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Amplitude equation near a polycritical point for the convective instability
of a binary fluid mixture in a porous medium
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An amplitude equation is derived for a binary fluid mixture in a porous medium, in the vicin-
ity of the intersection point of the lines of stationary and oscillatory instabilities. This point
represents an experimentally realizable example of a codimension-two bifurcation.
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The investigation of bifurcation phenomena in
fluid dynamics has attracted increasing attention dur-
ing the last decade.!™ For various systems in con-
densed matter physics (such as, e.g., simple fluids,!
fluid mixtures,* or liquid crystals®) subjected to exter-
nal temperature gradients, the first instability which
occurs might be either stationary or oscillatory. The
behavior of these systems near onset may often be
exactly described by amplitude equations,® which are
differential equations for the amplitudes of the criti-
cal modes at the instability. A natural problem which
arises in this context is the derivation of an ampli-
tude equation near the point in parameter space
where the lines of stationary and oscillatory instabili-
ties intersect.

The purpose of the present paper is to derive such
an equation for the convective instability of a binary
fluid mixture in a porous medium.”-8 We thus find
an experimentally realizable example of a codimen-
sion-two bifurcation, a phenomenon which has at-
tracted recent attention in the mathematical litera-
ture.> !

The nonlinear equations for the deviations from
the heat-conducting state may be written in the usual
dimensionless units,’ as

[(Kk/Pev)d, +11Aw — A0 —¥Ayc =0 ,
Rw+(-98,-v-V +A)9=0 , 6))]
Rw—(D/k)A8+[(D/)A—8,—V-T]1c=0 ,

where wis the zcomponent of the velocity V, R is
the Rayleigh number, V¥ is the separation ratio, « and
D are the thermodiffusivity and the diffusion coeffi-
cient, respectively, and K «//?ev, which contains the
permeability K, the porosity e, the kinematic viscosity
v, and the height of the layer / is a coefficient which
turns out to be very small, and will be neglected in
what follows. The second and third equations above
are the dynamic equations for temperature 6 and
concentration field ¢ and have the same form as

in a binary fluid mixture.!? The velocity field of a
porous mixture is no longer a conserved quantity;
thus the equation for the averaged velocity ¥V changes
its structure: It is a differential equation which has
no second-order spatial derivatives characteristic of
diffusion processes (cf. Ref. 13 for a detailed discus-
sion). To arrive at the first of the Egs. (1) we have
eliminated the pressure making use of the incompres-
sibility condition.

The boundary conditions for the velocity field
V= (u, v,w) for a rectangular box with sides L,, L,,
L,=1lare

u=0 for x=0,L, ,
v=0 for y=0,L, , 2
w=0 for z=0,L, .

For the temperature and concentration fluctuations
we assume

9,0=09,c=0 for x=0,L, , (3a)
9,0=29,c=0 for y=0,L, , (3v)
0=c=0 for z=0,L, . 3¢)

Inserting the ansatz

w W(t) . T2 mwX
[g]= ggtt)) smL—zcost— , 4)

the linearized equations are solved by setting W (¢)
= Wyexpat, etc., which leads to a cubic polynomial’

yo*+ot—ac—B=0 . (5)

This equation allows for an oscillatory instability for
B <0 when a —0, which occurs at

R =R, (¥)=47*(1+D/x)(1 +¥)71 | ©)

and a stationary instabiltiy for « <0 when 8 —0,
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which occurs at

R =R (¥)=47*(1+¥ +¥x/D)™" . (M
At the “‘polycritical point”’ (a=8=0)

Y=ype=—(1+«/D +«*/D)7" , ®)
we have

Reo=Ri=R,=4w*(1+D/x+D*x*) , (9)

and the two instability lines in the (R, ¢) plane inter-
sect. It is easy to see that the first instability is sta-
tionary for ¢ > . and oscillatory for ¢ < ¢, and that
the oscillation frequency wg vanishes at the polycriti-
cal point, a =8=0. Furthermore, it turns out’ that
near this point the third eigenvalue of the cubic poly-
nomial is negative, so we may drop the cubic term
for sufficiently small o

The nonlinear equation satisfied by the real func-
tion W () near the polycritical point will thus have
the form

W—aW—-BW+f(W,W)=0 , (10)

where the unknown function fis to be determined.
Taking into account the symmetry of the basic
equations'* we are left with the ansatz f = f; w3

+ f,W? W, i.e., with two undetermined constants.
To find these we can either perform a direct expan-
sion of the system (1) around the polycritical point,
or else we can match Eq. (10) to the previously
derived® amplitude equations valid along the oscilla-
tory and stationary instability lines separately. We
have carried out both calculations' and find the same
answer, which is given by

W—(a—fL,WOW—-(B+AW)YW=0, (11

a=27%(1+D/x)[(R —Re)/Rs] (12)
B=4n*(D/k)[(R —R)/R] , 13)
fi=m/4 , 14)
fr=(1+«/D)/4 , 15)

where R, () and R () are given in Egs. (6) and
.

Equation (10) is one of the standard forms for a
codimension-two bifurcation.’~!! It displays a stable
fixed point in quadrant III of Fig. 1, a stationary
(pitchfork) bifurcation for fixed a <0 when 8 —0 to
quadrant IV, and an oscillatory (Hopf) bifurcation for
fixed 8 <0 when a —0 to quadrant II. Because of
the signs of f; and f; in Eq. (11), the stationary bi-
furcation is inverted (i.e., the fixed point in quadrant
IV is unstable) and the oscillatory bifurcation is
direct, (i.e., the limit cycle in II b is stable). It may
be shown by a nonlinear analysis'®! that the limit
cycle disappears along the line L, given by «
=—(f2/5/1) B, where the limit cycle has infinite
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FIG. 1. Schematic phase portrait of the behavior of Eq.
(11) in the vicinity of the polycritical point a=8=0. The
parameter space is divided into sectors with different charac-
teristic behavior. In each sector we show typical phase-space
orbits and the stability of various attractors (the stable fixed
point is shown as a solid circle, the unstable ones as open
circles, and the stable limit cycle is a thick solid line; orbits
are drawn as thin solid lines). Quadrant III has one stable
and two unstable fixed points, while quadrants I and IV
have one unstable fixed point, with an inverted stationary
bifurcation along the line 8=0, a <0. On the line a =0,

B < 0 the system makes a forward oscillatory bifurcation to
a stable limit cycle, which disappears along the line L; where
the oscillation period diverges. In sector IIa there are three
unstable fixed points joined by a heteroclinic orbit.

period and its orbit intersects the unstable fixed
points. In the sectors Il a, I, and IV, Eq. (11) only
displays unstable fixed points (since f; >0), so it
would be necessary to go to higher order to have a
complete description of the dynamics near the
polycritical point.

The results presented here are not restricted to this
system, since intersections of stationary and oscillato-
ry bifurcation lines occur in the thermohaline prob-
lem!'®!7 and in convection in magnetic fields!® or under
rotation.! Such intersections also occur in ordinary
binary mixtures* (not in porous media), but the cal-
culations for that case are more complicated, and
have so far only been carried out for the unrealistic
case of free-slip boundary conditions.!* An important
advantage of Soret driven instabilities in binary mix-
tures*’ over the thermohaline systems!®!” is that in
the former the polycritical point may be reached by
varying physical parameters, such as the temperature
and the concentration, independently. In the ther-
mohaline case, on the other hand, the control param-
eters are temperature and salinity gradients and these
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cannot be varied independently in realistic experi-
ments.

An obvious generalization of our work is the in-
clusion of slow spatial variation® and consideration of
more realistic boundary conditions than used in Eq.
(3). Note, however, that in contrast to other hydro-
dynamic instabilities, the rigid velocity boundary con-
ditions (2) are easily satisfied in porous media. It is
only our concentration boundary condition (3c)
which is idealized. The proper boundary condition is

J=(kr/T)d,0 +9,c =0, but its implementation re-
quires numerical computations even for the linear
problem.
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