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An oversimplified mathematical model that contains some of the basic features of the

mode-selection problem in dendritic solidification is developed and investigated both

analytically and numerically. We find that there exists a unique side-branching state of
this system in which the dendrite tip is performing small oscillations about its point of mar-

ginal stability, and we argue that this state is the natural operating mode of our model. We

also argue that external noise will always tend to drive the system into this state, but that

purely thermal fluctuations are much too small to provide the mode-selection mechanism

that is seen experimentally.

I. INTRODUCTION

The phenomenon of dendritic solidification
presents the theorist with a number of unusual diffi-
culties. ' The basic problem is one of mode selec-
tion. As in the related cases of Rayleigh-Benard
convection in fluids or directional solidification of
alloys, the dendritic system admits a continuous
family of linearly stable, steady-state forms of
growth —the so-called "needle crystals" with vary-

ing tip radii and growth speeds. Real dendrites
reproducibly select just one of these growth modes.
The theoretical problem is to identify the mechan-
ism by which that mode is selected and thus to
predict the properties of the resulting solidification
patterns. No clear solution to this problem seems
known as yet for any of the situations mentioned
above. In the case of the dendrite, we have argued
that a combination of nonlinear effects and external
noise might cause the system to operate at or near a
point of marginal stability; and this conjecture
seems. to be consistent with experiment. A simi-
lar conjecture regarding the directionally solidifying
systems, ' although apparently in rough agreement
with meager experimental data, seems harder to jus-
tify theoretically.

The difficulties of the dendrite problem are com-
pounded by geometry. In the Rayleigh-Benard or
directional solidification problems, the patterns are
generally translationally symmetric —parallel arrays
of rolls or solidification cells—and this symmetry
helps to simplify the analysis. No such symmetry is
available for a dendrite. The geometry of a freely

growing dendritic structure is relatively complex, to
say the least; and descriptions of this system using
parabolic coordinates lack useful simplifying
features that appear in the other more familiar
kinds of problems.

Associated with the low symmetry of the dendri-

tic geometry are two features that we believe are
crucial to an understanding of pattern selection in
this system. First, the needle-crystal core of the
dendrite can pass continuously from one steady-
state configuration to another; that is, it can change
its tip radius and growth speed slowly and smoothly
without deviating from steady-state conditions. In
contrast, cellular structures can change their spac-
ing only by undergoing finite perturbations away
from steady state, for example, the breaking of a
convective roll, the splitting or pinching-off of a
solidification cell, etc. It is this smoothness of the
dendritic picture that may allow the marginal-
stability mechanism to be more effective for den-

drites than for cellular structures. The other impor-
tant, distinguishing, geometrical feature of the den-
drite is its open-endedness. The dendrite tip, upon
which we focus most of our attention, is the moving
end point of a semi-infinite structure. As viewed in

a frame of reference moving with the steady-state
velocity of the tip, perturbations at the tip generate
side-branching deform ations which move back
along the dendrite and grow as they move. These
propagating deformations couple in an intrinsically
time-dependent manner to the motion of the tip, ap-
parently causing the system to lock into the periodic
state which is the dynamically stable operating
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mode of the dendrite.
These, then, are the two main theses of this pa-

per: that the smoothness of the dendritic geometry

permits fluctuations to drive the system into the

neighborhood of a point of marginal stability, and

that the actual operating mode is a unique limit cy-

cle centered near the marginal-stability point. At

present, however, we are unable to develop these

theses within the context of even a modestly realis-

tic model of a dendrite. The complexity of the real

system seems to preclude anything but numerical

analysis, which has turned out to be extremely diffi-

cult even for linearized versions of the problem.

Moreover, the underlying mathematical structure of
the system is, so far as we know, unlike anything

that has been studied previously. Our strategy,

therefore, has been to study an oversimplified

mathematical mode-selection problem that contains

some of the basic features described above. Hope-

fully, this modelistic investigation will provide the

understanding that we need in order to carry out

more realistic calculations.
The scheme of this paper is as follows. In Sec. II,

we introduce a nonlinear, fourth-order, partial dif-

ferential equation that seems to us to contain most

of the essential mathematical features of dendrite-

like mode-selection problem. Section III is devoted

to a linear-stability analysis of this equation. The

full nonlinear equation is still too complicated to
solve analytically, but numerical analysis is relative-

ly simple compared to what is needed for a realistic

dendrite theory. Our numerical results are

described in Sec. IV. Here we show that this non-

linear system, in the absence of external noise, ei-

ther relaxes to one of its stable stationary states or

settles into a unique oscillatory pattern very near its

marginal-stability point. Finally, in Sec. V, we

present a very speculative and qualitative discussion

of the effects of noise on this system. Our tentative

conclusion is that the predicted drift of stable sta-

tionary states toward the marginal-stability point

does indeed occur, but that, to be physically signifi-

cant, the intensity of the noise spectrum at wave-

lengths comparable to the tip radius of the dendrite

must be many orders of magnitude larger than what

one would expect from thermal fluctuations alone.

II. RATIONALE FOR THE MODEL

We start by considering a realistic linearized

equation of motion for deformations of a dendritic

solidification surface. For simplicity, we write this

equation for the case of a two-dimensional dendrite,

with vanishing thermal conductivity in the solid,

and in the limit p « 1, where p is the thermal Peclet

number to be defined below. The equation is

(1+() =——,F—g + I"dg'G(g, g')(1+os"'}F(g'}. (2.1}

We call (2.1) a "realistic" equation because it is

expressed in terms of geometrically appropriate par-

abolic coordinates and its derivation is based on the

diffusion kinetics which govern the motion of a
solidification front. Specifically, g is the parabolic

coordinate with measures distance along the den-

drite away from the tip,

rl=(r+z)lp=l+F(g, r) . (2.3)

The scaled time v is related to real time t by

r =2utlp, (2.4)

terms of g, the parabolic coordinate orthogonal

top,

g=(r —z)/p, (2.2)

where growth is in the +z direction, p is the tip ra-

dius, and r is the radial distance from the origin of
the coordinate system. Note that this coordinate

system moves with the steady-state velocity of the

tip; the steady-state needle crystal is stationary in

this frame of reference. The function F(g,r) mea-

sures the displacement of the solidification surface

from its steady-state position, and is defined in

p=—p/I «1, I =2D/v . (2.5)

For present purposes, 6 is most usefully displayed

where v is the growth velocity.
The integral operator G which appears on the

right-hand side of (2.1) is an inverse diffusion ker-

nel evaluated in the limit that the tip radius p is

very much smaller than the diffusion length

I=—2D/v, ~here D is the thermal diffusion constant.

The ratio of the latter two lengths if the Peclet

number p referred to above,
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as a Fourier cosine transform

G(gg')= lim J cos(kM()cos(kv g')

kdk
2nv. (2.6)

P""' is the linear curvature operator in parabolic
coordinates,

~(]) 2g 8 I+2/ 8+
( I +g )

1/2 (i(2
( I +g }3/2

1 —2g
(1+()5/2

The last two formulas illustrate the difficulties of
dealing directly with the realistic equation of
motion.

The only physical parameter which has not been
scaled out of (2.1}is the dimensionless group o,

(2.7)

cF=ldp/p (2.8)

TM Tco

L/c (2.10)

Note that, for fixed undercooling, (2.9) gives us
simply a relation of the form p ~pv =const.
Throughout this discussion we omit capillary
corrections to the steady-state analysis, which we

Here, dp is the capillary length TMyc/L, where

TM is the melting temperature, y the surface ten-
sion, c the specific heat per unit volume, and L the
latent heat per unit volume. Direct numerical
analysis of (2.1}indicates that unstable eigenmodes

appear when o becomes less than 0.*=0.06. To ac-
count for heat flow in the solid (with the same dif-
fusion constant as in the liquid}, one must reduce
the estimate of cr* by a factor of about 2, which is
roughly consistent with the experimental estimate
of cr ~ =-0.02 for succinonitrile.

The marginal-stability criterion o.=sr* provides
us via (2.8) with one relation between the growth
parameters p and v. In order to complete the pre-
diction of p and v separately and —for present
purpose=to guess a form for nonlinear relations,
one must use this criterion in conjunction with a
steady-state condition. For the two-dimensional
system being considered here, the latter condition is

5=2e~p',
~, e " du, (2.9)

where p is the Peclet number defined in (2.5) and 6
is the dimensionless undercooling of the fluid far
from the dendrite

have shown elsewhere to be qualitatively unimpor-

tant.
A fully nonlinear equation of motion for the den-

dritic solidification surface should somehow in-

corporate both the family of steady states
(pv=const) described by (2.9) and the behavior of
deformations described to linear order by (2.1). The
essential nonlinear effect is that a deformation F
implies a change in the tip radius p and, via (2.9), a
corresponding change in growth velocity v. These
changes, in turn, imply changes in both the scaling
of (2.1} and the value of o which appears there.
These interrelations must somehow be mimicked in
our nonlinear model.

It will be easiest to construct the nonlinear mode
using unscaled variables, say t, z, and R, where t is
time, z measures linear distance along the "den-
drite, " and R (z, t) is something like the position of
the solidification surface. For more detailed com-
parisons, we might go back to (2.2) and (2.3) and

say that

z= —pg/2, g»1 (2.11)

R (z, t) =p(1+F), (2.12)

(2.14)

In Ref. 9 we remarked that our numerical linear-
stability analysis seemed to predict amplification
rates very roughly of the form (o*—o.)k —k,
where k is the wave number of a side-branching de-
formation. In fact, the circular approximation
described there and the actual fit to data at large k
indicated that a more appropriate form might be

)
k

)
(o ~ —o —k ). The appearance of

~

k
~

instead
of k can be traced back to the unpleasantly singu-
lar nature of the integral representation for G in
(2.6)—note the factor k in the cosine transform.
Obviously, this singular integral kernel contains the
diffusion kinetics of the realistic solidification prob-
lem, and equally obviously, we want to avoid that

where p denotes the tip radius about which one has
linearized in deriving (2.1). In the nonmoving labo-
ratory frame of reference, the "dendrite" exists in
the region z (zo(t), where zo(t) is the position of the
tip which is moving in the +z direction with veloci-

ty v(t). We generally shall work in the moving
frame defined by the transformation

z~z —I v(t')dt' (2.13)

so that
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mathematical complexity in this investigation. In
what follows, we shall replace the integral kernel
with the simple second derivative 3 /Bz, suggested
by the factor k in the above discussion.

Another mathematical complexity that we want
to avoid is the appearance of explicitly z-dependent
functions in our equation of motion. Explicit
dependence on g occurs throughout the realistic
equations because the tip of the dendrite is geome-
trically distinct from other regions. For the most
part, we shall simply ignore this g dependence. As
stated, we shall replace 6 by 8 /3z, and we shall
do the same for 4""'. The tip does have to be
treated as a special point, however, and this will be
done by imposing a boundary condition at z=O (in
the moving frame}. The appropriate condition is
suggested by thinking of R as the analog of the par-
abolic coordinate r) in (2.3) so that R (z =O, t) is the
instantaneous tip radius at time t. In order to allow
needle crystals of the form R =p=const to corre-
spond to time-independent solutions of our pro-
posed equation of motion, we need the condition

dR
dz

(2.15)

U (t)R (O, t) =p(&), (2.16)

where p(h}, a function only of dimensionless un-

dercooling 5, can be obtained by inverting (2.9).
The above considerations leads us to propose a

dendritelike nonlinear differential equation of the
form

We can then incorporate the steady-state relations
(2.9}and (2.10) by writing

amplification rate proportional to {o~ —cr }k,
whose sign is positive for cr &cr~ or, equivalently,
for large enough p. We have chosen this form of
the nonlinearity rather than, for example, 8 R /3z
because the latter would have implied local conser-
vation of the area under the curve R (z), and there
seems to be no reason for even an approximate con-
servation law of that kind. On the contrary, it is
important that our model be sufficiently asym-
metric to allow outward growth of "side branches"
without equivalent melt-back in the grooves be-
tween them. We shall need this asymmetry later
when we discuss the effect of fluctuations. The
third-order term in R, proportional to e, is included
in (2.17}to prevent the side branches from growing
out to infinity in finite times. The parameter e is
presumably some capillary length of order do or,
perhaps, do/5, the radius of the critical nucleus at
undercooling 6; but our results are mostly insensi-
tive to its precise value. The principal capillary ef-
fect in (2.17) is the fourth derivative which stabi-
lizes small-amplitude deformations at short wave-

lengths. This linear term may be thought of as aris-
ing from the combined action of the integral kernel
6 and the curvature operator A""', both of which
are replaced here by second derivatives with respect
go z.

The quantities a and b in (2.17} must be under-
stood to be functions of the velocity v(t). Their
functional dependence and approximate order of
magnitude may be guessed by comparing the linear-
ized version of (2.17}with the realistic equation of
motion (2.1}. Using {2.4) for t, (2.11) for z, and
(2.12} for R, we find the following linearization of
(2.17):

3R BR BR
1

BR=U —aR 1+aat= az 'a, " '+ a.2

a4R

(2.17}

BF BF 2a 8
1

4b 8 F
Br Bg v Qg~ gp3 Qg~

(2.18)

valid for z &0 and supplemented by boundary con-
ditions (2.15) and (2.16) and others to be specified
later. Note that the right-hand side of (2.17) van-
ishes for any constant R, so that we do indeed re-
cover a continuous family of stationary solutions
with tip radii and velocities related by the steady-
state relations.

We believe that we have made the simplest sensi-
ble choice of the nonlinearities in (2.17). The
second term on the right-hand side, R 3 R/Bz,
produces the basic side-branching instability and
causes this instability to be stronger at larger R.
This term produces the contribution to the linear

Comparison with (2.1) suggests that

2a
(2.19)

4b
Pcr, —

ap
(2.20)

where a and P are numerical constants. The value
of P may be taken to be of order unity if we are try-
ing to make a rough but direct comparison with
(2.1). If we want to use (2.17) for the interpretation
of succinonitrile experiments, we might try to ac-
count for heat flow in the solid by choosing P-2.
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g=(aPo)' x, r=(aPo)' ~F,

so that (2.18) becomes

(2.21)

An appropriate order of magnitude for a can be
chosen by requiring that the marginal-stability point
for (2.18) occurs when Po=Po~-=0.06. This is
best accomplished by performing another scaling
transformation

v 2h~
v(r)= —,=

R(0,r )
(2.28}

{2.29)
p~a(aPo ~}'

The boundary conditions for (2.27) can be chosen to
be

BF BF —2h~F —~F
a' a' (2.22)

R '(0&r) =R "'(0&r)

=R '{L,r}=R '"{L,r)=0, (2.30)
with

' 1/3
1 ah=—
2 Po

(2.23)

In the following section, we show that the marginal-

ly stable value of h in (2.22} is h*-=0.36. Then
{2.23}, evaluated at o =o *, requires that we choose
a =0.14.

The marginal-stability condition provides a con-
venient point of reference for scaling the nonlinear
equation (2.17). The scaling relations (2.4), (2.11),
and (2.12) do not make sense in the nonlinear con-
text because p and v become variables which are
directly related to R; specifically, we identify

R =2h {1+F} (2.31)

and linearize (2.27) in F, we recover (2.22). Note
also that the only free parameter in (2.27) is e. If e
is of order do/6, then e will be of order unity.

where primes denote differentiation with respect to
x, and the boundary at x =L is to be moved to in-
finity: L~00. The first-derivative conditions are
required, as mentioned above, in order that constant
values of R be acceptable solutions. The third
derivatives are chosen arbitrarily. Note that if we
write

p(r) =R (O, r) (2.24)
III. LINEAR-STABILITY THEORY

and use (2.16) (vp/2D =p) to evaluate v (t). How-
ever, p* and v~ are completely determined as func-
tions of 6 by (2.16) and o =o ~; thus we can write

p~( aP a*)'~'t= r, z= ,p'( —aP—o')'~x
2v~

(2.25)

1/3
Pa 0

R (z, t) =p* R(x,r)2

In this section we present an account of the
linear-stability analysis which produces the value of
h~ quoted following (2.23). The discussion is not
necessary for an understanding of the material in
later sections of this paper. However, these results
do provide some useful insight into the behavior of
the realistic linear equation (2.1); thus, we shall
describe the analysis in some detail.

We start with the linear equation (2.22}. If we
write

R(x,r) .
2h* (2.26)

F(x,r)=fw(x)e ', (3.1)

The dimensionless factors involving a, P, and cr~

have been introduced in order to be consistent with
the notation used in (2.22). Equation (2.17) be-
comes

then the relevant eigenvalue problem is

~fw „d'fw d'f w

Bx gx2 gx4

with

(3 2)

BR BR
R

8 R
1 + 8 R 1 8 R

a~
=

ax ax' +'ax' ~ ax' '

fw(0)=fw(0)=fw(L)=fw(L)=0& L~oo .

(3.3)

where

(2.27)
This is not a standard kind of eigenvalue equation;
the linear operator on the right-hand side of (3.2)
contains a fourth derivative and, because of the first
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derivative, is not self-adjoint.
The general solution of (3.2) must have the form

where the K„(W) are the four solutions of

M(K, W):K— 2—hK +iK+ W=O. (3.5)

4

fs (x)= g A„exp[iK„(W)x], (3.4)
From the boundary conditions (3.3) we obtain the

determinantal eigenvalue equation

&( W) =det

iKi
~ 3—lKi
iK)L

m&e
iK) L—lKie

iK2
~ 3—lK2

iK2L
lKge

iK2L
l 28

iK3

—iK3
iK3L

lK38
iK3L—lK38

iK4
~ 3—lK4

iK4L
uY48

iK4L—lW 48

=0. (3.6)

Suppose that ImK« IIK2 & ImK3 & ImK4. That

is, let exp(iKix) be the most rapidly growing ex-

ponential function, exp(iK2x) the next most rapid,

etc. Then group the terms in (3.6) as follows:

able size near x =L. Similarly, the second, third,

and fourth terms in (3.4) all will have magnitudes of

order unity near x=0. The absence of a cubic term

in (3.5) implies that

4

g K„=O,
n=1

(3.10)

where

Qi( W) =K iK&KsK4(K2 —K i )(K& Ki ),
(3.g)

ImK2 ——ImK3 (3.9)

so that the first two terms in (3.7) remain of com-

parable size no matter how large L becomes.

The relation (3.9} is sufficient to determine a full

(presumably complete) spectrum of complex eigen-

values W and eigenfunctions fs (x}. Note that this

relation does not depend an the precise nature of the

boundary conditions (3.3), but only on the fact that

we are imposing two conditions at x=O and two at
x =L~ ao. Only the special modes determined by

Q i ——0 are strongly boundary dependent. The eigen-

functions themselves must look as follows. Let the

amplitude A2 in (3.4) be unity. Then A&, the coeffi-
cient of the most rapidly growing term in (3.4},
must be small, of order exp[ —(ImKq —ImKi }L],so

that the first three terms in (3.4) all are of compar-

etc. The first two terms on the right-hand side of
(3.7) are the largest in the limit of indefinitely large

L. If IIK2 & ImK3, then the only solutions in this

limit are fixed by setting Q, =O; but this rela-

tion gives us only isolated points (e.g., W=O,

fo ——constant) and not a full spectrum of eigen-

values. The way to obtain the spectrum in the

large-L limit is to set

which tells us that at least one of the terms in (3.4},
specifically the fourth, must be a decaying exponen-

tial which may be appreciable near x=0 but drops

out near x =L. In this way, we are able to adjust W

and the three independent amplitudes A so as to fit
the four boundary conditions, two at end.

The eigenvalue spectra obtained by imposing the

condition (3.9) on the solutions of (3.5) are illustrat-

ed in Fig. 1 for h=l, h =h~=0.3622, and h=O.
Here, both the real and imaginary parts of W are

shown as functions af the real part of K, K being ei-

ther K2 or K3 as explained below. Each spectrum

consists of two parts: a camplex branch shown by a
solid line starting at ReK=O, and a real branch

shown by a separate line starting at larger values of
ReK. For both of these branches, K is chosen to be

K2, and we have adopted the convention that

ReK2 & ReK3. The dashed segments in Fig. 1(a) are

second (redundant) representations of the complex

branches, shown here with K=K3. When that

latter segments are included, the spectra appear as

piecewise continuous functions of K and look quali-

tatively like those obtained for the realistic model in

Ref. 9. The results of ImW shown in Fig. 1(b) are

alsa similar to these in Ref. 9, with wave velocities

ImW/ReK, which are very nearly unity near the

peak in the spectrum and are somewhat larger at

smaller K. Note that the marginally stable branch

of the spectrum, with h =h~; passes through its
maximum with ReW=O at a finite value of ReK.
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1.0—
h=1

Re(W)

04

-1.0—

Im(W)

(a)

(b)

\
2 \

\
ll
\

2.0

RgK)

(3.5) and (3.11), we can express K~ and K4 in terms

of Kz and then obtain the relations

2K2 —2hK2+ —=0,
2

W= 3K2 —2hK2,

(3.12)

(3.13)

which can be solved for W and E2 as functions of
h. The marginal-stability point is identified by the
value of h =h~ such that ReW=O. After some
algebra, we find that this point occurs when

K, =K*,
' 1/6

3+v7 t, 3/7 —1

32
exp ——cos

1.0

3622

=0.7150—0.222 9i,

and that

(3.14}

0 Re(K)

FIG. 1. Eigenvalue spectra for the linear-stability
problem at three different values of the parameter h.

1+~7
2

' 2/3

—=0.3622 .
4

(3.15)

The existence of such a characteristic length at the
marginal-stability point was unclear in the earlier
numerical results.

In the complex part of the spectrum, the modes

fs/ are superpositions of two dominant, moving,
growing waves with distinct wave numbers ReK2
and ReK3, both positive. The transition to the real
part of the spectrum occurs when ReK2 vanishes
and K3 and K~ exchange roles. The real modes fs
are standing waves with only a single wave number

ReKz ———ReK3, ReK& ——ReK4 ——0, which grow in x
and decay exponentinally in time. The most in-

teresting points for our purposes are the peaks, indi-
cated by open circles in Fig. 1(a). These peaks—
maxima in ReW—occur when Kz merges with K3,
that is, when (3.5) has a double root. The latter
condition can be used to compute h* and to deduce
properties of the spectra near the peaks.

To see how this calculation is performed, note
first that when K2 ——K3, the polynomial M(K) de-
fined in (3.5) can be written

+ W —W=0 (3.16)

for W near W and K near K3. The roots of (3.16)
are

' 1/2
W —W
P(h}

(3.17)

where

P(h) —=(K2 K) )(K2 —K4) =—2(3K2 —h ) .

(3.18)

These two roots are now to be identified as the dis-
tinct values of K3 and Kq, respectively. The condi-
tion that they have the same imaginary part can be
satisfied, in this approximation, only if the quantity
inside the large parentheses in (3.17) is real and pos-
itive. Note then that ImKq ——ImK3 ——ImE*. Thus,
the spectrum is approximated by

To check that the condition E2 ——K3 does in fact
identify a maximum in Re W, we can write

M (K, W) —= (K —K2) (K2 K) )(K2 —K—4)

M(K, W) =(K Ki )(K —K2) (—K —K4),
(3.11)

W-=W—P(h)(ReK —ReK ) (3.19)

where the quantities with overbars W, K; indicate
that the equation is valid only when K2 ——K3.
Equating coefficients of the various powers of K in

where E is K2 or K3 depending upon whether ReK
is less than or greater than ReKq. The condition
for a maximum is simply' that ReP(h) be greater
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than zero, which is true in the region of interest, as
seen in (3.21) below.

IV. NONLINEAR BEHAVIOR

We return now to the fully nonlinear problem de-
fined by Eqs. (2.27) and (2.28) and the boundary
conditions (2.30). Our investigation has consisted
primarily of a sequence of numerical experiments
supplemented by a simple two-mode analytic inter-
pretation of the numerical results.

The integration of Eq. (2.27) was performed by
discretization in the x direction with 200 (and soine-
times 400) points, the distance between meshpoints
mostly being lb&=0.7. This discretization allowed
us to study systems containing about 14 side-

branching periods at a resolution of about fourteen
meshpoints per period. We used a standard five-
point Runge-Kutta procedure [IMSL (Information
Management Systems Library} subroutine DvERK]
with double precision on an IBM 3033 computer.
Computation times were as long as several hours

per run in some cases to allow for extrapolation to
the long-time limit.

Boundary conditions were chosen as follows. At
x=O, all odd derivatives were set equal to zero as
specified in (2.30}. At x =L=200 M, however,
we set R (x &L)=R (L) and, in the interval
L —10lbe &x &L, introduced a linearly progressive
changeover from the original version of (2.27) to a
pure diffusion equation with a drift term. The pur-
pose of this procedure was to minimize reflection of
signals at the large-x boundary and thus simulate a
semi-infinite system. An alternative procedure
would have been to construct a reflection-free boun-

dary condition for the dominant modes of the
Fourier spectrum of R, but this would have re-
quired an additional time-consuming computation
which did not seem to be necessary in view of the
apparent success of our simpler method. We did
check our method by performing some computa-
tions on a larger system with 400 meshpoints.

Our typical procedure was to integrate (2.27) for-
ward in time starting with R of the form

R (x 0)=Rp+I'p(x) . (4.1)

Here, RD was chosen to have various values on ei-
ther side of the marginally stable R 0 ——2h~ -=0.72,
and r0(x) was some initial perturbation localized in
the neighborhood of the tip, that is near x=O. In
all of these numerical experiments, we observed just
two qualitatively different kinds of behavior: either
the system settled eventually to a uniform station-
ary state with R equal to some constant less than

0.72, all perturbations having moved out of the sys-
tem in the direction of large X, or else the system
settled into a unique, time-dependent, side-
branching state whose properties were independent
of the details of the initial configuration. The first
kind of behavior generally occurred when the initial

RD was less than 0.72 and r0(x) was not too large;
but we occasionally observed the system to find its
way to such a uniform state after undergoing large
excursions in the apparently unstable regime. Simi-
larly, the second kind of behavior generally, but not
always, occurred when the initial RD was larger
than 0.72.

A sequence of pictures showing the evolution of
the side-branching state from an initially unstable
configuration is shown in Fig. 2. The initial pertur-
bation, shown in Fig. 2(a), grows and moves in the
+x direction, as seen in 2(b), and also generates
new oscillations near x=O. In the final state,
shown in 2(d), the side branches are continuously
generated by a small-amplitude oscillation at the
tip, and grow to some e-dependent steady-state am-
plitude as they move down the dendrite.

Within a side-branching wavelength of the tip,
the amplitude of oscillation of the steady state,
shown in Fig. 2(c), is extremely small. In fact, the
amplitude of oscillation of the tip displacement
R(x =O,r } in our numerical experiments was only
of order 10 for values of e of order unity or
greater. This is consistent with experimental pic-
tures which show visible side-branching deforma-
tions emerging well behind the smooth, para-
boloidal tips of succinonitrile dendrites. This
feature has also allowed us to simplify our study of
the steady-state behavior. Because the steady state
R(O, r} is very nearly a constant, the factors v(r)
which appear on the right-hand side of (2.27) are
also nearly constant and play essentially no role
after the initial transients have settled out. Thus, in
all of the numerical work to be discussed next, we
have simply set v=1 in (2.27) and have ignored
(2.28).

One of the main purposes of this investigation
was to test the validity of the marginal-stability hy-
pothesis which implies, in part, that the steady-state
tip displacement R(O, r) should oscillate around or
near the value 2h*=0.72. This test requires a care-
ful study of the long-time behavior of the system in
order to be sure that the steady state has actually
been reached. The approach to steady state is also
of some interest by itself.

In order to suppress irrelevant degrees of free-
dom, we analyzed the time dependence of R (0,r ) by
producing a Poincare map. Each time R(0,~) went
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FIG. 2. (a)—(d) Sequence of pictures showing the evolution of the side-branch pattern from the marginally stable con-
figuration with an initial destabilizing perturbation near the tip. (e)—(g) same as (a)—(d), but with an initial stabilizing
perturbation near the tip. Even though side branches are formed, their wave front cannot keep up with the tip velocity
and the dendrite ultimately returns to a smooth shape, in the absence of fluctuations.
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R,„(0,r„)—R (0, oo ) oo r„". (4.2)

0.95.
E= 0.5

through a maximum, we determined its value

R (O, r„}and the corresponding r„by parabolic

interpolation between three successive time steps.

After steady state was reached, this procedure yield-

ed constant values Rm, „(O,r„) and the period

5+ —'T+ ] to an accuracy of five significant figures.

In Pig. 3 we show the results of this analysis for

a=0.5. Each dot represents a maximum of the tip

amplitude, and the intermediate motion is not
shown. The initial value is Ro ——0.85 [see Eq. (4.1)].
The asymptotic value is R,„(0,oo ) -=0.897, which

is reached with exponential covergence. The oscil-

lations seen in the figure have a period of roughly

h,r =130. This is of the same order of magnitude

as the time it takes for a signal to travel the length

of the system, but this long-period oscillatory
behavior does not seem to be entirely a size effect.
Doubling the size of the system from 200 to 400
meshpoints with constant Lkx did increase the

period, but only to 6~=150. At this relatively

small value of e, the oscillations near the tip are

large, and the side branches away from the tip have

such large amplitudes that R (x,r ) becomes negative

in the troughs. We conclude that this is an unphys-

ically small value of e, and we have not investigated

such small e 's any further.
When e is greater than 0.7, the behavior of

R,„(O,r„) becomes quite different, as is seen in

Fig. 4. Here, for @=1.0, the long-period oscillation

has disappeared and the tip displacement relaxes

smoothly toward a value below 0.75. The long-time

convergence is no longer exponential, however. To
show this more clearly, we have made the double-

logarithmic plot shown in Fig. 5. In preparing this

graph, we have adjusted the value of R,„(0,oo ) so
as to obtain a straight line corresponding to a power

law of the form

0.90

0.85.

0.75-
(x+3) 1 3

Tn

FIG. 4. Graph of maximum tip displacements

R (O,r„), showing slow, nonoscillatory relaxation to-

ward steady state at a= 1.0.

-3.3.

We find R (0, oo )—=0.72+0.01 and p =0.61. Oth-

er values of e between 0.7 and 5.0 gave the same

qualitative behavior. In particular, R ~{0,r„) al-

ways relaxed to 0.72 as above, except for a=0.7,
where it was about 0.75. The amplitude of the tip
oscillation, R (O,r }—R {O,r), was approxi-

mately 0.02 for @=1.0 and decreased for increasing
The exponent p decreased with increasing e,

becoming approximately 0.38 at @=2.0 and 0.33 at
e=3.0. Accordingly, the time needed for
R (O,r„) to come within 5% of the asymptotic
value increased to about 2X10 at @=3.0. During
this time, some 2000 side branches had grown out

of the tip region.
The side-branching patterns at the ends of four

runs with different e s are shown in Fig. 6. All tip
displacements R,„{O,r) have converged to values

near 0.75. Beyond a few wavelengths from the tip,
both the average displacements R (x, t) and the am-

plitudes of the side-branching oscillations have set-

tled to values which decrease with increasing e.
Note that the spacings of the side branches, like the

tip displacements, are essentially independent of e.
{The relative phases of the side-branching oscilla-

tions in Fig. 6 are not significant. These pictures

have been drawn in the moving frame of reference

at arbitrarily different phases of their side-

0.90.,

t ~

0.85-

~ ~

~ ~
~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~

~ ~ ~ ~
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-3.6.
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in {i„i

FIG. 3. Graph of maximum tip displacements

R (O,r„), showing oscillatory relaxation toward steady

state at @=0.5.
FIG. 5. Logarithmic plot of the relaxation of the max-

imum tip displacements at @=1.0.
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4f

.2,

er simply ignoring the boundary conditions. That
is, we could eliminate the drift term at x=0 by

writing y =x —vt and

V
X

hz

R(y, r)=re(r)+ri(r)cosk~ . (4.4)

28 56 84 112 140

FIG. 6. Side-branching patterns at the ends of four
runs with different values of Fas shown.

branching limit cycles. }
Figure 6 illustrates several of the central results

of this investigation. The tip displacement R(0,r)
clearly settles into a small-amplitude oscillation

within a l%%uo neighborhood of the point of marginal

stability, as can be deduced from the initially slow

spatial growth of side branches away from the tip.
This limit cycle is unique in the sense that it ap-

pears to be produced by any starting configuration

other than those which lead back to the stable re-

gime, R = const & 0.72. Moreover, this behavior

seems to be essentially independent of e, the one

remaining system parameter in (2.27). The spacing

of the side branches seems to be completely deter-

mined by the oscillation at the tip and, thus, like the

tip displacement, to be independent of initial condi-

tions and e. We believe that these features are also

characteristic of the real physical situation, and that

the emergence of these features in our model pro-

vides new understanding of the marginal-stability

hypothesis.
In the remainder of this section, we shall describe

a two-mode analytic interpretation of our numerical

results which is motivated largely by the above ob-

servations regarding the side-branching modes. The
side-branching patterns shown in Fig. 6 suggest

that, for values of x far from the tip, the Fourier
decomposition

If we then substituted (4.4) into (2.27) and interpret-

ed the results as if it were valid on the infinite inter-

val, —00 &y & ao, we could project out truncated

equations of motion for rp and r &. Doing this, how-

ever, would lose the information about the stability

of the system for rp & 2h» —=0.72 and would also in-

troduce an inconsistency in our assumptions about

kp. To avoid these difficulties we propose adding a

term linear in r& which will mimic the known sta-

bility properties. Our equation, valid in some re-

gionx =y+vt &&1, is

BR $2R= —cr ~ coskpy —R 1+e
ar ~y ~y

a4R

ay4
' (4.5}

drp

dt 2
h»r (I eh»r }——

dr) 3 23
dt 4=h»ri(ro 2h») —«h» ri—. —

(4.6}

This model has a line of fixed points at r&
——0 and,

for e &e, = —,h» =3.8, another fixed point at

where the first term on the right-hand side is the
new stabilizing factor and the rest comes directly
from (2.27). If we choose c =h», then marginal

stability occurs at rp ——2h» as it should. The critical

ko is ~h~ =0.6, which is just slightly smaller than

either the observed value (0.65) or ReK»=0.75. Be-
cause (4.5) is only a one-parameter approximation
to the full equation, we cannot expect to reproduce
both rp and kp exactly.

The resulting equations of motion for the r 's are

R(x,r)= ra+ g r cos[mk—o(x vr)] (4.3)—
m=1

should be a rapidly convergent series. The value of
kp deduced from Fig. 6 is about 0.65, just slightly

less then ReK»=0.715 in (3.14). Our strategy is to
consider states nearly but not quite at equilibrium

by allowing the r 's in (4.3) to be slowly r depen-

dent, and by truncating this expansion at m=1.
We then look for coupled, nonlinear equations for
rp(r) and r~(r).

Observing the side branches far from the tip, in
the laboratory frame of reference, we might consid-

ro —— , r", = [—,(I—2'» }]'
eh» eh»

(4.7)

The fixed line is stable with respect to perturbations
in the r& direction for rp &2h» and unstable other-
wise. As shown in Fig. 7, the isolated fixed point
(4.7) merges with the fixed line at rp ——2h» when e
increases to e, .

For e & e„our analysis leads us to conclude that
the ultimately stable state of the system is at the
isolated side-branching fixed point (4.7). If the sys-
tem starts with small, nonzero r& and rp &2h», then
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FIG. 7. Flow diagrams for Eqs. {4.6} for three dif-
ferent values of e.

side-branching amplitude r
& decays like ~ ' rath-

er than exponentially, but the side branches ulti-
mately disappear. When e & e„a11points near the
unstable part of the fixed line are mapped onto the

initial condition with rp&2h~, r&
——0 is unstable

against side-branching deformations, it ultimately
stabilizes to a state where the side branches are
suppressed.

We conclude by comparing the predictions of this
rudimentary model {4.6) with our results from
(2.27). First, we have observed numerically that the
side-branching mode predicted by {2.27) equilibrates
with a power law dependence on time; and thi
contrast to the simpler model (4.6) which predicts
exponential relaxation everywhere except exactly at
e,. Apparently the simplified model (4.6) misses
some subtle details of the tip dynamics. Second, the
simplified model predicts a critical e, =3.8 above
which the side branches should decay. This is not
seen in the calculations based on (2.27). The graph
for @=5.0 in Fig. 6 shows that the average displace-
ment rp at large x does fall below the margi al t-
b'1'i ity value, even though R (O,r ) seems to remain at

a arge e is so0.72. The equilibrium time at such a 1

long, however, that the system may not have
reached steady state. For most values of e between
1 and 5, the agreement between our simple analysis
and the numerical results is quite good, as is shown
in Fig. 8. In particular, the decay of the homogene-
ous mode rp below the critical value 2h* at e =e, is
well reproduced. We have therefore obtained a fair-
ly good representation for the mechanism of side-
branch stabilization in our nonlinear model (2.27)
for the physical range of values of e of order unity.

r& decays exponentially and the system settles at
some point on the fixed line. Such a point is stable
against side-branching deformations but is only
marginally stable against changes in rp, that is,
against changes in the average curvature of the den-
drite. If r~ is prevented from decaying to zero by
some additional noise source, drp/dt remains posi-
tive and the system drifts toward rp ——2h~. This
drift was anticipated in our earlier papers. The ef-
fect is also found in numerical studies of (2.27) with
added noise (not reported here), and is implicit in
the fluctuation theory to be described in Sec. V. Fi-
nally, if the system finds itself near the unstable
part of the fixed line rp Q 2h~, then it moves direct-
ly to the side-branching fixed point (4.7).

When e =a, [Fig. 7(b)], the isolated fixed point
as just merged with the fixed line at rp ——2h*. If

the system starts in the unstable range rp )2h ~, the

0

1—
2h

0'
2 — 3 4

(+)

5

FIG. 8. Steady-state amplitudes ro, r& as functions of
F. Circles are numerical data, lines are results from the
simplified model (4.6).
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V. FLUCTUATIONS

We turn, finally, to the problem of estimating
fluctuation effects, especially in the continuum of
stable states (o & o.*) where we expect fluctuations
to produce a drift toward the point of marginal sta-
bility (+=cd*). The following discussion will be
even more qualitative and speculative than the
preceding sections.

Our general strategy is to add a Langevin force
ri{z,t} to the right-hand side of the nonlinear equa-
tion of motion (2.17) and to use this equation to es-

timate a fluctuation-driven rate of change of the tip
radius p=R(0), in the stable regime p&p». This
program consists of two main parts. First, we must
choose an appropriate stochastic description of the
random force g, and then we have to make some es-

timate for the effect of these fluctuations on p. A
direct solution of the complete Langevin equation,
(2.17) plus the noise term q, seems neither feasible
nor necessary at the present stage of the investiga-

tion; thus we shall make some very crude approxi-
mations designed only to look for general trends
and orders of magnitude.

Let us start with the assumption that the under-

lying source of fluctuations is thermal noise. We
shall see that it is unlikely that purely thermal fluc-
tuations can produce the effect that we are looking
for; but they provide a convenient starting point,
and it is far less clear how to describe any other
possible noise sources. So far as we know, the only
previous theory of the effects of thermal fluctua-
tions on solidification is that of Cherepanova, ' who
has calculated the spectrum of thermally driven de-

formations of the face of a growing crystal near the
point where it undergoes a Mullins-Sekerka instabil-

ity." Cherepanova's published results are not
directly useful for us because she provides only a
formula for the interfacial fluctuations of an initial-

ly planar solidification front rather than an expres-
sion for the stochastic force g which we might bor-
row for use in other situations. We shall, however,

follow her general procedure, but in a much simpli-
I

fied form.
Specifically, we consider the somewhat artificial

situation of a pure solid growing into a melt with

unit undercooling; h=(TM T„—}c/L=1. That is,
the undercooling is just large enough to allow

steady-state planar growth at any velocity. We fur-

ther specialize to the case in which the thermal dif-

fusion constants D and specific heats c are the same

in both liquid and solid phases. Then we can write

the equation of motion for the thermal diffusion

field, in the frame of reference moving with the in-

terface in the z direction at velocity v, in the form

where

u = T T
L/c

(5.1)

(5.2}

Note that {5.1} is valid throughout the two-phase

system and that (5.3) reproduces the correct thermal

fluctuations in either phase because of the uniformi-

ty of D and c. Note also that k is a three-
dimensional wave vector. (kz is Boltzmann's con-

stant. }
Let x be a vector in the plane of the interface

(perpendicular to the z axis), let g(x, t} be the dis-

placement of the interface in the z direction, and

consider a displacement of the form

g(x, t) =g(kj )exp(ikq x+irot), (5.4)

where kz is a two-dimensional wave vector in the x
plane. The appropriate form of the solution of (5.1)
is

is the dimensionless temperature and S is a stochas-
tic heat source whose correlation coefficients are
more conveniently written in terms of its Fourier
components S(k, t):

($(k, t)S( —k ', t') )

2k&T cDk

L2
5{k—k ')5(t —t') . (5.3)

exp ———1+u(z)exp(ik~ x+icot), z &g (liquid}
u(x, z, t)=

u '(z)exp(ikj x+icot), z &g (solrd)
(5.5)

u(z)=Ue ~+u (z),

u '(z) =U'e~'+u, (z) .
(5.6)

where, as before, I =2D/v is the diffusion length
and

I

Here

dk, S(kj,k, )exp(ik, z)
us(z) =

2~

~

~2n. ico+D(kj+k, ) ivk, —
(5.7)
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is the fluctuation-induced part of the temperature
field, and q and q' are the solutions {with positive
real parts) of

2q z leo
q — —kg —— ——0,

l D

q + —kq — ——0.2q z Eco

l D

(5.8}

The amplitudes U and U' are easily determined to
linear order in the deformation g by imposing the
Gibbs-Thomson condition

u(z=g)= —doV g

and the Stefan condition

(5.9)

auv+~t=-D
~z

(5.10}

where the square brackets on the right-hand side
denote the discontinuity (liquid-solid) at the inter-
face. (See Ref. 1, Sec. IIIA.} The resulting linear
equation for g is

incog(ki) =Q(ki)g(ki) —D(q+q')us(0),

(5.11)

where

Q{ki}=u q —— Ddp(q+—q')ki
2 i 2

l
(5.12)

is the Mullins-Sekerka amplification rate in the ab-
sence of noise.

For present purposes, it is sufficient to use a
quasistationary approximation and set co=0 wher-
ever it appears on the right-hand side of (5.11), and
also to assume that v is small so that kj l && 1. Then
q =q'=

I ki I, and (5.11) can be written in the form

The subscript on g2 is included in order to em-

phasize that this force acts over a two-dimensional

surface.
Equation (5.13) has some of the features of the

realistic dendrite model. Of course, neither the par-
abolic geometry of the dendrite tip or the drift term
which causes side branches to move relative to the

tip are present here, but the factor (1—dolki) is

essentially the same as (I+oM'") in (2.1), and the
factor

I
ki I

is the planar (Fourier transformed} ver-

sion of the inverse diffusion kernel G. The transi-
tion from (2.1} to (2.17}, in effect, requires the re-

placement of the nonanalytic factor
I ki I by apk J,

with kz being equivalei:t to a second derivative and
a —=0.14. We propose, therefore, to make the same
replacement on the right-hand side of (5.15) in or-
der to obtain a random force suitable for use with

(2.17). The last modification of riq that must be
made before it can be used in (2.17) is to make its
argument one-dimensional. We do this by returning
to the x representation x =(xi,xq), and integrating
over x2 across a strip of width 2~p, that is, we aver-

age over the circumference of the dendrite. Finally,
we return to the notation x& ——z, where z is the dis-
tance along the "dendrite" as used in Sec. II. Our
random force is therefore

2~p dx2
ri(z, t) = rit(x i

——z,xt, t)
2mp

(5.16)

( ri(z, t)ri(z', t') }

so that, using (5.3},we find

(i)z(ki, t)rii( —k i, t'))

4kgT cD
I
ki

I
5(ki k—i}5{i t')—.

L2

(5.15}

Bg(ki) =—&
I ki

I
(1 doiki)Ski)+ $—2(ki r}, where

a2= —aA 5(z —z')5(t t'}, (5.17}—
az2

(5.13) kgT cD
A=- ~L

(5.18)

which is a linear Langevin equation of the kind that
we are looking for. The random force is

dk, S(ki,k„t}
F12(ki, ~) -=2

I ki I

27/

(5.14)

Note that A turns out to be independent of either v

or p,' thus our noise is purely additive in the sense
that g does not depend on the state of the system.

To estimate the effect of the fluctuations on the
dendrite, consider performing both a spatial and a
statistical average on (2.17) in a situation in which
the mean value of R (z, t) is a constant, for example,
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dp au BR
dt= 2 az

{5.19}

This expression has the general features that we ex-
pected; the drift in p is in the direction of the
marginal-stability point and is caused by a
fluctuation-driven nonlinearity in the system. Note,
that as mentioned in the paragraph following (2.17),
the choice of an area nonpreserving quadratic non-
linearity was necessary in order to obtain a nonvan-
ishing term in (5.19).

The dimensionless quantity of physical interest is
u 'dp/dt, which should not be too much less than
unity if the marginal-stability point is to be reached
in a small number of side-branching periods. To
evaluate this quantity, we shall assume that p is far
enough below p* that we can use a linearized fluc-
tuation theory. It is convenient to return to the di-
mensionless notation introduced in (2.21) through
(2.23) and used in the linear analysis of Sec. III. We
have

2
1 dp Sh BF
u dt a Bx

(5.20)

where F satisfies the equation

( rl{x,r )rt(x', F '})

= —A 5(x —x')5(F—r ') (5.22)= -a'
Bx

with

16h A

up4a
(5.23)

One point of immediate difficulty with the fluc-
tuation problem posed by the above set of equations
is that the quantity ((BF/Bx} ) appears to be ultra-
violet divergent. This should not be too surprising.
Even bulk quantities like (u ) or ((VM) ) comput-
ed from (5.1) and (5.3) make sense only if one speci-
fies a fluctuation volume, that is, a short-

wavelength cutoff; the solidification problem de-

fined by (5.13)—(5.15) similarly requires a cutoff
for the interpretation of interfacial quantities like

(g ) or ((Vg) ). Intuitively, however, we do not

R =p &p~. The latter condition implies that we are
in the stable regime. If we neglect the cubic non-
linearity and perform an integration by parts for the
spatial average, we find

'2

1 dp 128h A
v dt vptr

(5.24)

In the neighborhood of the dendritic operating
point, the prefactor of P on the right-hand side of
(5.24) has the form (po/p)~, where

2=po=
64h +40 + kgcTM

2

I. do
{5.25)

For succinonitrile, po -—2X10 cm. [See Ref. 5 for
estimates of the quantities in the second set of
parentheses in (5.25).] The dendrites observed by
Glicksman and his collaborators ' have tip radii p
in the range 10 to 10 cm; thus the prefactor in
(5.24) is at most of order 10 and becomes as small
as 10 ' for the slower, fatter dendrites seen in the
experiments. These estimates are the basis of our
conclusion that purely thermal fluctuations should

play no significant role in the dendritic mode-
selection process.

There are, of course, other irregularities in any
solidifying system which might provide fluctuations
with the strength that we need at length scales of
the order of p. One specially interesting possibility
is that these irregularities might be inherent in a
more complete dynamical model of the dendritic
system, perhaps arising via hydrodynamic coupling
between the moving solidification front and the sur-
rounding fluid. With such possibilities in mind, it
seems to us to be useful to explore the fluctuation
theory in a little more detail, that is, to look a bit
further at the function P (h).

A formal expression for P (h) can be derived from
(5.21) and (5.22) by standard methods of fluctuation
theory. We find

p(h) g dfw "fw 1

dx dx
i

W
i + i

W'
i

dfw dfw
X dxi d, d, (5.26}

expect a new microscopic length to enter our for-
mula for dp/dt. On the contrary, it seems reason-
able to expect that the fluctuations that drive
changes in p are on the scale of p itself. We shall
take the latter point of view in our interpretation of
the formulas in the next several paragraphs.

Assuming that we can either solve or avoid the
divergence problem, we predict on dimensional

grounds that ((BF/Bx) ) must have the form

EP(h), where P(h) is a function of order unity.
That is,
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where the x dependence, if any remains after the

sums are performed, is to be averaged out. The
functions fq (x) denote the right eigenfunctions de-

fined in (3.2), and the fs (x) are their conjugates,

that is, the left eigenfunctions of the same linear

operator. The eigenvalues 8', 8" are all negative

because, by choice, we are looking only in the stable

regime. Instead of attempting the ambitious task of
evaluating (5.26) with the exact states computed in

Sec. III, let us simply approximate these states by

plane waves with wave numbers E, and let us fur-

ther approximate the dispersion relation W(K) by

the relation between Re@' and ReK obtained in

(3.19). That is,

which is linearly divergent because W(K} must be

proportional to E at large E. If we simply ignore

this divergence and assume that the integral is

determined by its behavior near the peak at E =ECO,

we find

It. *()
P(h}-

4[@*v~(h~ —h)]'~
(5.29}
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dK K
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/
W(K}
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where v~=Rep(h~), Ko =ReK~—=0.7150, etc. In

this way, we find
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