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Magnetic field effects on the phase-induced biaxiality in cholesteric liquid crystals
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This paper makes a contribution towards understanding recent nuclear magnetic resonance

measurements of biaxiality in cholesteric liquid crystals. %e have made use of a simplified ver-

sion of Landau theory to obtain the magnetic field dependence of the biaxiality parameter q.
%hen the magnetic field H is greater than a critical value H„ the parameter q vanishes. For

H & H„ the ratio q(H)/q(0) is an almost universal function of H/H, . The predicted magnetic

field dependence is free of adjustable parameters, and comparison with experimental results can

be made unambiguously.
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In a recent nuclear magnetic resonance (NMR) ex-
periment, Yaniv et al. observed sizable biaxiality' in

cholesteric liquid crystals which are binary mixtures
of 4-methoxy-benzylidene-4'-n-butyianiiine (MBBA)
and 4-n-butyl-oxybenzylidene-4'-n-heptyl-d4-analine.
Their experimental results confirmed early theoretical
speculations, 3 4 based on symmetry arguments, that
cholesteric liquid crystals are biaxial. The observed
biaxiality indicates a noncylindrical distribution of the
molecular orientation about the average direction,
with a larger fluctuation along the pitch axis of the
cholesteric helix. The measurements also sho~ed
that the biaxiality increases with temperature and has
a strong temperature dependence near the cholesteric-
blue-phase transition point. Both features of the
experimental results can be qualitatively understood
in terms of a simple Landau theory3 ' or a gen-
eralized Maier-Saupe molecular-field theory of
cholesterics. ~~ Nevertheless, the magnitude of the
biaxiality and its strong temperature dependence
near the phase transition are some~hat unexpected.

In this Communication, we consider the effect of
external magnetic field on the biaxiality. %e will be
interested in the case in which the magnetic aniso-

tropy of the material is positive, and in a physical
configuration in which the external magnetic field is

applied perpendicular to the pitch axis of the
cholesteric helix. A very similar problem was studied

by de Gennes some years ago'0 without considering
the biaxial order. %e make use of a simplified ver-

sion of Landau theory to obtain the magnetic field
dependence of the biaxiality parameter g. %ithin our
model, the ratio g(H)/g(0) is an almost universal
function of H jH„where H, is the critical field

strength, above which q vanishes.
In the Landau theory of the cholesteric phase, the

order parameter which describes the orientational or-
der is a traceless symmetric tensor Q»( r ). ' Its
most general form is given by

The triad f, m, and ~ of unit vectors indicates a set of
local principal axes for which the tensor Q» is diago-
nal. As usual, we use the vector il ( r ) to designate
the direetw, which is the average direction of the
molecular long axis over a volume element at posi-
tion r . The quantity S is the Maier-Saupe order
parameter, 6 and q is a measure of biaxiality. In a u-

niform nernatic liquid crystal, the vectors m, i, and 1

are constant vectors and q is zero. The free-energy
density, written as a power series in Q», "is given

by
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where the coefficients a, b, c, Lb L2, and qo are
phenomenological parameters, X & is the magnetic
susceptibility tensor, and repeated indices are
summed. %'e adopt here the standard point of view"
that the cholesteric is a distorted form of the nematic
phase. The constant qo has the dimension of an in-

verse length. If qo 0, the theory describes nematics
as well. %e assume that the susceptibility tensor X ~
is related to the order parameter Q» by

xm» xs(g»+ yQN» y

~here X is the average susceptibility over all direc-
tions and y is a normalization constant. %e sha11

only consider the case in which y & 0. The magnetic
free energy relevant to orientational order is then re-
duced to

In order to describe the helical arrangement charac-
teristic of cholesterics, we take the / vector to be the
pitch axis and choose the coordinate axes such that it
is along the z axis. The vectors n, and m are
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parametrized by a single angular variable 8:

ni = (sin8, —cos8, 0)

n = (cos8, sin8, 0)

The magnetic field H is taken along the y axis. Here we also assume that the order parameters S and q are con-
stants independent of the position vector r, and 8 is a function of z only. With these assumptions, the total free
energy is given by

1 1
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where 8, denotes d8/dz.
A discussion based on the free energy given above is, of course, possible in principle. However, it would not

be particularly illuminating, as it would involve consideration of an enormous parameter space. We simplify Eq.
(7) by rewriting 5 as

5=So(S)+Pi, Si= Jtd'r Brtz+Kr 1+—(8,' —2qo8, ) —X, H2 —1+—sin28 ——,(1+r})
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where Fo(S) is the part of the total free energy
which depends on S only,

and

B -- S+—S+—S
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In making this simplification, we have ignored a
term quartic in g. This approximation is justified
since the observed biaxiality q is only a few percent
except in the small temperature region very close to
the phase transition. Furthermore, we assume that
the equilibrium value of S will not be significantly af-
fected by textural distortion and external magnetic
field. Therefore S is effectively determined by Fo(S)
only. This assumption is consistent with optical
data, "and was also made by Yaniv et al. in analyzing
their NMR data. " The results of a recent study on
biaxiality9 by Lee and Lin-Liu based on a generalized
Maier-Saupe molecular-field theory also support this
assertion. We shall proceed in our analysis by treat-
ing 8 as a constant, independent of external magnetic
field, and assume that it is positive, since we are not
interested in biaxial nematics in the present context.
The constant Kq is the Frank twist elastic constant, "
and x, is the anisotropy of the magnetic susceptibili-
ty" in the uniaxial nematic conformation (i.e.,
g =0). Both quantities can be directly measured.

In the absence of external magnetic field,

This relation can be used to determine the free
parameter B, once q(0) and Krqo' are known from
experiment.

For finite H it is convenient to introduce a length
scale gH, the magnetic coherence length, which is in-
versely proportional to H:

' 1/2
KT4.= x, H

(10)

One of the equilibrium solutions for the angular vari-
able 8 is

sin8(z) =sn —kz
d

where sn(u) is the Jacobian sine function, the con-
stants d and k (0~ k & 1) are related to the biaxiali-
ty parameter q and the magnetic coherence length
4:

d = fH(1+ —v))+, (12)
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8 = qz +const minimizes the free energy. This solu-
tion describes a uniformly twisted helix with pitch
P = rr/qo. The corresponding equilibrium value of q
is given, according to Eq. (g), by
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Here E(k) is the complete elliptic integral of the
second kind. This solution represents a distorted hel-
ical configuration. The corresponding result for the
case of no biaxiality (g-0) was originally obtained
by de Gennes. ' To determine the equilibrium value
of g for a given H, we minimize the resulting free
energy,

F,(q) =Bq' x,H—' x.H—' —,—1 (14)

F„=—X,H2 (15)

This indicates a uniaxial nematic conformation.
When the magnetic field is reduced below a critical
value H„

2' 1/2
rOo

2 X~
(16)

Eq. (13) admits a solution for k with q-0. Compar-
ing F„with Fr(0) in Eq. (14),

F„—Fr(0) =X,H —
~

—1 ~0,1

Here k is considered as a function of q through the
relation given by Eq. (13). Since the right-hand side
of Eq. (13) is bounded from below, for a sufficiently
large magnetic field (i.e., H m, gH 0) there is no
solution for k, and the distorted helical arrangement
is impossible. Another possible equilibrium solution
for 8 is e = w/2. This solution corresponds to the
physical situation in which the director n points uni-
formly along the external magnetic field H. Substi-
tuting this solution into Eq. (8), we find the equilibri-
um value of q vanishes, and the corresponding free
energy is

q(H)/g(0) approaches a universal function of
H/H„which is specified by the function G (k ) of
Eq. (18) with the value of k determined by the rela-
tion H/H, -k/E(k).

This universal function is shown in Fig. 1. The
reduction of the biaxial parameter g at H -0.5H, is
about 15'Iro, and at H 0.9H„ it is about 509o. As
H H„g(H) is inversely proportional to
ln(1 H/H, )—. We have also numerically evaluated
the rt(H)/q(0) for q(0) -0.01, 0.05, and 0.1. The
deviation from the universal curve increases as H ap-
proaches H, . Nonetheless, the maximum derivation
at H =0.9H, is only a fraction of one percent, and
at H -0.95H„ it is about 1%. For practical purposes,
the ratio q(H)/q(0) shown in Fig. 1 can be con-
sidered universal.

We close by noting that in the standard Landau
theory the cholesteric phase is considered as a twisted
form of the uniaxial nematic phase. The appearance
of biaxiality in such a theory is a natural consequence
of the helical texture characteristic of cholesterics.
Another possible physical origin of biaxiality related
to the manifested molecular asymmetry was also sug-
gested before. ' To distinguish experimentally the
above possibilities is certainly of significance. In this
paper we have simplified the standard Landau theory
on physical plausible grounds, and obtain an almost
universal behavior of the phase-induced biaxiality
parameter q under the influence of external magnetic
field. It should be noted that in the weak-biaxiality
limit, results of our calculation are exact within the
framework of Landau theory. The predicted magnet-
ic field dependence of the biaxiality parameter q is
free of adjustable parameters, and comparison with
experimental results can be made unambiguously.

(17)

where

it is obvious that the nematic conformation is no
longer stable when H & H, . For H & H„ the biaxial
parameter rt(H) can be written as

rt(H) G (k)
[1 —

i [1—G (k ) ]q(0))
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G(k) = 1+ —k Ei(k)
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0.4-
In writing out this expression, we have eliminated the
phenomenological constant B in favor of the directly
measurable quantity q(0) [see Eq. (9)]. The con-
stant k is determined from Eq. (13), which can also
be written as

0.2-

H k
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In the weak-biaxiality limit, [i.e., q(0) ~0], the ratio
FIG. 1. The magnetic field dependence of the biaxiality

parameter g in the weak-biaxiality limit.
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