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The effect of a general additive symmetry on level density in finite spaces is investigated. It is
found that with the introduction of symmetry, the level density moves closer towards a Gauss-

ian distribution.

I. INTRODUCTION

The level density for a system of ‘“p *’ particles
distributed among ‘s >’ single-particle states and in-
teracting via an r-body random interaction has been
studied through shape parameters by Mon and
French! for the case of fermions, and by Kota and
Potbhare? for the case of bosons. Mon and French!
have shown that the fermionic level density is a
semicircle when all the particles interact simultane-
ously and there is a gradual transition from semicircle
to Gaussian in the limit when ‘‘r”> becomes much
smaller than “p.”’ In the case of a dilute system
(s = o0, p — o0, p/s —0) all the shape parameters
have been shown! to approach zero when r << p.
Kota and Potbhare have shown that a dilute system
of bosons also gives a Gaussian level density when
r << p. For a finite system, only the low-order shape
parameters have been evaluated’? in both the cases.
The evaluation of higher-order shape parameters,
though straightforward, becomes cumbersome. In
the case of bosons, for finite ‘‘s"’and p — o (the dense
limit), the level density is a Gaussian only when s is
“sufficiently large.””? Using a similar procedure, it
can be shown that even for distinguishable particles,
for finite ‘‘r’’ we get a Gaussian in the limit when
§— oo, p—oo,and p/s —0 and p >>r. In the dense
limit p — oo, for finite ‘s’ we again get a Gaussian.

Our aim is to investigate the effect of symmetry on
the level density in finite spaces. In Sec. II, this is
investigated through numerical examples. Section III
gives a summary of the results.

II. SYMMETRY PROPERTIES
AND LEVEL DENSITY

The effect of symmetry on level density is, in a
sense, akin to that of a reduction in the rank of in-
teraction, in that the number of nonvanishing matrix
elements in ‘7’ particle space gets reduced. To study
the variation in the level density p(E) we evaluate its
shape parameters S,(p > 2) which are given by

S,=K,/(K))?? | (1)
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where K, the pth cumulant, is the coefficient of
(it)?/p! in InF (¢), where F(¢) is the Fourier
transform of the level density.

FW= [ ep(E)E . @

K, is the variance. S; and S, are the standard mea-

sures of skewness and excess. For a Gaussian distri-
bution, all S,’s vanish. In the event of higher shape
parameters vanishing, a positive excess would corre-
spond to a peaked distribution, while a negative ex-

cess to a flattened one.

Mon and French! evaluated the shape parameters
of the level density of fermions using propagation
technique. The Hamiltonian in r particle space is
given by

t
H=z§2 W 2,Z(NZy (r) . 3)
The dimensionality of H in r particle space is given
by %,. In Eq. (3), Z,and Z ; are the r-fermion
creation and annihilation operators, and W ’s are the
r-body matrix elements (RBME). Since H is real
symmetric, we have Y (Y +1)/2 RBME where
Y =%c,. The average of different powers of the Ham-
iltonian in *“‘p’’ particle space is then evaluated using
the relation

(0(r)?=2c,(0(r))", 4)

where O (r) is any r-body operator. Thus the traces
of different powers of H in ‘‘p’’ particle space are
evaluated without actually diagonalizing the matrix.

The values of S4 for two-body random ensemble
(TBRE) for different particle number *‘p” in (sd) shell
calculated using this technique! are given in Table I.
Since the number of single-particle states in sd shell
is 24, the dimensionality of the two-particle space is
24C,=1276, and the number of independent two-body
matrix elements is (276 x 277/2) when no symmetry
considerations are introduced.

Potbhare? has evaluated S, for the same configura-
tions by introducing conservation of the total angular
momentum (J) and isospin (7) quantum numbers in
two-particle space. The two-particle matrix breaks
down into block matrices along the diagonal and the
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total number of independent matrix elements gets re-
duced to 63. The values of S, for these cases (with
symmetry) are also given in Table I. With symmetry,
the values of S, are smaller compared to those
without symmetry, and closer to that of Gaussian.
The subspace of dimensionality 56 corresponding to
J =2, T =0 for four particles in ds shell, gives a
value of S, which is —0.54 as against the *C, dimen-
sional space, with S;=—0.85 without any symmetry.
For a complete knowledge of the level density in
both cases, one needs to evaluate all the shape
parameters. Hence, to ascertain the faster approach
to Gaussian with symmetry considerations, we resort

to matrix diagonalization in ‘‘p”’ particle space. This is

because the propagation technique becomes laborious
in the evaluation of higher-order shape parameters.
From the definition of the r-body Hamiltonian in Eq.
(3), the matrix elements and the Hamiltonian in “p”’
particle space could be written as

12 —0.56

TABLE 1. Values of S, for different particle number “‘p”’
in sd shell for the two cases without and with symmetry.

Ss S,
p (without symmetry) (with symmetry) S

4 —0.85 —0.58(0.14) for Gaussian

8 —-0.59 —0.32(0.11) 0.0

—0.22(0.12) for semicircle

(Ref. 1) (Ref. 3) -1.0

Hy= 3 Wi, 34pilzi(D 10 = 1)) ((p =)ilz2 (Dlpy) s)

%152

H= 3 W, [4(z)4(z2)) +4(z))A (z)] ,

z|<12

where x ’s are p — r particle states and 4 (z) the ma-
trix that creates ‘‘p’’ particle states from p — r particle
states through ““z.”’ Since the number of p —r and p
particle states is given by °c,_, (X, say) and %, (X,
say), A is an X, X X| matrix; the rows and columns
of A are labeled by p and p — r particle states. Only
those elements of 4, where the row and column in-
dices have p —r states in common, are nonvanishing
with an absolute value of 1. The determinantal basis
states for fermions leads to the appropriate sign of
the matrix elements in 4 for any permutation of the

(6)

r

single-particle state indices in many-particle states. In
Eq. (6) for a system of bosons, basis states should be
symmetric, and for distinguishable particles the basis
states are direct products of individual single-particle
states. Now that the 4 (Z)’s are built in this
fashion, the Hamiltonian in “‘p’’ particle space is
known and an ensemble of H ’s can be generated for
any rank of interaction.

To study the effect of symmetry on fermionic level
density using the above scheme, we choose p =4,
s =8, and r =2. The dimensionalities of the four-
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FIG. 1. The exact eigenvalue density (histogram) of 70-dimensional matrices without symmetry along with semicircle

(continuous curve).
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FIG. 2. The exact eigenvalue density (histogram) of 70-
dimensional matrices with symmetry along with Gaussian
(continuous curve).

and two-particle spaces are 70 and 28, respectively.
Without symmetry considerations one has

(28 %X 29)/2 two-body matrix elements (TBME) and
an ensemble of H ’s is generated and diagonalized.
This is the first case without symmetry. In the
second case, each of the single-particle states is as-
signed a quantum number ‘‘ m >’ corresponding to
any additive symmetry (say, J;). With the conserva-

-2 0 2 4

BRIEF REPORTS

27
tion of total ““m”’ in two-particle space, one has only 50
nonvanishing TBME. Again an ensemble of H ’s is
generated and diagonalized. The level densities for
the two cases without and with symmetry are shown
in Figs. 1 and 2, respectively. In the latter case we
find that the distribution is closer to Gaussian. The
ensemble-averaged shape parameters S; to Sg for the
two cases are given in Table II along with the rms de-
viations. The values of S,’s for Gaussian and semi-
circular distributions are also given in the table. The
even-shape parameters go down in magnitude when
symmetry considerations are introduced, thus taking
the eight-particle level density closer to Gaussian.
With symmetry the distribution becomes more asym-
metric, as is evident from Fig. 2 and S; (Table II). A
closer look at Fig. 1 shows that the semicircular dis-
tribution itself is asymmetric. In fact, Sy turns out to
be —3.73 for this case. But in the second case even
the lower odd-shape parameters are relatively higher.
This cannot be attributed to inadequate statistics,
since increasing or decreasing the ensemble dimen-
sionality does not change these averages in either
case. It may be that in higher dimensional matrices,
this asymmetry would be reduced when no symmetry
is introduced. This still does not guarantee that, in
such cases, distributions with symmetry will be de-
void of asymmetry. But the overall effect would still
be that, with symmetry, the distribution would move
closer to a Gaussian. The fluctuations in the shape
parameters increase with the introduction of sym-
metry. This is due to the fact that the ensemble is
not invariant under orthogonal transformation in “‘p”’
particle space.

TABLE II. Shape parameters S; to Sg and the rms deviations for the level density of 70 x 70

matrices without and with symmetry.

Ensemble S3 S4 Ss S6 S'] SS
dimensionality (S3 rms) (S4 rms) (S5 rms) (S¢ rms) (S7 rms) (Sg rms)
47
without 0.01 —0.84 —0.02 3.64 0.10 -35.79
symmetry (0.06) (0.06) (0.28) (0.49) (2.82) (7.00)
50
with —0.08 —0.57 0.29 1.78 -2.14 -13.90
symmetry (0.18) (0.25) 0.67) (1.68) (6.12) (18.56)
Semicircle 0.0 -1.0 0.0 5.0 0.0 —56.00
Gaussian 0.0 0.0 0.0 0.0 0.0 0.0
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III. CONCLUSION Since a dilute system of bosons gives the same
results as a dilute system of fermions, we conclude
With the introduction of an additive symmetry, the that the effect of symmetry on a system of bosons
fermionic level density moves closer towards Gauss- and distinguishable particles should also be to ac-
ian. For other general symmetries, we have numeri- celerate the rate of approach of the level density to
cal examples of shell-model studies in literature.* normality.
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