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Excitation operators associated with antisymmetrized geminal-power states
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Various expressions for antisymmetrized geminal-power (AGP) states are reviewed.

With the use of a simple relationship for creation and annihilation operators of BCS (Bar-
deen, Cooper, and Schrieffer)-type states, such operators are characterized for AGP and
GAGP (generalized AGP) schemes. The effect of degeneracy in the first-order reduced

density matrix on these operators is displayed.

I. INTRODUCTION

Recent work on the problem of consistency of the
random-phase approximation [(RPA} (Refs. 1 and

2)] has lead to the consideration of generalized an-
tisymmetrized geminal-power (GAGP) states as
proper vacuums for particle-hole excitations at this
level of approximation. Using suitably optimized
GAGP states one can construct self-consistent po-
larization and one-particle-hole propagators that
can be associated with a model Hamiltonian. '

This leads to an approximate physical picture that
emphasizes the linear-response aspects of the sys-
tem, the accuracy of which depends on the impor-
tance of one-body terms in the exact description.

This approach replaces the uncorrelated Fermi
sea, described by independent-particle states (IPS),
by a correlated one described by GAGP states as
the underlying entity on which one-particle excita-
tions act. The conceptual simplicity of one-particle
excitations that either annihilate or create new
states from the sea is not lost, as one can define
operators that have entirely analogous properties to
the conventional particle-hole operators. These
operators are described in Secs. III and IV. Such
operators have been mentioned previously by Rosi-
na in the context of showing that the second-order
reduced density operator of an antisymmetrized

geminal-power (AGP) state is uniquely associated
with that state. These AGP states are special cases
of GAGP states (see Sec. II).

Significantly, these operators are, in fact, not al-

ways well defined as the transformation defining
them becomes singular when the first-order reduced

density operator associated with the GAGP vacuum

has eigenvalues that are more than doubly degen-

erate and a rank greater than N (the number of par-
ticles in the system) (Sec. V). This problem was al-

luded to in Ref. 6 but not studied there. However,

we show that in these cases one can replace the nor-

mal excitation operators by abnormal ones that are
well defined but whose adjoints do not annihilate

the vacuum. This has some interesting and pro-
found physical consequences which are discussed

elsewhere, and is also reflected in an increased

symmetry of the GAGP vacuum.
The AGP states have been extensively considered

in the realm of superconductivity where the degen-

eracy just described plays a key role. ' They have

also been considered as approximate states for
molecular systems. " The AGP states are particle-
number projected Hartree-Fock-Bogolyubov (HFB)
states, which are themselves generalized Bardeen-
Cooper-Schrieffer states [(BCS) (Refs. 12 and 13)]
(BCS states have a fixed pairing assumed between

one-particle states while HFB states have a pairing
determined by a variational procedure}. The HFB
states have been comprehensively used in nuclear
calculations; see, for instance, Ref. 14 for a recent
review. One can associate with such states particle
nonconserving quasiparticle excitation operators
whose adjoints annihilate the HFB vacuum. ' The
relationship between these various states is reviewed

in Sec. II.
The replacement of the IPS (uncorrelated)

description of the Fermi sea by the GAGP (corre-
lated) description is a true generalization as the
latter includes the former and reduces to it in the

27 57 1983 The American Physical Society



58 BRIAN WEINER AND OSVALDO GOSCINSKI 27

II. FORMS OF AN AGP STATE

Pure fermion states are elements of an infinite-
dimensional exterior algebra' based on a one-

particle Hilbert space P '. The exterior algebra
4 = A (P '}is itself a Hilbert space and is normally
called fermion-Fock space. P is defined to be the
direct sum of A N, 1V-particle fermion space, for
N=0, 1,...,0o, with the inner product defined by the
sum of the individual inner products, i.e.,

6 P
N=0

(2.1)

absence of interaction. The fact that the correlated
excitation operators can be of two types, normal
and abnormal —a phenomenon not seen in the un-

correlated case—has profound ramifications which
can lead to a particle-conserving theory of super-

phenomena (unlike BCS theory). The normal exci-
tation operators lead to a model based at a higher
level of approximation than the Hartree-Fock (HF)
model, for excitations between energy levels in
molecular and nuclear (especially light nuclei) sys-

tems that maintain particle-number symmetry.
This model retains many of the attractive features
of the HF approximation that have allowed the

ready development of qualitative pictures of physi-
cal systems, as the excited states can still be ex-
pressed in terms of one-particle operators acting on
the ground state.

In this article we extend and rederive some
known results that have appeared in less accessible
sources (e.g., Ref. 6). However, in contrast to these
earlier presentations we wish to emphasize the per-
tinence of these results for the properties of excited
states and excitation spectra.

Notationa! comments In this text
I

v& always
denotes a normalized vector, v denotes both normal-
ized and unnormalized vectors. z signifies the com-
plex conjugate of the complex number z, other nota-
tion will be introduced in the course of this article.

metrized tensor product defined by
1

ui Aui= , (-ui 8vi —vp Sui)

Vi, Vp 6A (2.3}

where c (g) is a normalization factor,
g&P =h P ', and where the product is taken
N/2 times.

The definition (2.4) together with the term gemi-
nal' for an element of A justifies the name "an-
tisymmetrized geminal power" describing states of
this form.

Any element g EA, can be expressed in canoni-
cal form' as

S

(2.5}

where 2s=r=dim(A '), g; Ec, IP;;1&i &r ) forms a
complete orthonormal basis (conb) of A ' and

I PtP; &=(I/~2)(t);. A P;+,.
Given any g EA the form (2.5) can be found by

forming the orthogonal projector Ig&&g I
onto the

state g and contracting it to obtain its reduced
first-order density operator' ' D '(g), i.e.,

D'(g) =L2(
I g & &g I

) (2.6)

(For a discussion of the notation L$ to describe
linear maps: A ~~ called contractions see, for
example, Refs. 4, 19, and 21.) The projector

Ig&&g I
can equivalently be described as a full

two-particle density operator.
The spectrum of D'(g) is completely discrete,

positive, and contains eigenvalues that are at least
doubly degenerate (this is due to the antisymmetry
of g). Using the spectral theorem we have

S denotes normal tensor product. '

An AGP state /~op associated with N particles is
a normalized N/2th-exterior power of a two-
particle fermion state, i.e.,

I
tI}Aop&= Ig &=c(g)g A Ag=c(g)g'

(2.4)

&uIv&= g &uN IvN&N, u, v&~
N=0

D'(g}= g tt ( I({}.&&A I+ I A+. &&4+. .
I »

(2.7)
u= ~ uN~ v= g vN~ uN ~UN&~ N

N=0 N=0

{2.2)

For more details on the construction of A see, for
example, Ref. 16.

The algebraic product in A is "A" the antisym-

where (P;,P;+„'I &i &s) are orthonormal vectors
that span the eigenspaces associated with the doubly
degenerate eigenvalues I n;;i &i &s j .

The spin orbitals (elements of A ' are called such)

(P;,I &i & r j are the canonical ones for g, i e , g has. .
a Fourier expansion with respect to the conb
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ie.
g, =nje ', i &j&s . (2.8)

I ~ p;pz ),I & i &j & r ] of P' given by (2.5}. The oc-
cupation numbers [i.e., eigenvalues of D'(g)] deter-
mine the Fourier coefficients I g;, I &j&s j up to a
phase factor, i.e.,

where 0(8~ &2m.
Using the canonical form (2.5) an AGP state can

be expressed in configurational form (decomposable
elements of A are called n-particle configurations)
as

I
g"")=c(g

i&i|«" 1N/2&$
(2.9)

c(g) =S~~2(n ) (2.10)

Swn(n) =
1 &i

&
« igg]2 &S

n; . . n; . (2.11)

Another way of writing an AGP utilizes the an-
tisymmetrizer M~, which is an orthogonal projec-
tor

The normalization factor c(g) can be expressed as
the inverse square root of the N/2th-degree sym-
metric function S~~q(n } of the eigenvalues

I n;; 1 &j&s ], i.e.,

I

translates to a more familiar form, i.e.,

(x, x„~g" ')
=c (g4fng (x ixi) g (x~ ixn), (2.16)

where g(yiy2)=(yiyq ~g) and the arguments are
space-spin coordinates.

We now introduce the "second quantization"
map at( ):4 '~B(P ) for fermions. B(A ) is the
set of bounded operators acting in A, also called
the Fermi-Fock algebra. This c-linear map is de-
fined by

. (I A'~M S A'—= A P' (2.12) a (v)~w)= ~vAw), vEA ',
where 8 4 ' is the full n-fold tensor product of
P ' with itself and M~ S A ' a subspace of an-
tisymmetric tensors, which is isomorphic to the
space A A '=A . The antisymmetrizer is de-
fined in terms of permutation operators P that
form a representation of S~ the symmetric group of
degree N, defined by

wg (N!) ' g ( —1——)
o6' (2.14)

where e(o) is the parity of the permutation o, i.e.,
the number of adjacent interchanges necessary to
obtain Io(1), . . . , u(N)] from I 1, . . . , N). An
AGP state can then be expressed as

(2.1S)

where the tensor product is performed N/2 times.
In the Schrodinger representations this expression

iÃ tr(1) ice(n)

1&l1 ' ' sl~(T

o ES~, n:t 1, . . . , N]~[o(1), . . . , o(N)(, (2.13)

and cr is a permutation of the integers [ 1, . . . , N]
([ ~ P;, . . . P;„); 1 &i; & . &iz &r] forms a conb

of 8 A ' so P~ is well defined). M~ is then de-
fined as

[/v[/=I, V
/
w)FA (2. 17)

where
~
u) denotes a normalized vector in the

direction of u. This map is easily extendable ' to an
algebraic map:4 ~B(P') and this extension is
essentially a normalized left regular representation
of the exterior algebra A .

The operators a (v) with their adjoints a (u) alge-
braically generate all of B(P ) and satisfy the im-
portant canonical anticommutation relationships
(CAR):

[a (u),at(w)]+=0,

[a(u), a (w)]+=Re(u
~
w)I .

If [P;, 1 &i & r ] are the canonical spin orbitals of
a geminal g then this two-particle antisymmetric
function can be written as

S

g= gg;a (P;)at(P;) ~P)

;a; a;.

(2.18)

where
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G = g g;a;ai-,t t

a; =a (P;), 1&i &r

and the vector
I P) is the normalized vacuum vec-

tor that spans A . Using this representation of g
I

an AGP state can be expressed as

N/2) ( )(Gt) / (2.19)

A further form of Ig
/ ) can be obtained by

selecting a reference configuration 4z from A

then with a normalization constant K

N/2 'M

M=0 p),p2, h), h2

(2.20)

The h1,h2 vary over the index set of the occupied
spin orbitals in 4z and p1, p2 over the unoccu-

pied, e.g., if we take the reference configuration to
be Ixi ~ xN) then

bp =b t{Xp}, N + I &p & r
(2.21)

bh b(Xh——), 1&h &N .

The complex numbers (Cp, h p, h j are known as

correlation coefficients. If the reference configura-
tion is chosen to be a canonical (also called
natural} configuration of

I g ), e.g.,
ps =

I piping
' '

Ijl}N/2lpN/2~g ) and the operators

ap refer to natural spin orbitals (NSO's) of g, then

the expression (2.20) assumes a simpler form (Ap-

pendix A), i.e.,

I
gN/2)

N/2
=K g (M!) '

M=0

x —g Cphp y h+ apahap+ ah+ @A

p, h

(2.22)

The "correlation" term

t—g Cphpygh+gapahap ~gah ~g
p, h

can be factorized as

tg Cphp /sh +sap ah p +sah +s
p, h

I

coefficients is strictly less than N/2, then (2.22) ac-

tually defines a GAGP state 4G&Gp. These are the
states of the form

I
@'oAop ) =

I
~' ~g" (2.25)

where 4 is an M-particle independent-particle state
(IPS) which is strongly orthogonal to g /, i.e., the
NSO's of 4 are orthogonal to those of g or,
equivalently, g. The GAGP states can also be for-
mulated in terms of the zero-particle vacuum as

(Gt)(N M/2)
I y )— (2.26)

where

t t tG = g g/a/ag+g .
i =M+1

{2.27}

One can easily see that GAGP states can be used

to describe systems with an odd number of fermions

by letting M be odd and replacing M by M+1 in

(2.25) and (2.26).
The relationship between the forms (2.19) and

(2.22} is given by

('% } ai ai+s+ g 9Iatal+'sa-1t t t t
1gi gN/2 N/2+1 pi gs

= y g, a,'a,t„ (2.28)
1+i gs

when 2};~, 1(i &N/2, and the normalization
constant K is given by

' 1/2

t t ay gpapap+g y 2}h ahah+s
p h

(2.23) K =c (g)(n1 nN/2)'
n1 ' '

nN/2

SN/2(n )

(2.29)

so that

)+sh+s={ f~ } )pp+shh+s (2.24)

If the "hole" geminal G& ghvih ahah+, ——has

smaller rank than N/2, i.e., the number of nonzero

It can be seen from (2.28) that an AGP state be-

comes a GAGP state when one or more of the coef-
ficients I g;;1 &i (s J becomes infinite. The
behavior of the normalization constant K in this
case must be examined:
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' 1/2
ni '

nN/2 = 1+
S~n(n)

' —1/2

N/2 1 N/2
1&]1« . . ]N/2&s

(2.30)

where the prime in the summation denotes that the
term n i

.
nN~2 has been omitted. Equation (2.30)

is also equal to

=P(g) g (N!) '$~(n)'~2lg~& .
N=0

(2.36)
~ ~ ~

1 N/2 —1

n e ~ ~ n1&i1 ~ « iN/2 —1&s 2 N/2

n. ~ n-
1 N/2+' t

n . n1 1~l1&" &gN/2-1&s 2
'

N/2

—1/2

Hence

1114HFB&ll'= I p(g) I

' g (N') '$~(n) .
N=0

(2.37)

(2.31)

(Here the prime denotes the absence of n2 nz&2).
Letting n i ~ ao one finds that Eq. (2.31) yields

' —1/2
n o ~ ~ n 'N/2-1

n n1 &i1 — &'N/2 —1&s 2 N/2

s

I NHFB&=p(g) p(1+(;a;a;) I 0 &

i=1
(2.38)

The series gN 0(N!) SN(n) can be shown to be

convergent, thus leading to a finite value for p(g),
«g»e II I (()HFa& II = l.

The relationship (2.28) can be further simplified
ta give the well-known result

n2 '
nN/2

SN/2 —1(n )

' 1/2

(2.32)

An AGP state associated with N fermions can be
simply formulated in terms of a HFB state as

(2.39)

The behavior af EC when n;~oo for one or more
i E I 1, . . . , N J thus follows from (2.32).

Yet one more way of obtaining an expression for
an AGP state is furnished by HFB-type states PHFs,
which do not have a fixed number of particles and
are defined by

where PN is the orthogonal projector onto the sub-

space 4 of P associated with N fermions and

v(g) =P(g)(N/2)! 'SN~q(n )'

I
PHFs&=p(g)e'

l 0&,

where P(g) is a normalization factor and

(2.33)
III. EXCITATION OPERATORS ASSOCIATED

WITH AGP STATES

6 =gga;a;. . (2.34)

INHFs&=p(g) g (N!) 'g",
N=0

(2.35)

Equation (2.33) is actually a generalization of the
states used in superconductivity theory which are
there translational invariant i and i being associated
to modes of opposite momentum and spin. ' In
(2.33) any pairing of the degrees of freedom of the
system is possible. Equation (2.33) can be expanded
to give

In this section we discuss two linearly indepen-
dent sets af operators both af which linearly span
one-particle operatar space, i.e., any one-particle
operator can be expressed as linear combinations of
them. One of these set the set of normal excita-
tion operators —has been displayed previously but
the other (abnormal excitation operators), ta our
knowledge, has not. These sets of operators are im-
portant in the construction of self-consistent
particle-hole propagators at the random-phase level
of approximation.

If we redefine the index i to be —i, where
1& Ii I

&s, it is easy to derive the following rela-
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tionship from (2.33) (see Appendix B):

i2i I yHFB& =sgn(ig' u 14HFB&

1& ~i [ &s . (31}
This implies that

iik iil PN I {IiHFB&
= 0—(PNiik iii

I PHFB &
t

ukii;PN
I PHFB&=0;PNuku ;I P-HFB&

t

ii+'PN I ijiHFB & giPNiigii~ I {{HFB &
f

iigiiiPN
I PHFB & =kiPNii~iir I {{'HFB& .

(3 2)

Using the anticommutation relationships and (3.1) on the (rhs) of (3.2) we obtain for ps~
akaiPN [QHFB&=sgn(k)g lgka;.'a~PN IPHFB& I& Ii I

& Ik I
&s

which gives

[gkaka; sg—n(ik)g;ai-a~]g / &=0, 1& ~i
~

&
~

k
~

&s

as
~ g +

& is colinear with PN
~ $HFB &. It is thus convenient to define the following operators:

qis =4iikii sgn(i—k@ii;i't

We can easily extend the definition (3.5) to the case when gk =0 by noting that

0i i pig""&=Pi gl—g. ""&=&i i s Ig""&=Pi k lg""—&=

If g; =gk =0 we trivially have that

ui~iik
I g & = uksul g

and it is also easy to see that

a ii-. ~g &=a-a; ~g &=(a;~a; a i2 )~g —&=-. 0-.

(3.3)

(3 4)

(3 5)

(3.6)

(3.7)

(3.8)

The operators described above all annihilate
~ g /

&, their adjoints produce states that have the following
norms (see Appendix C}:

The operators in (3.7) and (3.8) are closed under the adjoint operation, so they and their adjoints annihilate

~

gN/2&

The operator definitions (3.5) and their adjoints can be collected together in matrix form as

0

a@ac

aka

a~a

a(t, I& fk/ & [if &s.
a;ak

a] ak

ta;a

a;. a~

(3.10)

These transformations define a change of basis for the operator manifold

»=~Iii ui I& liI Ij I
'&sJ (3.11)
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where W denotes linear span, described by

(a a &ata &o }~{qtqo},
where

ta a j=Ia;aj', 1& (i ) & [j [ &s,g;~j,
ta a j =I{ata )tj,
[cr] =((a;a;,a;a;.,a;. a;,a)-a;;1& ~i ) &sj, fa;aj. , l & ~i ~, [j ~

&s,g;=g =Oj j,

(3.12)

the transformation T that produces this change of basis can be brought to block diagonal form with 8X8
blocks (3.10) on the diagonal that transform

(a a &a a&)~(qtq}

and a unit matrix that describes the identity I o j~ I o j.
The determinant

~

T
~

of this transformation is easily evaluated as

~T~ = g (n; —nk)
1+i(k+s

(3.13)

This transformation is hence nonsingular only when n;Qnk, 1 &i & k &s. If n; =nk not only is T singular but

N/2~ ~gN/2) q ~gN/ ) q ~g
/ ) P

If n; =nk we can replace the associated block of T by another transformation given by

(3.14)

~ki

uk'

"ai

Uki

"k.

~r'

akai

aka

a~a;

a~a;.

a;ak

a-. ak

a;a~

a;. a~
f

(3.15}

with the determinant equal to (n; + nk) . However
the adjoints of Iuk;, u@~,u@,u~;. j do not annihilate

~ g / ) nor do the adjoints of I uk;, u&-, u&,.,u&;. j pro-
duce nonzero states when acting on ~g

/ ). This
result, a consequence of degeneracy amongst n s, is
a key feature in the excitation spectrum of systems
modeled by AGP states.

IV. EXCITATION OPERATORS ASSOCIATED
WITH GAGP STATES

The above results can easily be extended to the
GAGP case, by using the derivation properly of one
particle operators with respect to the product A,
i.e.,

Q(a Ab)=(Qa) Ah+a A(Qb) V a,b EA

where

0= 0"a aEJ 1 J
1 pi j &r

Hence

q (e Ag' ' )=( e) Ag'

+@g (qtg(N —M)/2)

q (@P, g~N ~~/2) —(~ ) p g(N Sr)/2

+@A (qg(N —M)/2)

(4.1)

(4.2)

(4.3)

(4.4)
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We consider first operators involving spin orbitals
in the geminal g, i.e.,

t t t
q =qk qk,

-. qr„. qg;.

and n(~, nk+0 then q @=q@=0 and these
operators and their adjoints have the same proper-
ties as before. If n( nk——+0 then the corresponding
qtg operators can be replaced by the u t,u operators
in exactly the same way as previously described.

When nk ——0 but n(~ two situations can arise: Ei-
ther the spin orbitals (I}k,(t(» are totally unoccupied,
in which case the operators qt,q referring to these
subscripts have the same properties as before, or t()k
and/or P» appears in (P.

(i) {ik and (I)» appear in 4. Then consider (2(a
I =ij, m =k,k,

uj(2~(qjhg'" ' ')=((2((i~qP) hg'" ' '+@h((2(a g'"- ' '}
((2&t(2 @) A g(N Ml/2 -p {4.5}

while

(2t (2 (@hg(N —M)/2) ((2t (2 ) hg(N —M)/2

~@A(&to,g(N M(/2)=-p

(4 6)

The first term is zero as P( does not appear in 4,
while the second term is zero by antisymmetry
as (j} appears in every configuration of
a~alg' ' and is also present in 4.

tq~W=(g, &;(2j+g((2j&;)ggk ~PkP»)
k=1

=(nj n()—
~ pjp(),

qijg =C j&(~j+k&j~&; ) g 0k I Ikey»)
k=]

=(nj n;}
~

—$+J),

q(j& (~joi uj 0 oj'u() g Ck I fk6)'
k=1

(5.2}

(5.3)

{ii}If only pk appears in e' then aj ak, i =i,i have
the same properties as in (i) while aj a» and a»a( act
in the manner of simple particle-hole operators with
a(a» annihilating and (2jcj creating. If p» appears
but pk does not the roles of k and k are just inter-
changed.

The only remaining case is when the operators refer
to spin orbitals that are either occupied or unoccu-
pied in 4 but do not apped at all in g' ~' . The
properties of these operators are, of course, the
same as simple particle-hole operators with respect
to an IPS vacuum.

V. EXCITED STATES DERIVED
PROM (gN~)

By excited states here we mean the states pro-
duced by the operators Iqkj, k =i,i;i jj=j a, cting
on ~g

/ ). First we consider the action of these
operators on g, i.e.,

q(jg=(gj(2; &; g;&j&;)$ gk ~
PkP»—)-

k=1

u;jg =(nj+n()
~ P(P ), -

u,jg=(nj+.n, )
~ pj's(),

uig =(nj+n;)
~ P+j),

ugg =(aj+%}I P(({}j),
t

(s.s)

which are the same set (up to norms} of two-particle
states as in (5.1)—(5.4).

We call the excitation operators
f qkt, k =i,i;i =jj J normal and I ukj, k =i,i;i =jj j
abnormal. This distinction is of crucial importance
in our discussion of sum rules, ground-state degen-
eracy, and the existence of the effective Hamiltoni-
an associated with a self-consistent particle-hole
propagator (SCIPHP).

Using the relationship (4.1) the effect of qt (or
u }operators on &N~ is easily obtained:

q(ig"/'=qtig A ".Ag = (qtjg) Ag"/'—J

=(nj —n; }
~
pj(}(};), (5.4)

when n& ——nj we can replace the q 's by u 's as be-
fore and one obtains that

={aj n, )
~ y, y, -), —. (5.1) (5.6)
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where the product is taken N/2 times (using the
commutativity of two-particle functions with

respect to A)

and (5.8) can be reexpressed in GAGP form, e.g.,

q,',g""= —(n, n—, )
1 y, y &A-. g

"
lJ 2 I j

q,',g""= (n—, n;—)
1 y;y;& Ag"" '.

lJ 2 J

Similarly,

(5.7} where

g= g Ch lkh(()g& . (5.9)

q,~ ~ = (—nJ n;—) 1$JP; ) A g

qtg~~'= (n;—n;)
1

—yy;. &
Ag"~'-' (5.8)

qtfg""= (n—; n;)—
1 y y;. &

Ag""-' .

As the spin orbitals t P;,P;,(!)i,g-l appear in g, (5.7)

The u t operators give rise to the same excited states
except that they are multiplied by a factor (nj+ n; )
instead of (nz n;—}.

The excited states obtained from a GAGP state
are easily analyzed in the same way.

"Doubly" excited states can be of the following
type:

N/2
CklQtgg

k =k„k„ l =l„l„ l, =i'&, i&, j =-j&,j&
q qtgN/2

After some algebra these states can be shown to be of the form (except for constant factors)

C114'0;&—0 I 4JPJ-&) Ag"" '+
l 4 %+JIB-& .Ag"" '

1 fhg() Ag ~ '+1/;P;PhP() Ag ~, k+1,l,i, l, I+i, i

1$;P&PhP~) Ag ~ ' i+j,j,k, k, l, I, j =k,k, l, l, k+1,I

and

(g;1$;P;) g~ lgig—-. ))Ag ~, lkl) Ag ~ ' k+I I .

(5.10)

(5.1 1}

{5.12)

(5.13)

VI. DISCUSSION APPENDIX A

We have shown that one can associate dressed an-
nihilators and creators with GAGP states in analo-

gy with IPS and associated particle-hole and hole-
particle operators. Furthermore, the excited states
produced by these creators also have GAGP form.
The creators depend explicitly on the canonical ex-
pansion coefficients of the geminal, while the norms
of the excited states produced by each of these crea-
tors are proportional to differences of the occupa-
tion numbers of the one matrix of the geminal. De-
generacies of this matrix have two consequences:
the ordinarily valid prescription for constructing ex-
citation operators has to be changed and the new
one leads to creators whose adjoints are not annihi-
lators. Significant ramifications of this are seen in
the linear-response properties of the GAGP model,
as well as increased degeneracy of the vacuum and
hence implied symmetry breaking. We discuss this
elsewhere.

The form of a state consistent with one-particle
excitation and annihilation operators is

N

4= g (m!)

C&)II p g bp, bg, bp2bp2
1&h& &h2gN

N+1 &p1 &p2 & r

{A1)

where

(i) @a= lg,
(ii)

(iio 4p|p& 0p~| 0h|h~ Ch2h|

Thus
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Cp] h~~h &p bh bp 6
1&h& &h& &N;N+1gp& &p&gr

=GpG~, (A2}

be written as

Ptt =&s U

~/=XIV.

(A9)

(A10}

where

X 4 p bp, bp,
p

N+1&p& &p&&r

G~= g its bs bs, .
1&h) &h2&N

By considering the antisymmetric states

N+1&p&,p& gr

Ge I ~ &
= —, X Pa, ,a, I &s,&s, &

1&hi,h~ &N

we can find unitary transformations

U:4 h

(A3)

(A4)

(AS)

(We have assumed that the set CP;;1&i &r] is a
conb for 4 '. ) Hence from Eqs. (A3) and (A7) and
Eqs. (A4) and (A8) we have

2 X ~pp I p p
N+1gp&, p& &r

1 p
r}p,p, Vp, p, vp~, I &p,&p, &

N+1&p&,p& &r
N+1&p3,p4 &r

(A11)

N+1&p&,p& &r

] H
gh3h4Uhth +h~h4 I ~ht+h~ & i

1&h&,h& &N

1&h3,h~ &,N

{A12)

so that

where P h is the Hilbert space spanned by the occu-
pied spin orbitals and

V:A p~A p, (A6)

where 4 p is the Hilbert space spanned by the unoc-
cupied spin orbitals such that

X
N+1&p],p& &r

As

P=Vg V'

gH U HUt—

Vt V= VV~=Ir

{A13)

(A14)

(A15)

where

pp+~ p p+~
N+1&p & [r —N]/2

(A7)

U~U= UUt=IN .

We obtain from (A13) and (A14) that

v'gpv=qp

(A16)

(A17)

v= [r N]/2—
UtgHU ~B UtgHU ~H (A18)

E if K is even

SC —1 if E is odd

r}its, I Ns, 4s, &

1gh&, h& &N

r)at +v I kt 6+v&
1&h &[Nj/2

where in this case v=[N]/2. (It should be noted
that r =2s, i.e., is always even due to the spin of
electrons. ) The change of basis (A5) and (A6) can

and the matrices gP, gH have the following struc-
ture:

(A19)

hlh2 '/hah), 1 & h 1 &h2 &N .H
(A20)

The operators U and V, that have matrix represen-
tation U and V with respect to the bases

=[ N]/2—
p ~Q~ s N + 1 &p1 &p2 &rp p

r)htht = tIhtht+Phth~ —w v [N]/2H H



27 EXCITATION OPERATORS ASSOCIATED WITH. . . 67

[Xh;1&h &N] and [X~;N+1 &p&r] of 4 h and

A p have representations over Fock space given by
Vb~V = g bp~Vp

N+1&p'&r
(A27)

U=exp t g Ah, h, b„,bh
1&h),h~ &N

V=exp i g App b. p bp
N+1&p&,p& &r

{A21)

(A22)

we can see that
1 p

Gr ~ g gr)i, ibr, b
N+1&p&,p& &r

p
2 W ~p 1p2 pl p2

N+1&p&,p& &r
(A28)

where

U iz~ V

p H
kp p =Ap p p Ah h —Ah h (A23)

and we have used U and V to denote the operators
defined both over P h, A p, and Fock space 4 .

Letting [a;;1&i & r ] be the field operators asso-
ciated with the basis jP;, 1&i &r] we can see that

ah ——Ub„U~, 1&h&N (A24)

GH= —i g ga, h bh bh
1

1&hi,h~ &N

1 ~ H
'9h, h, ~h, ~h,

1&h),h~ &N

GH =
g g kh, h, bh, bh,

1&h),h~&N

1 H
lhhahah

1&h&,h& &N

(A29)

(A30)

and

As

ap=VbpVt, N+1&P&r .

Ub„U = g bh Uhh

(A25)

(A26)

Noting that as U is a unitary map:A h ~Mh

~ A Uc B I
{UXi ) ~ ~ {UXlv ) )

=e' ~XiA AXg)

=4s as a state, a E [0,2n ] . (A31)
1&h'&N

The state 4 can be written in a rather simple form

m=0m=0

[N]/2 [N]/2
ip= g (m!) (GpGH) kg= g (vari'. ) p H f f 't8

rlpqh apa~hag
n+1&pg r —N]/2

1&h& N]/2

(A32)

where
I

where

p=p+[r N)I2—
and

qg
~

g p Af/2, ) (A33)

h =h + [N]/2 .

If the number of nonzero rlh is less than [N]/2 the
spin orbitals corresponding to the zero coefficient
will be in all the configurations produced from 4q.
So 4 will have the form

v=([N] —M)/2; M=2X

where X represents the number of nonzero coeffi-
cients. The spin orbitals jP;;1 &i &r] are easily
seen to be the NSO's of 4 as the configurations pro-
duced in (A32) are at least different in two positions
from each other.

APPENDIX B

We have the following:

a~+{1+/;a;a;. )
~ p) = g (1+/;a; a; )a~ghaha~

~
p).

i = l,i+k
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(1+(;a;a;)gka~aka j; I p &
t f

i = l,i+k

g (1+0«a;Ckk(1f t t
i = l,i+k

g (1+0.a'a Ckak I 0&
i = l,i+k

(1+/;a; a;)gkak(1+gkakaj;) I p&
i =1,i+k

0kak g(1+0.ai'a )
I 0&

i=1

{as [a;a;,aja ]=O-and [ &a,a;a;. ] =Oif iQk) similarly,

akII(1+0«'a )10&= Q (I+(a'a )akgk-akaj';
I y&

i = l,i+k

II ( I +0'a a skag I
'4 '&

i = l,i+k

(1+(;a; a;. )gka~(1 +gkaka~) I p&
t t f t f

i = l,i+k

=gkaEII(1+(la'a )
I

iti& .

We have the following:

APPENDIX C

'1&i &j &s

f
qi =gjaj a +g;a-;aj, .

t
qj ——gjaja;—gja; aj, (C1)

t ~ ~

qj gjajal ——g;a;aj,—1(i,j (s . (C2)

There are six types of overlap integrals between the excited states to be considered. As q,—. . =qji, 1 &i &j&s
we need only consider (Cl) and (C2) as follows.

(C3)

(C4)

Type 1:
(gN/2

I q qt gN/2&

=(g""
I (kyat'a +0 aa )(.4aj.';«+kal ak)g""&

CkkjD'(g"")j-z{iil+flkjD (g )jrsik+0k0 D (g ) '$5jl+flk D (g');pjk
gkggD (g )j—jZ Clk&D (g )j&—Z fkfiD (g )ii@—Pl/;D (g );klj-,

=(fiklfiil+~jlsik)[(9j91j+ 4i /li) kkkjD (g )ljik' k~J (g )kjil

(kg;D (g ')jjj; —k0;D (g ')k,jr]—,
where rj«'s are eigenvalues of D'(gN/2). [The first-order reduced density matrix of the AGP state Ig
and D2(gN~) is the corresponding second-order one.] If k =j and i =l but k+i (~j+1), then (CS) is equal
to
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8 S~/2+ 1—gigjS~/~
& Ii Qj

rjjtiij+rj(rju rjj—(g" '}- g—i—gg
'(g" ') " -g-&—g/D'(g" ') ——ri;D'(g" ') ——,

/ ~SQUAT/2 ~ Sg/2 ~ SQ/2+ 12 2

IjSpy/g ~
+giSpy/2 ~

—gJ'giS~/2~ ~
—Ii IjS~/2

9j Qi Qi Qj li fj

(C6)

(C7)

(C8)

Now

BS&/2

B~l7j Rl1 0 N/2
1+jl & ~ ~ ~ &iN/2 1 +s

(C9}

1gil . ~ ~ «iN/2 les
gi l SiN/2

(C10}

~'Sw/2 ij

j 1gil « ~ ~ ~
iN/2 2gs

(C11)

~ SN/2+1

8QiB~Qj
~ ~

iJ ~ ~ ~

~il ~iN/2 —l
1 g il & ~ ~ ~ &iN/2 1 gs

(C12}

where g "'
denotes the omission of the k, l, . . . terms from the sum. Therefore (C8) gives

—1 2
SÃ/2 'gJ

&jl « ''' N/2-l~

2
gi l IiN/2 l + Qi

i fail & ~ ~ ~
&iN/& l gs

fail Qi

~ij
1&i

~ ~

2+
1gil « .

iN/2 2

'N/2 i-
1+il &. ~ ~ &iN/2 1

(C13}

—1 2 ~ij
SN/2 )j li Zt %i jiN/2 2+ j X

1~ii&"' &iN/2-2~s 15f1& "&iN/2 les

2
+'Qi 0j

1/ii & ~ ~ &iN/2 2gs

2
gi l QiN/2 2+ Qi

1 pi& & ~ - &iN/2 —l &s
Ii l IiN/2- l

~ ~

'9i'Qj( Ii+ lj) g Iii )iN/2 i )i% + ™i ~~N/2 2—
1gil « . iN!2 l & N/2 —2-

(C14}

SN/2( jl Ij}
1 g il & ~ ~ ~ &iN/2 l gs

gi 1 RiN/2 1
(C15)

If k =i and I =jbut kQj (~i+l), Eq. (C5) equals

rj;rji;+rj/2}ij g;AD (g }j-,;——rj/D (g );—;— 2j~—D (g );—;.—gjg~D (g );;jy, .—2 N/2 2 N/2 2 N/2 2 N/2

and we can see that Eq. (C16) equals Eq. (C6). Hence

(C16)
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&qjg""IqkTg"")=(5kgij+ i kj N/2 & &—j' X"
1 g i1 g . ~ ~ giN/2 1 g s

Type 2:
N/2

I

t gN/2)

=&g""
I (kjaj'a +0 a a )(4akaT+kaiaj;)'g""&

I
( gg—kaj aTaiak gjglajak ial pitaka -aTaj'ak (i(la ap'jal)gN/2 — t t — t t — t t — t t N/2

Equation (C19) equals zero, as there are no nonzero elements of the form D (g /
) ~. Therefore

(q, g/
I
.q-J&gN/ ) =0, 1 &i &j &s, 1 & k & l &s .

Type 3:

I [ ggkaj—aTaiaj; gjgiaj(gik aj;ai)aT
N/2

— t t — t t

aka aTaj ak 'ala (5jk a'kaj )al lft t N/2

(C17)

(C18)

(C19)

(C20)

(C21)

(C22)

Equation (C22) equals zero as no nonzero elements of the forms D (g /
)al)&, D (g /

) ~, and
D'(g /

)~jl ~jl exist. Therefore

(qi-g /
Iqklg

/ )=0, 1&i &j &s, 1&k &1&s .

Type 4:

(C24)

&q;,g I qjlg & =(skslj+~il~kj)~N/2(~ gj)
N/2 t N/2 —1 2 i

1gi1 & ~ ~ ~ &iN/2 1

1&i &j &s, 1&k &l&s . (C25)

By the same algebra as the preceding, we get the final two types.
Type 5:

(q jgN/2IqklgN/ )=0, 1&i &j &s, 1&k &1&s .

Type 6:

(g I qjqag ) = (g I (g~aja;+giai aj)(gkakaT+ giai aj;)gN/2),

Cjkk (g )jkgll +kj(ID (gN/2) jlsjk +gigkD (g )gk~ji

+g;AD'(g 4l5P kkkD (g —
)jTk , /~AD (g -)—jj;i

gigkD (g —
)iTk j Cl4lD (g )—ij lj .

By noting that D'(g ) =D'(g )~ and D (g / )~ D(g / ) ~——we see that (C24) has the same
value as (C5):

&q jg I qklg &=gilgIA/2(sj tjj).—N/2 t N/2 —1 2

1gi1 & ~ ~ ~ &iN/2 l

It is interesting to note that

gi gi, 1&i &j&s, 1&k&i &s

1&i)& ' ' &iNn-i&'
(C26)
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where

0k lkkkg&
1 g k ps, k+i j

(C27)
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