
PHYSICAL REVIE% A VOLUME 27, NUMBER 1 JANUARY 1983

Classical statistics inherent in pure quantum states
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A new coherent state introduced recently by us is shown to lead to a Wigner distribution

function which maximizes the Shannon entropy with given mean, variance, and covariance of
position and momentum of a particle. This result is discussed in the light of a recent paper of
Senitzky. A more general discussion of entropy based on smoothed Wigner functions is also

given.

and the associated entropy is

S =—Jf Jt tp(q, p) lnip(q, p) dq dp (2)

This is maximized subject to the constraints (using
Senitzky's notation)

&q) =q" &p) =p" (~E )'=8'. (~q)'=n' .
(3)

1'(q,p) = , &p q+q p) ——&p)&q) =—~ .

We then compare this function with the Wigner dis-

In a very interesting paper, Senitzky' has recently
proposed to separate the statistics of pure quantum
states of the harmonic oscillator into a quantum-
mechanical and a classical part by associating a classi-
cal analog with each quantum state. Senitzky did not
give any indication of how this classical probability is
to be found. We here take the natural view point
that a classical statistical description is given by a
classical phase-space probability density. In this Re-
port we construct this classical probability density by
using Shannon's principle of maximum entropy. '
The classical probability function 6'(q, p) has the nor-
malization

Jl J dq dp tp(q, p) =1

tribution function associated with a new coherent
state constructed by Rajagopal and Marshall. ' This
state has the property that (we use units with t =1)

with

a~z) =zlz), z complex

a =(—,')'"(kq+i4p),
a = ( —,) ' (5i q —i(2p) ~

&q& =q.i. &p) =p.i. (~p)'=-,' I(il' ~

(4)

(6)

where fi and Q are two complex numbers (may
depend on time) introduced in the definition of des-
truction and creation operators, Eq. (5), with the
condition

(i(2+pi@=2

to maintain the canonical commutation relations
among the operators q and p.

The derivation of tp(q, p) is a straightforward exer-
cise in variational calculus and we obtain

(g)6'(q p) = exp — » [vP(p —p.i)'+ g'(q —q.i)' —28(p —p.i) (q —q.i) l
2m(( vP —g )' 2(g vt

—g )

On the other hand, the Wigner distribution function is a quasiprobability (not necessarily positive everywhere)

distribution in phase space, which provides a formulation of quantum mechanics of systems described by their

canonical coordinates and momenta. 4 The relation of this function to coherent states and many other properties

have been investigated extensively in the literature. The Wigner distribution function associated with the

coherent state ~z) is constructed as follows. First note'

ill(x) ~
&x lz)=, exp ——'(x —q,i)'+ ip„(x —q„)

and the Wigner function4 associated with it is

fs(Q, P) = Jl e ~ill"(Q —2x)ill(Q+ 2x) (10)
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where Q and P are c-number variables. This calculation is also straightforward and we obtain

f&N(Q P) =—exp[ —1{21'(P—p.i)' —
1 {iI'(Q —q.i)' —2(1{iI'I {21'—1)' '(P —p,i) (Q —q,i) ]1

Note that this function is positive, which is not the
case in general for a Wigner function associated with

an arbitrary state.
It is a simple exercise to verify that

+oo

dQ dP fg (Q,P) 1

(q) =J J~ dQdP'Qy (Q,P)=q„, etc.
(12)

We now make the identification that

e'= 2KQ 1{ii', ~'= 2KQ 1{21' ~

8 =—,'
KQ2 (I ail'I {21'-»'/2,

and make the change of variables

p —p.i
=Ko(P —p.i),

q i
=Ko(Q —q i)

(13)

(14)

to obtain a complete equivalence of the classical
probability function, Eq. (8), with the quantum-
mechanical Wigner distribution function, Eq. (11).

We now make several observations. The above
analysis is general and has no explicit mention of the
Hamiltonian or the system to which the above
analysis applies. All that is demanded is that the sys-

tem possess specified average, dispersion, and covari-
ance of the coordinate and momentum. In Ref. 3,
we have outlined a method of determining the equa-
tions obeyed by $i, {2when the Hamiltonian is speci-
fied, by means of the quantum action principle. Sen-
itzky' used three criteria and we have here used his

I

first two, given in the present context, by Eq. (13),
except that our Ko is just a scale factor while Senitzky
gives it as a special value, K2-1 —[(hq) 2

+ (hp) 2] '. The reason for this choice is not obvi-

ous nor was it given by Senitzky. We also observe
that $2r/2 82—=

4
K(4& and by the Schwartz inequality,

this quantity is always greater than or equal to zero.
Moreover when 8=0, and gr/= 2, we have the1

minimum uncertainty product, for which K0-1.
Thus Ko has some of the features that Senitzky's K
has but clearly it is different. In the present note, we

have given an explicit construction of the classical

probability function given certain conditions and

show its equivalence to a certain Wigner distribution
function associated with a quantum-mechanical sys-

tem described by a wave function.
To make the discussion of the Shannon entropy

more general than given above for arbitrary Wigner
distributions, denoted by f(Q,P), we may proceed as
follows. It has been known for sometime that one
may smooth the Wigner function so as to make it
positive. Let this smoothed function be denoted by

f,(Q,P). A natural way of doing this was introduced

by Husimi7 which has been shown by Mehta and Su-
darshan to be the "antinormal ordered distribution
function" and the usual Wigner distribution is the
"symmetrically ordered distribution function, "with

the former being a Gaussian weighted integral over
the latter. We suggest here that one use Eq. (11) for

f&N(Q, P) as the Gaussian weight for smoothing an
arbitrary Wigner function f(Q,P):

f*(Q.P) = J"J~~ dQ'dP'f (Q —O'.P —P')f(Q'. P')

/coo I t

exp [—I {21'(P—P')' —
I {iI'( Q —Q')' —2 ( I {il'1{21'—1)' '(P —P') ( Q —Q') ]f( Q', P') .

(15)
The reason for suggesting this will be evident presently. It should be pointed out that Mehta and Sudarshan'

used the minimum uncertainty Gaussian, corresponding to 1{&121{t12= 1 in Eq. (15). Cartwright9 used a more
general Gaussian smoothing to demonstrate the positivity of f,. The one given above is the most general Gauss-
ian smoothing.

We note here a few important properties of f, given by Eq. (15) which will be useful for our present discus-

sion. These properties may be verified easily by direct computation: (a)

(b)

Jl f J;( d Q~&&=QJJl f(Q&'&&QdP=& .

Jf f,(Q,P) dP = J)J) f(Q',P'),
/z

exp[ —(Q —Q')2/i {zl2] dQ'dP'
wl/2 {

(16a)

1/2 exp — ' 4 d
wl/2 { (16b)
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and

(c)

and

(d)

and

Jl f (QP) dg - Jl J f(g',P'),
(2 exp[ —(P —P')2/1&~1 ] dg'dP'

1f

= Jt WP ) exp[ —(P —P')'/I(&l') dP',

(Q).=J J" Qf(g.»dgdP=J"J" Qf(g, »dgdP-(g)

(P), =JI Jl Pf, (Q,P) dgdP Jr JI Pf(Q, P) dgdP-(P),

(Q'), = (Q') +-,' 1 &21'

(P'), = (P'&+-,' l~ I',

(16c)

(16d)

(16e)

(16fl

(16g)

a2f.(Q.P) ~exp —141' +Ill' —2(lg)1'lg 1' —1)'" f(g P)4 M" eg' ' ' ageP (16h)

The above relations are generalizations of those
given by Mehta and Sudarshan and the operator
identity relating f, to f is a generalization of a similar
result given by McKenna and Frisch. ' The first rela-
tionship (a) shows that the smoothed Wigner func-
tion has the same normalization as the usual distribu-
tion functions. The positivity of f, is proved easily
either by following Cartwright or by using an identity
due to Wigner recently discussed again in the litera-
ture. " The second set or relationships (b) shows
that the smoothed function does not directly lead to
distributions of moments, rp(P), and coordinates,
tp(g), upon integration over the other variable as
was the case with the unsmoothed Wigner function,
but is now smoothed by an appropriate Gaussian. As
a consequence we obtain the mean values of coordi-
nate and momentum to be the same for both the
smoothed and unsmoothed functions. Since (g)
and (P) obey Ehrenfest relations, i.e., classical equa-
tions, so do the averages (Q), and (P),. The
difference between the two functions is most usefully
displayed by (d) which exhibits the Gaussian smear-

ing explicitly. It may not be out of place here to
point out that Baker4 showed the uniqueness of the
structure of the Wigner function f(Q,P) from argu-
ments based on spectral theory, which was proved
again recently by more elaborate analysis by
O' Connell and Wigner. ' Baker also showed how

f(Q,P) can be used to completely formulate quan-
tum mechanics including the theory of measure-
ment. In this respect, some of the comments of
Senitzky' concerning collapse of wave functions can
also be discussed in the present framework.

Now, having constructed a positive, normalizable

I

distribution function with desirable properties, and
relations of averages of Q, P, etc. to the fully
quantum-mechanical averages, we may apply the in-
formation theoretic scheme to construct an entropy
functional of the original Wigner distribution func-
tion:

S,=—Jl Jf f,(Q,P) lnf, (Q,P) dg dP

From Eqs. (16f) and (16g) (Q') = (Q2), —21@12

and (P~) ~ (P2), ——,1/12 imply that in the classical

limit g 0, (Q') (Q'), ~ and (P') (P'),~, so
that by suitably choosing I i;i I and 1)21 we may make
the smoothed Wigner function have the desired prop-
erty that Senitzky was looking for, namely to discover
the classical probability aspect in a fully quantum
problem. Clearly f(Q,P) contains the entire
quantum-mechanical information and with the aid of
the smoothing Gaussian function, we may construct
f,(Q,P) which delineates the classical counterpart
from their quantum partners.

(17)
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