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Anticorrelation and an exact wave function in an exactly solvable model
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The concept of correlation between two parts of the total Hamiltonian is used to obtain

information about the eigenfunction of a total Hamiltonian. Using a solvable model it is

shown that the present formulation gives an energetically good wave function.

I. INTRODUCTION

One of the interesting problems in many-body

physics has been to study the various correlations.
The importance of the correlation coefficients for
the electronic wave functions was first brought out

by Kutzelnigg and his collaborators. ' They had
studied the correlation of the position of the elec-

trons. At one time it was thaught that the more
negative the correlation coefficient the better would

be the approximate many-body wave functions. If
this had been true for all many-body wave func-

tions, then one would have obtained a prescription
for obtaining a good wave function. It has now

been conclusively shown by King and Rothstein,
using an exactly solvable model, that the require-

ments of minimum energy and most negative
correlation coefficients are usually not campatible.

Since it is possible to define other kinds of corre-
lations apart from the correlation of the pasition of
electrons, it is worthwhile to explore this possibili-

ty ta obtain information about the goodness of the
many-body wave function. A new formulation in

this direction can be carried out by noting that in

some other branches of many-body physics the

concept of correlation between two operators of the

system has played a significant role.
The purpose of the present note is to present a

formulatian based on the concept of correlation be-
tween two parts af the Hamiltonian to obtain an
energetically good wave function. We present this
formulation in the next section and apply it ta the
exactly solvable models in Sec. III. Concluding re-
marks are presented in Sec. IV.

II. FORMULATION

Let H be the exact Hamiltonian of the system
satisfying the exact eigenvalue equation

H% =E% .

We now split the Hamiltonian H into two parts,
Hp and V where V is the part which arises due to
the correlations in the Hamiltonian. Then Eq. (l)
becomes

(Hp+ V)+=E+,
which immediately gives

E =&H. &+& V &,

(2)

(VHp+ V )ql=EVqt.

Rewriting Eq. (4) in the form of matrix element
with respect to qt and using Eq. (3) we get

& VH, &
—

& V&&H, & =—1.

(4)

(5)

By multiplying Eq. (2) from left by Hp and car-
rying through the same steps we can also derive
the following relation:

(H, V) —(H, )(V) = —1.
(Hp) —(Hp)'

(6)

From Eqs. (5) and (6) we see that the expectation
value of the product of (V —( V)) with

{Hp—(Hp )) divided by the mean-square deviation
af Hp or V using the exact wave function is —1.

We can also calculate the value of the correla-
tion coefficient p given by the expression

(VH, )—(V)(H, )
[((H,') —(H, &')(( V'& —( V&'))'" (7)

Assuming Hp to be Hermitian, we find, using ex-

where the angle bracket sign ( ) denotes the ex-
pectation value of the enclosed operator with
respect to %.

We next multiply the left-hand side of Eq. (2) by
V to obtain
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pressions (5) and (6), that p= —1 which implies
that there is complete anticorrelation between V
and Hp for the exact wave function.

A very general result of the type (5) or {6}can be
derived for an arbitrary operator A belonging to
the same Hilbert space as the Hamiltonian H by
noting that the expectation value &A & and
&H —A & have the same variance. This arbitrari-
ness is taken care of in the present case by splitting
the Hamiltonian specifically into two parts Hp, V,

as mentioned in the beginning of this section,
where Hp represents the single-particle part of the
Hamiltonian and V the rest of it.

We would now like to apply these expressions to
find an exact wave function for solvable models.

III. SOLVABLE MODELS

The Hamiltonian H of the solvable model is
given by

1 2 1 2 1 2 2 1 2H = ——,]{]']——,Vp+ —,k](r]+rg) —,kyar]g . —

(g)

By using the center of mass R = I/v 2(r]+rq) and
the relative coordinate r = I/v 2(r] —rz) it is
transformed to a sum of two oscillator Hamiltoni-
ans H(R) and H(r }. Further, since in the trial
wave function exact eigenfunction of H(R) is used
and since there is complete symmetry between

x,y,z directions, it is sufficient to consider the fol-
lowing Hamiltonian H:

According to Eq. (5), {t) will be the exact wave

function provided the right-hand side of Eq. (12) is
—1. This gives us P=2(k+ a). This is also the

energetically best wave function for the Hamiltoni-

an given by Eq. (9}. This clearly demonstrates that
the concept of correlation can be used to obtain en-

ergetically good wave functions.
We next consider another example using the

solvable model of Lipkin, Meshkov, and Glick.
This model has been very useful in studying vari-
ous approximations for a many-body system. Us-
ing quasispin operators, this Hamiltonian is given
by5

H=J, + , (J'++—J') . (12)

For such a Hamiltonian it is obvious that Hp ——J~
and V= —,(J++J }. The trial ground-state wave

function for a two-body system is written as

]t)=cos8I 1 —1
I

&+sin8I 11&, (13)

{14)

Expression {5}then tells us that P will be the exact
ground state if tan28= —1 which gives 8= —~/8.
By actual diagonalization of the Hamiltonian given

by expression (12) we see that this is indeed the
correct solution of the problem.

where
I
jm & represent the eigenfunctions of J,J,.

Using angular momentum algebra it is easy to
see that

&0 IHoI'l 0& —&0 IHo I 4&&{{)I I'l 4 &

H = —— +kX +aX
2 BX

(9)
IV. CONCLUDING REMARKS

with

1 8
Hp ———— +kX

2 QX2
(10a)

V =aX

For the trial wave function P we write

(10b)

P=N exp( ——,PX~),

where N is the normalization constant and P is the
unknown parameter. It is now a simple matter to
calculate the various matrix elements of Sec. II and
we find that

&{{)I
I'Ho

I 4& —&{{)
I ~lb&&P IHo I 0& 2k —P

It can be shown easily that the same value of the
parameter P or 8 is obtained for the solvable
models discussed in Sec. III if we use Eq. (6).
Since the mean-square deviation of V seems to be
easier to calculate, in practice Eq. (5) seems to be
simpler than Eq. (6). Also we can easily calculate
the correlation coefficient p between Hp and V and
show that it is —1. Therefore the solvable models
conclusively show that anticorrelation between Hp
and V can be used to obtain energetically good
wave functions. Further it is interesting to note
that for the solvable models one could also calcu-
late the value of the parameter P or 8 by minimiz-
ing the quantity (I+g)~. This quantity, for exam-
ple, for the second solvable model is (1+tan28) .
Minimizing it with respect to 8 we get the same
value as we had obtained earlier using Eq. (5). We
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should also mention here that for the unsolved
problems the present formulation, namely relations
(5} and (6}, tell us that the trial wave functions
which one chooses must be such that it gives max-
imum anticorrelation between V and Ho. We con-

elude this note by saying that, in the light of the
results obtained for the solvable models, the
present formulation provides one more way of ob-
taining approximate many-body wave functions
which are also energetically good wave functions.
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