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Diffusion-controlled cluster formation in two, three, and four dimensions
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Diffusion-controlled cluster formation has been simulated in two-, three-, and four-

dimensional space. The radii of gyration (R~) of the resulting clusters have a power-law depen-

dence on the number of particles in the cluster (N) R~ N&. The corresponding Hausdorff

dimensionality (D 1/P) is related to the Euclidean dimensionality d by the relationship

D —-d for d 3 and 4. For the two&imensional case we find that D/d has a value about 2%
6

smaller (0.847 %0.01). However, a value of 6 (0.833) is only just outside the 950k confidence

limits and cannot be completely ruled out. In the two-dimensional simulations P is insensitive

to lattice details and in both two- and threedimensional simulations P is insensitive to the stick-

ing coefficient (S) over the range 1.0» S» 0.1.

INTRODUCTION

The aggregation of small particles to form clusters
or floe is one of the most central problems in colloid
science with important implications in a wide range of
natural and commercial processes. In addition, the
shapes and sizes of clusters near the percolation
threshold have become important to our understand-
ing of critical phenomena. ' In both areas Monte Car-
lo computer simulations have provided important
"experimental" information for comparison with

theoretical results and a valuable link between labora-
tory experiments and theory.

In the 1960s computer simulations of flo forma-
tion in colloidal systems were carried out by Void
and Sutherland and co-workers. 3 This early work
which did not include the effects of Brownian
motion, was reviewed by Medalia. 4 A reasonably
complete model of cluster formation in colloidal sys-
tems would include the effects of long- and short-
range interactions, 5 particle size distribution and ir-

regular shapes, hydrodynamic interactions, ~ clustering
of clusters, ' etc. Because of the complexity of such a
model it is important to explore more simple models
which contain the most essential elements of the
physics of flocculation in real systems. An important
step in this direction has recently been made by Wit-
ten and Sander. 7

Witten and Sander start with a single-seed particle
at the origin of a lattice. A second particle is added a
long distance from the origin and undergoes a ran-
dom walk on the lattice until it reaches a site adjacent
to the seed and becomes part of the growing cluster.
A third particle is then introduced at a random dis-
tant point and undergoes a random walk until it also
becomes incorporated into the growing cluster. The
procedure is repeated until a cluster of sufficiently

C(r)-N ' Xp(r')p(r+r')

obtained in two-dimensional simulations, conformed
to a power-law relationship

C(r) —r ~

for distances (r) greater than a few lattice spacings,
but significantly less than the size of the cluster. In
Eq. (1) the density p( r ) at position r is defined to
be 1 for an occupied site and 0 for an unoccupied
site. N is the number of particles in the cluster.

The power-law form of the density-density correla-
tion function [Eq. (3)] is consistent with a fractal'
(Hausdorff -Besicovitch) dimensionality D of d —a,
where d is the "normal" Euclidean dimensionality of
the cluster. The Hausdorff dimensionality can also
be obtained from the radius of gyration (Rg) which

has a power-law dependence on the number of parti-
cles for sufficiently large N:

Rg —NI' .
The Hausdorff dimensionality is given by'

Ds 1/P .

(3)

In this paper the results of computer simulations in
two-, three-, and four-dimensional space are present-
ed including some aspects of universality in two- and
three-dimensional clusters. Since it has not been
possible to generate large enough clusters in three
and four dimensions to evaluate the density-density
correlation function C(r) over a range of distances

large size is formed.
Witten and Sander' showed that the density-density

correlation function,
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which are both larger than a few lattice spacings and
significantly smaller than the "size" of the cluster,
we have relied mainly on the radius of gyration to
obtain the Hausdorff dimensionality of the cluster.
Simulations for clusters of different sizes indicate
that the radius of gyration exponent P is much less
sensitive to finite-size effects than attempts to obtain
the correlation function exponent e.

Two&imensional simulations

The simulation methods are very similar to those
described by Witten and Sander. ' Since a particle un-

dergoing a random walk starting from a point a large
distance from the cluster will intersect a circle enclos-
ing the cluster, for the first time, at a point at ran-
dom on the circle, we start the particle out at a ran-
dom point on a circle centered on the "seed" particle
with a radius slightly (about five lattice spacings)
greater than the distance from the seed to the most
distant particle in the cluster (the maximum radius of
the cluster). If the particle reaches a point more than
three times the maximum radius of the cluster from
the origin, it is "killed" and a new particle is started.
In the three- and four-dimensional calculations the
particle is "killed" if it reaches a point more than two
times the maximum radius of the cluster from the
origin. A more detailed account of our simulation
procedures is planned to be be published later.

Most of the two-dimensional simulations were car-
ried out using a simple square lattice. Six large clus-
ters were generated assuming that the randomly
walking particle was incorporated into the cluster
every time it reached a nearest-neighbor position.
(Each step in the random walk consisted of transfer-
ring the particle to one of the four nearest-neighbor
positions with respect to the particle. ) The density-
density correlation function exponent (a) was ob-
tained from C(r ) for 5 ~ r ~ 50 (lattice spacings)
for clusters of maximum radius 200 lattice units.
The radius of gyration exponent (P) was obtained
using the dependence of R~ on N for 0.1N,„~N
~N,„,where N,„ is the maximum number of par-
ticles in the cluster. From these six clusters (average
size, 9700 particles per cluster) a radius of gyration
exponent (P) of 0.595 +0.016 was obtained. " For
four of these clusters a correlation function exponent
e of 0.32+0.07 was also obtained. The correspond-
ing Hausdorff dimensionalities are D~= 1.68 +0.04
and D =1.68+0.07. These results are in quite good
agreement with those of Witten and Sander, 7 but our
estimate of uncertainties is much greater despite the
fact that our clusters are considerably larger than
those of Witten and Sander.

Four clusters (average size, 5900 particles per clus-
ter) were generated in which the particle was incor-
porated into the growing cluster if it reached a next-
nearest-neighbor (NNN) position but was not incor-

portated if it reached a nearest-neighbor (NN) posi-
tion. From these four simulations the exponents
a =0.306+0.069, P -0.589+ 0.024, and the corre-
sponding Hausdorff dimensionalities D = 1.69
+0.07, D&-1.70+0.07 were obtained.

The effects of sticking probability were also investi-
gated. Three clusters (average size, 16300 particles
per cluster) were generated in a simulation with a
sticking probability of 0.25 at a nearest-neighbor site.
The resulting clusters were analyzed giving a =0.292
+ 0.055, P = 0.579+0.045, D = 1.71 + 0.055, and
D~= 1.73 f0.13. Similar calculations were carried
out for NNN capture with a sticking probability of
0.1. The resulting exponents and the corresponding
Hausdorff dimensionalities for three clusters with an
average of 9800 particles were a =0.258+ 0.027,
P-0.577+0.015, D =1.74+0.03, and De=1.73
+0.04.

Two-dimensional simulations were also carried out
for a nonlattice model. In this case a step in the ran-
dom walk consisted of moving the center of a circular
"particle" at random to any point in a circle of radius
equal to that of the particle. If the "step" causes the
particle to overlap the cluster, the particle is moved
to the position where it first contacted the cluster and
incorporated into the cluster. Three clusters with an
average of 8700 particles each were generated leading
to the results a-0.322+0.058, P 0.584+0.018,
D =1.68+0.06, and D&=1.71+0.05.

Figure 1 shows a typical cluster of 10000 particles
obtained in one of the nonlattice simulations, and
Fig. 2 shows a plot of the radius of gyration as a
function of the number of particles for one of these
clusters.

jif'$ j'=

FIG. 1. A two-dimensional cluster of 10000 particles pro-
duced in a simulation of diffusion-controlled cluster forma-
tion. No lattice was used in this simulation.
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analyzed over the range 0.25N,„~N ~N,„. From
the 11 clusters, P was found to have the value
0.398 f 0.009. The corresponding Hausdorff dimen-
sionality is 2.51 + 0.06. Three clusters were also
simulated with a sticking coefficient of 0.25. From
these three clusters with an average of 11400 parti-
cles each, the result P -0.398 2 0.041 (Ds 2.51——

+ 0.26) was obtained.
1.0

4.0 5.0 6.0
ln (N)

7.0 8.0 9.0
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FIG. 2. The radius of gyration as a function of the
number of particles obtained during the simulation of the
cluster shown in Fig. 1 ~ The last 9000 points can be fitted
by R~ =0.498N with a Pearson product moment correla-
tion of 0.99993.

Clusters grown on three-dimensional
cubic lattices
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FIG. 3. Three perpendicular projections and a cross sec-
tion through a typical cluster of 10000 particles formed in a
three-dimensional simulation.

In the three-dimensional simulations clusters were
grown until one of the surfaces of a 91 x 91 x 91
simple-cubic lattice was reached. Figure 3 shows pro-
jections in three mutually perpendicular directions
and a cross section through one such cluster. For a
sticking coefficient of 1.0 at nearest-neighbor sites,
11 clusters with an average of 7800 particles per clus-
ter were grown. Attempts to obtain the exponent for
the correlation function a indicated that a was sensi-
tive to finite-size effects even for clusters of
5000—10000 particles. Consequently, the Hausdorff
dimensionality was obtained from the radius of gyra-
tion (R~) alone. The dependence of Rs on N was

Similar calculations were carried out using a four-
dimensional hypercubic lattice. For 15 clusters with

an average of 1600 particles per cluster the result
P=0.304+0.011 (D&-3.29 &0.12) was obtained.
Somewhat larger clusters could be grown by storing
only the coordinates of occupied lattice sites in the
computer. Three clusters with 5000 particles each
were generated in this way. The radius of gyration
exponents (P) obtained from these three clusters had
the value P =0.292 +0.03 corresponding to a Haus-
dorff dimensionality of 3.42+0.45. By combining all

of our four-dimensional clusters the result P =0.301
+ 0.009, D&- 3.32 J0.10 was obtained.

DISCUSSION

One of the most interesting aspects of these simu-
lations is the relationship between the Hausdorff
dimensionality D and the Euclidean dimensionality d.
For a sticking probability of 1.0 at nearest-neighbor
positions, we find D/d =0.840+0.02 for d -2,
D/d =0.835+0.02 for d =3, and D/d =0.830
+0.025 for d -4. Preliminary calculation on a five-
dimensional lattice indicates that Rs —N&(P —0.24).
This implies D/d —0.83 ( 6 ) for d -5. Calculations

are also being carried out using a six-dimensional lat-
tice model. The observation that the Hausdorff
dimensionality is independent of lattice details (and
independent of whether a lattice is used or not) is not
surprising. However, the result that the Hausdorff
dimensionality is insensitive to the sticking coefficient
(over the range 1.0 ~ S ~ 0.1) was not anticipated.

In carrying out these simulations we have generat-
ed the largest clusters which were practical on our
VAX 11-780 computer. Nevertheless, the variability
in the results obtained from calculation to calculation
was surprisingly large. This may be related to the
fact that the calculations described here can be re-
garded as a simulation of the dendritic growth insta-
bility in the limit where fluctuations are dominant. '
Regions of the cluster near the perimeter "shield"
the inner portions of the cluster and grow preferen-
tially. Fluctuations in the cluster perimeter are
enhanced by the diffusion-controlled growth mechan-
ism and tend to be amplified. For this reason the
shape of the cluster at late stages is strongly depen-
dent on the shape at much earlier stages. This is il-
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lustrated in Fig. 1 which shows a typical cluster
formed by diffusion-controlled aggregation.

If all two-dimensional clusters grown with a stick-
ing probability of 1.0 are included the result

P =0.590+0.008, D~=1.69+0.02 is obtained.
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