4.5), with only Eqs. (4.4) replaced by their corre-
sponding relativistic counterparts. Second, since the
electromagnetic field from a moving charge de-

pends, if the
~ q ~

/c &&1 limit is removed, not only

on q and q but also on q, and at retarded times, it
is hard to see how this exact field could be made, by
even a clever choice of G [Eq. (2.5)], to appear in a
Lagrangian of the usual kind depending only on q,
q, and t. The possibility of such a formulation also
seems unlikely on physical grounds, since the exact
field from a moving charge contains terms associat-
ed with the radiation reaction of the charge on itself;
this effect clearly takes us beyond the simple model
of a charge moving in a specified electromagnetic
field.

Despite the difficulty of interpreting physically
the interaction terms of Eqs. (4.5), we stress that the
Hamiltonian (4.8), which is free of potentials and in-

volves the electric and magnetic fields, does lead to
the correct relativistic equation of motion for a
charged particle in an applied electromagnetic field;
such a Hamiltonian has not been written down be-
fore. The fact that the gauge-independent interac-
tion terms (4.5) can be interpreted physically, al-

though only in the limit
~ q ~

/c &&1, is interesting,
since it establishes a connection between canonical
expressions for momentum, angular momentum,
and energy with the expressions one would write
down for those terms from usual electromagentic
theory, interpreting the interaction as between the
field of the particle and the applied field. It would
be interesting to see how far in what direction this
connection could be extended.
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