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Phase dynamics of convective rolls
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The equation of motion for the slow time dependence of convective rolls due to long-
wavelength inhomogeneities is shown to have a singular dependence on the wave vector of
the disturbance. Consequences for the skew varicose instability and the wave-number selec-
tion principle in textures of curved rolls suggested by Pomeau and Manneville are dis-
cussed.

I. INTRODUCTION

In many nonequilibrium systems driven by a spa-
tially homogeneous forcing there is a transition
from a uniform solution to one varying periodically
in space. The Rayleigh-Benard instability is a
canonical example: A transition occurs from the
conducting state, with zero fluid velocities and a
vertical temperature gradient independent of hor-
izontal coordinates, to the convective roll state, with
these quantities varying periodically with the hor-
izontal direction. In the idealized limit of a lateral-
ly infinite system the overall position of the rolls
and their orientation are free variable=a uniform
displacement or rotation leads to an equivalent solu-
tion. An interesting motion of the system above on-
set then involves the slow change of these variables
driven by slow spatial inhomogeneities. In this
motion the local roll structure is only slightly per-
turbed, and the dynamics may be described in terms
of slowly varying functions describing the position
and orientation of the local roll structure. Such
motion may well be involved in the low-frequency
turbulence observed by Ahlers and Behringer' in
large aspect ratio (ratio of horizontal extent to fluid
depth) cylindrical cells. It has also been directly ob-
served in a large aspect ratio rectangular cell a finite
distance above threshold by Gollub and Steinman.
In this latter case the motion of defects in the roll
pattern is a prominent feature.

Since the symmetries imply that homogeneous
translations and rotations lead to no time depen-
dence, it seems natural to assume a gradient expan-
sion for the dynamics of slow spatial inhomo-
geneities. Such an approach was suggested by
Pomeau and Manneville who introduced the gen-
eral idea of a phase variable to describe this motion
(although the phase variable was already an explicit
feature of the complex amplitude equation intro-

duced by Newell and Whitehead4 and Segel5 to
describe convection close to onset) and suggested
the notion of "phase diffusion. " In fact, we will
show that the gradient expansion for the phase
dynamics is singular, with, for example, the dynam-
ics of a sinusoidal disturbance sin(K. r) about a
parallel roll state depending on the ratio E„/EC~
(with the x direction normal to the rolls) as K„and
E~ approach zero.

There are two important consequences of this
analysis. The first is the modification of the wave-
number selection principle in axisymmetric convec-
tion due to Pomeau and Manneville. If we first as-
sume that the gradient expansion of the phase
dynamics is smooth, then it is readily seen that at
large distances from the center of curvature in ax-
isymmetric convection the phase dynamics driven
by the roll curvature cannot be balanced by other
terms. A static solution is then obtained only if the
basic wave number of the rolls is such as to make
the transverse diffusion constant Dj, and hence the
driving, equal to zero. Since this criterion is also
that for marginal stability against transverse fluc-
tuations, Pomeau and Manneville suggest the fas-
cinating result of wave-number selection at a mar-
ginal stability point. In fact, the gradient expansion
is not smooth, and although a wave-number selec-
tion principle remains, it is no longer at the margin-
al instability.

The second result is an understanding of the skew
varicose instability from the long-wavelength phase
dynamic equation. The skew varicose instability is
a long-wavelength instability (i.e., it occurs first for
the disturbance wave number E—+0 and so should
be derivable from the phase dynamics) with a finite
value of E„/E~. It is very important in limiting the
band of stable stationary convection close to thresh-
old in low Prandtl number fluids. A smooth gra-
dient expansion leads to no such instability, and
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understanding the singular nature of the expansion

is crucial in obtaining a simple description of this

instability.

II. DISCUSSION

The phase variable describing the slow modula-

tion is introduced as follows. Consider a time-

independent solution v(kx, z) periodic in the x
direction with period 2n.k . In general, v is a vec-

tor field of all the hydrodynamic variables.

Translational invariance implies that v(kx+P, z),
with P an arbitrary constant, is an equally good

solution. If P is varying slowly with the horizontal

coordinates then v(kx +(()(x,y),z) is close to being

a solution, and the time dependence of v, and hence

P itself, may be expected to be correspondingly

slow. For P small, corresponding to small devia-

tions from a straight roll structure, Pomeau and

Manneville suggest an equation of the form

0&k —kp( 1/2~ —&e 5o (4)

with 0 (e) corrections.
In a subsequent paper Pomeau and Manneville

suggest the fascinating result that for axisymmetric

convection there is a unique roll wave number suffi-

ciently far away from the center of curvature, that

is also determined by the marginal stability condi-

tion for Eq. (l), D~(Q)=0 [i.e., Q =0 for the

lowest-order calculation given by Eq. (2)]. The
reader is referred to the original paper for the very

elegant derivation leading to this result. The essen-

tial ingredient is to compare an r ' expansion, with

r the distance from the center, to the gradient ex-

pansion leading to Eq. (1). The only assumption

made is the smoothness of these expansions; no as-

sumption of proximity to onset is needed. Their re-

sult may, however, be simply illustrated from Eq.
(1) in this limit. If instead of a solution periodic in

x, a basic solution periodic in r (at large r) is as-

sumed, the changes to Eq. (l) are given by

where D~~ and Dz are diffusion constants.

The dynamics of the Rayleigh-Benard instability

may be calculated just above onset using the ampli-

tude equation, which is derived as a systematic ex-

pansion in e=(R —R, )/R„with R the Rayleigh

number and R, its critical value. Using the lowest-

order amplitude equation of Newell and Whitehead

and Segel, Eq. (1) may indeed be derived with

1 —30 2

rpDg (q lk p)g p——+0 (e),
(2)

where

Q =e '~
(pq =e '~2(p(k —kp)

with kp the wave number minimizing R„gp is the

convenient length scale for horizontal coordinates

equal to 0.385d for rigid upper and lower boun-

daries with separation d, and 'Tp equal to 19.650.

(sr+0.5117) vertical thermal diffusion times, sets

the time scale.
An important result easily derived from the

phase diffusion equation is the long-wavelength in-

stability of the convective pattern, signalled by a
negative diffusion constant. Equations (1)—(3)

reproduce the known results close to onset for the

longitudinal (Eckhaus) instability at Q = —,, and

transverse (zig-zag) instability at Q =0. Stable con-

vection close to onset is then limited to the range of
wave numbers

ay
(5)

q=c/r ~ 0,
with c an integration constant: A unique wave

number is found, for sufficiently large r, at the zig-

zag marginal instability. This result has also been

derived by Zippelius directly from the axisym-

metric amplitude equation of Brown and Stewart-

son. The result may be seen to follow from the

fact that at large distances a nonzero value of the

curvature term Dj(Q)kpr ' forcing the circular

rolls to grow or shrink cannot be balanced. Note,
however, that the balancing is determined by the

constant c, not fixed by this argument. Presumably

if the center of curvature is part of the flow field

c =0(1). For axisymmetric flow outside a cylinder

c will be determined by boundary effects at this

cylinder.
Although Pomeau and Manneville derived their

result for axisymmetric convection, an analysis of
the lowest-order amplitude equation generalized to

where q(r) is the local wave-number change from

kp, assumed small. Stationarity then requires

dq q+—=0,
dr r

where the lowest-order results [Eq. (2)] have been

used. This leads to
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arbitrary orientations (see, for example, Cross ) sug-
gests a similar result for any set of curved rolls. It
is conceivable that in the textures characteristically
observed in convection in finite cells, involving
curved rolls with defects, this mechanism may pro-
vide a wave-number selection principle in regions of
relatively undistorted rolls far away from the de-

fects. In this case the result assumes an importance
far greater than that suggested by the somewhat
idealized situation of axisymmetric convection.

A crucial assumption in the Pomeau-Manneville
analysis is the gradient expansion [Eq. (1)]. In fact,
we will show that this is not, in general, correct for
the Rayleigh-Benard convection, and that Eq. (1)
must be modified to

j =D~~a„'y+D, a,'y+ U,

where U is a drift term arising from a horizontal
fluid velocity, in turn, driven by phase gradients.
The important and rather surprising point is that if
U is eliminated in favor of the phase variable, the
gradient expansion is, in fact, singular. For plane-
wave variation (t) ac sin(K r) the drift U will depend
on K„/K~ as K~O.

We will demonstrate the singular nature of the
gradient expansion using the formal expansion
scheme of Newell and Whitehead and Segel, in

which the single small parameter e is used to scale
both the amplitudes of the hydrodynamic variables

and the rate of spatial variation of the basic roll

pattern and its perturbations. Calculations are then

done to a chosen order in e. Ultimately, for partic-
ular quantitative calculations (e.g., of stability boun-

daries) it may well be better to introduce various in-

dependent expansion parameters. For the qualita-
tive conclusion sought here, the single straightfor-
ward expansion scheme provides a simpler deriva-
tion.

For the physically artificial but formally instruc-
tive case of free-slip boundary conditions at the

upper and lower plate, the modified phase equation
(8) follows directly from the new amplitude equa-
tion of Siggia and Zippelius' and is implicit in
their stability analysis, which leads to results quite
different from those implied by Eq. (1). The addi-
tional singular drift term arises from the vertical
vorticity with uniform z dependence. Free-slip
boundaries apply no restoring force on this flow in
the long-wavelength limit, and the response to the
driving by the nonlinearities in the Navier-Stokes
equation becomes singular. The long-wavelength
vertical vorticity is an additional "dangerous mode"
in the system (i.e., mode of zero eigenvalue). It is

not, then, too surprising that the equations become

smooth in a gradient expansion only when written

as coupled equations for P and U. In an expansion

above onset the corrections to the phase motion, in

fact, appear at the same order in e as the lowest-

order terms [Eq. (2)], and completely change the

stability analysis at this order. '

On the other hand, rigid top and bottom boun-

daries lead to a finite 0(1) decay rate for vertical

vorticity even in the long-wavelength limit, there

are no extra dangerous modes at onset in addition to
the convection modes, and a gradient expansion

seems more likely to be valid. In fact, we will see

that a singular drift term arises here too, not from a
zero eigenvalue for the horizontal velocity at long

wave vectors qz as in the free case, but because the

eigenvalue and eigenvector depend in a singular way

on the limit q&~0, with the longitudinal and trans-

verse modes giving different limits. The gradient

expansion may be seen to break down because of the
effectively long-range forces introduced by the in-

compressibility of the fluid on the time scale in-

volved in Eq. (8). In an expansion above onset the
singular correction U appears only at the next order
in e' beyond the Newell-Whitehead-Segel-type

analysis. In fact, at this order we suggest an equa-

tion of the form [Eq. (8)] with

1 —3O
gp e'~2Q—a (o,Q)+O(e),

and

rpDj (qikp)g ——p+eb(o, Q)+O(e'~ ),

r, (a„'+a„')U =a„'[e'"Qa(o,Q)a„'(()

-eP(o, Q)a,'y], (10)

where a, b, a, and P are, in general, nonzero for
Q~O. We will evaluate a and P explicitly. The
functions a,b have not been calculated directly for
the rigid case, but their properties may be inferred
from the free-slip calculations and previous numeri-
cal work. The important quantity b(0,0) has re-
cently been obtained by Manneville and Piquemal. "

Since the correction U arises from the nonlineari-
ties in the Navier-Stokes equations, it is clear that
the relative importance of this term will be greatest
at small Prandtl numbers, and we will emphasize
this limit. At large Prandtl numbers where the
thermal nonlinearities dominate, the singular
corrections will become unimportant, and the
wave-number selection principle of Pomeau and
Manneville, should be essentially correct.
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III. DERIVATION

493

It is convenient to eliminate the pressure P and the horizontal velocity u from the linear part of the Bous-
sinesq equations to give two equations for the vertical velocity w and T the deviation of the temperature from
the linear conducting profile:

( —o 'B, +V )V w+V'T=o '[V [(u V, +wB, )w] —B,V [(u V +wB, )u]],
( —8, +V )T+Rw =(u V +WB, )T . (12)

The equations have been reduced to dimensionless
form in the conventional way, ' ' and cr is the
Prandtl number.

The expansion scheme ' is to use e
=(R —R, }/R, to scale slow spatial and temporal
derivatives of the basic convection pattern of rolls
parallel to the y direction according to

X=~'"x,
Y =e'"y, (13)

w =E (Ape +C.C. )wp(z)+0(e),

T =e (Aoe +c.c.)TO(z)+O(e)
(14)

with [wo(z), TO(z)] exp(ikox) the critical solution
satisfying the time-independent, linearized equa-
tions at onset, and kp the critical wave number.

At each order in e ' an equation will be obtained
in the form

~0(w T} (fl f2}
where Lp is the linear operator at onset:

4 2—V —Vj

(15)

Lp —
RC

V2 (16)

with all derivatives here with respect to the fast
variables x, y, and fi,f2 are functions of Ao and its
(slow) derivatives known from previous orders.
Equation (15) has the solution

(17)

providing (f„f2) satisfies the solvability condition
of zero component along the eigenvector of Lp with
zero eigenvalue (i.e., the critical solution). The sol-

a=et .
The different scaling of x and y coordinates is

suggested by the rotational invariance of the onset
problem. For the results of our problem such a
scaling is not obviously beneficial, but we will con-
tinue to use it for ease of comparison with previous
work. The envelope function Ap(X, Y,~) is defined
by the equations

I

vability condition leads to the amplitude equation at
each order. The lowest nontrivial order leads to the
Newell-Whitehead-Segel result

'2

0A =eA +g 8„— 8 A —g~A
~

A
p

with ro, go, and g Prandtl number dependent con-
stants tabulated, for example, in Ref. 12, and

Ap ——e Ap.1/2

Once (w, T) at each order is calculated from Eq.
(17) the horizontal velocity must be found. It is
given at each order by

crV u =VIP+(u. Vz+wB, )u+B, u, (19)

where the right-hand side involves terms from pre-
vious orders, and the pressure P is given by integrat-
ing the equation for the vertical velocity:

B,P=oV'w+T —(u V +wB, )w —B,w (20)

with all terms on the right-hand side known. In in-
tegrating Eq. (20) a complementary function
Pp(x,y) must be introduced. This function is ulti-
mately determined using the continuity equation.
The correct treatment of the equation for u intro-
duces the singular gradient dependence into the
phase equation. Notice that for driving terms on
the right-hand side of Eq. (19) with fast x depen-
dence, such as exp(ikpx) the equation may be
directly inverted. It is the possibility of driving
terms varying horizontally with only the slow coor-
dinates X, Y that leads to the singular results. At
this point the formal treatment for the free an& rig-
id boundaries diverge.

For free boundary conditions a constant horizon-
tal velocity field is a natural solution to the operator
V in Eq. (19) together with the boundary condi-
tions 8,u(+ —, )=0. Consequently the response
u(x,y) to a slowly varying driving is anomalously
large. The potential part of this driving is canceled
by the pressure Pp(x,y), leaving an anomalously
large vertical vorticity response Q =( V X u), given
by

( —o 'B, +V,')Q=o 'j VX[(u V +wB, )u]], ,
(21)



M. C. CROSS 27

+~t u ] I slow ~ (22)

where constants of integration are uniquely deter-
mined by u(+ —,)=0. At first sight there is no
singular gradient dependence. However, the com-
plementary function Po(x,y) is as yet undetermined,

I

where the slowly varying component independent of
z of the driving is taken. The driving term on the
right-hand side is first nonzero at 0(el~i), and
leads to the results of Siggia and Zippelius. '0 [The
form of the driving is easily obtained from Eq. (25)
below. ] Calculating u from 0 involves inverting a
slow horizontal Laplacian B~+Bz and leads to the
singular gradient expansion discussed before. For
the analysis of the consequences of this result, see
the original work of Ref. 10.

Rigid boundary conditions u{+—,)=0 permit no
natural solutions to the operator in Eq. (19) at long
wavelengths. The equation may be integrated to
give rapidly varying terms, which present no prob-
lem, together with the slow drift velocity uD..

I

un ——o ' f dz' J dz"[ViP+(u. Vi+wB, )u

and leads to the contribution

ull o——'V,PO , (z ——,}—+ f, (23}

where 7 is the remainder of the right-hand side of
Eq. (22), including the particular integral of Eq.
(20). (It is convenient to choose this to give no con-
tribution to the flux integrated over the depth of the
fluid, although any other choice merely leads to a
redefinition of Pp and does not, of course, affect the
results. } In fact, Po is determined by the integrated
continuity equation:

f 1/2
& — 2dz Vg ug) =0=——„& V/PQ—1/2

1/2
+ Vl. f f dz .

(24)

Solution for Pp involves inversion of the slow

horizontal Laplacian 8~+8+, and, providing

( f )=f f dz is not purely potential, introduces a

contribution to ua that is again singular in the gra-
dient expansion. The explicit calculation of f is a
straightforward extension of Refs. 3 and 4. We find
the lowest-order contributions (leading to Vl uD of
order ez):

f,' '=2o ' Ao 8 —„B~ A +c.c. h(z),
2 Q

f' '=cr 'k ' 8 A' 8„—„B„A iA' a—.— '
a,' a„A +c.c. h(z)

2k 2k

with

(25)

h{z)= f dz' I dz" wo „2—
2

a ay, aw, ay,
az QqQ Qqp az

and the constants of integration are fixed by

h (+—, ) =0. Other contributions to 7 that are expli-

citly potential and so do not lead to any singular

behavior have been ignored: They are assumed in-

corporated into the parameters a,b. Finally, when

substituted back into fi,f2 of Eq. (15}we find the

lowest-order singular contribution to be added to
the amplitude equation (18) proportional to

[(B„P )iqoA +(8 P )8 A ]

with Po given by Eq. (24).
A number of remarks may make this result more

transparent. The form of the result is an additional
"convection" of the envelope function by an effec-
tive transverse velocity proportional to V&PQ(x,y),
with the proportionality constant depending in a
complicated way on the shape of the z dependence
of the velocity ua and of the critical solutions

(26)

I

wp Tp. The singular part of uD may be thought of
as the subtraction of a singular potential contribu-
tion (with z dependence z —

4 ), from a slowly vary-

ing drift 7 that has a complicated z dependence but
has a nonsingular gradient expansion at the order in

e considered. Although the full z dependences must

be retained to arrive at the correct numerical pre-
factors, a qualitative understanding is given by con-
sidering the convection of the zeroth-order solutions

by the z-integrated horizontal drift:
1/2

(un )= I ulldz . (27)

It is easy to see that the potential part of ( un ) is

canceled by the pressure Pp leaving a singular vorti-

city contribution to the average drift

(un) =VX' (28)

with



27 PHASE DYNAMICS OF CONVECTIVE ROLLS 495

(29)

With the approximation of considering only the in-

tegrated drift, the role of the long-wavelength verti-
cal vorticity is emphasized as in the free case
analyzed by Siggia and Zippelius. ' Their
phenomenological extension to the rigid case is thus
seen to be qualitatively correct, at least as far as the
singular part of the expression is concerned, al-
though it seems clear that there are other, nonsingu-
lar contributions of formally the same order, even
at small Prandtl number.

Notice that the singular drift velocity has the
particular z dependence of Eq. (23). An alternative
scheme for calculating the horizontal velocity is to
calculate it as the sum of a potential term, given via
the continuity equation, and a vorticity term, for
which a rather simple equation, Eq. (21), exists.
The solution for both contributions involve the in-
version of a slow horizontal Laplacian, and at first
sight would lead to a singular expression for all z
eigenfunctions. This is, in fact, misleading, since it
is readily shown that the sum of these contributions
is smooth, except for the particular component with
dependence z —

4 .1

For the purposes of calculating the equation for
small phase deviations from a straight roll pattern
the expression for f simplifies to

where

y(o )=0.45o 2(1+2.90o )g (34)

IV. ANALYSIS OF RESULTS

A. Long-wavelength instabilities

The Eckhaus instability arises if phase variation
in the x direction only is assumed. In this case
there is an effective parallel diffusion constant:

In this section we consider the consequences of
adding the singular drift term U to the phase dif-

fusion equation. There are two effects of interest.
The first is the modification of the long-wavelength

instabilities that limit the band of stable stationary
convection solutions. Although the singular nature
of the expansion is crucial only to the skew varicose
instability, a better understanding is given by first
studying the influence of the horizontal drift on the
Eckhaus and zig-zag instabilities. Since the case of
free-slip boundaries has been completely discussed

by Siggia and Zippelius' we will restrict our atten-

tion to rigid boundaries. Secondly, the wave-

number selection principle in axisymmetric convec-

tion suggested by Pomeau and Manneville, will be
discussed.

(30)
'TpDi i— 1 —3Q2

ko

where we have retained only those terms leading to
quadratic derivatives of the phase. The perturba-
tion of the magnitude is given by

(31)

a (o,g) =goy(cr ),
P(a, g)=ko '(1—Q')y(o),

(32)

(33)

Thus we see there are two contributions to f tend-

ing to drive a drift velocity convecting the phase: A
term in B„P also proportional to the deviation q of
the wave number from the critical value; and a term
in B„(I}the curvature of the rolls. This drift velocity
plays an important role in the instabilities of
straight rolls near onset, as will be discussed below.

Finally, for U we find the expression (10) with

—E ~
Q [a (o,Q) a(o,g)—]+0 (E ), (35)

where a and a are nonzero for Q~O. The role of
the drift term is easily understood. The nonlineari-
ties in the horizontal velocity equation tend to drive
a longitudinal potential flow towards the region of
increased phase gradient for Q &0, according to
Eqs. (23) and (25). This is a destabilizing effect,
and contributes to the coefficient a(cr, g) in Eq.
(35). However, the integrated component ( u D ) is
canceled by the flow driven by the pressure Po [the
a(o, g) term in Eq. (35)] leaving only the net effect
-a —a.

The quantity a has not yet been evaluated for rig-
id boundaries. Since, however, neither the vertical
vorticity nor the average drift is involved in this
purely longitudinal motion, it is instructive to
evaluate D~~ from the work on free-slip boundaries:
The result for rigid boundaries will be qualitatively
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similar. In the small Prandtl number limit we find

roko D)((g) = 1 —3Q2

Q2

—25o &/2Q (36)
gv3

acr 4

with corrections of relative order acr '. The result-
ing contour for the stability boundary D~~

——0 for
0.~0 is shown in Fig. 1. Note that the Eckhaus in-
stability is dramatically enhanced for Q & 0 and for
small Prandtl numbers. The Prandtl number
dependence of this result needs further discussion.
The strong Prandtl number dependence of D~~(g)
for free-slip boundaries evident in Fig. 1 arises from
the independence of

~
Ao

~

on o in this limit. This
is the phenomenon of inertial convection': The
O(o ) nonlinearities in the Navier-Stokes equation
are zero for the linear onset solution, and cause no
saturation, leaving only the O(1) thermal nonlinear-
ities. On the other hand, for rigid boundaries it can
be shown that there is no singular dependence for
0~0, and the expression for D~~ above cannot
strictly apply. However, even in this case the
Prandtl number dependence of A 0 g ', with

g=0.70—0.005cr '+0.008o

is weak (i.e., thermal nonlinearities remain the dom-
inant saturation mechanism) except at very small
Prandtl numbers 0.(0.1. We may therefore expect
the parameters a, a, a —a, etc., depending on
o ~AO

~

at low Prandtl numbers to increase to
large values as cr decreases, eventually saturating for
0 &0.1. Figure 1 should then remain qualitatively
correct for rigid boundaries and small Prandtl num-
bers.

The zig-zag instability corresponds to phase vari-

ation in the y direction. Now the roll curvature
tends to drive a drift velocity u~ that convects the
rolls back towards the straight configuration. This
drift is divergence free, and the singular correction
due to Po is not involved. The drift thus is a stabil-

izing influence that will be large at small Prandtl
numbers as argued above. The instability occurs for

q = egokob (cr,0)+O—(e3~2) . (37)

Recently b (0.,0) has been calculated by Manneville
and Piquemal. " These authors do indeed find a

I

/
/

/
/

/

q~-2
0

FIG. 1. Eckhaus instability boundary for free-slip
boundaries and small Prandtl numbers 0.. Insert shows
the qualitative behavior for small but finite Prandtl num-

bers. Slope of the boundary at large e depends on terms
not calculated, but should be rather insensitive to small
values of the Prandtl number. Shape of the boundaries
are argued to be qualitatively similar for both the Eck-
haus and skew varicose instabilities for rigid boundaries,
although the numerical factors will be different, and the
scalings with 0 ' will break down for too small values of
u &0.1.

stabilizing effect at small Prandtl numbers (b large),
also consistent with the numerical work of Clever
and Busse. '

Finally, if we allow variation in both the x and y
directions, the skew varicose instability results.
Near onset this instability is readily understood in
terms of a modified Eckhaus instability. As we ob-
served there, for Q &0 the slowly varying horizon-
tal drift acts as a destabilizing influence, but the in-
tegrated component uD is canceled by the effect of
the slowly varying pressure Po. If, however, phase
variation in the y direction is allowed in addition,
this pressure is relieved, and the destabilizing in-
tegrated drift may now flow. Thus, for Q &0, the
Eckhaus instability may be preempted by the skew
varicose instability with phase variation wave vector
K neither purely in the x or y direction. This result

may be illustrated by calculating the instability
boundary near threshold. For a general orientation
of K, we may define effective diffusion constants
which near onset are

(38)

&ODf~ =
2 go —e' Q[a(cr, g) a(o, g)co—s P] +(0)e,

rpD' =(qlk )g +e[b(o.,g) —P(o, g)cos P]+O(e' ),
where P is the angle between K and the roll normal, and the terms in cos2$ arise from the singular drift term.
The long-wavelength instability criterion is then A, & 0, with
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A, /K =D[~ cos P+Di sin P .

Neglecting the 0 (e) terms in Eq. (38) leads to the result

cosy ( g /I ~ )
i/4 i/2

(39)

where we assume a -o for not too small Prandtl numbers (cf. above}. The stability boundary is then given
by

3Q 2 i/2 g[& —&+(~& —V gp/qp) ]=0.2 =
1 Q2 (40)

Thus for a &gp/kp the skew varicose instability
preempts the Eckhaus instability. The form of Eq.
(40) is as in Fig. 1, but with rescaled axes to incor-
porate the change in the second factor. Equation
(40} only applies very close to threshold where the
details of the behavior of the skew varicose instabil-
ity boundary have not been investigated numerical-
ly. Nevertheless the trends suggested in Fig. 1 are
evident in the numerical results, ' particularly the
approach of the boundary to q =0 for small Prandtl
numbers (again saturating for very small Prandtl
numbers at a finite value). Clearly for a complete
understanding of the skew varicose instability,
terms of higher order in e in the expansion about
threshold should be calculated. The present calcu-
lation does, however, demonstrate the crucial role of
the singular drift in producing the instability.

B. Wave-vector selection in axisymmetric convection

In an asixymmetric configuration the curvature
of the rolls leads to a nonlinear driving f in the
horizontal velocity equation (30} giving a radial
drift velocity. The continuity equation implies that
a pressure Pp(r} must build up to cancel the z-
integrated component of this flow. Contrast this
with the analysis of the zig-zag instability, where
again roll curvature tends to drive a drift normal to
the rolls, but which in that case is divergence free,
inducing no counteracting pressure. Thus the
analysis of Pom eau and Manneville follows
through except that the wave-number selection cri-
terion, which involves the singular pressure-induced
drift term, is no longer identical to the zig-zag in-
stability criterion, which does 'not. In fact, it is
clear that the radial drift driven by the component
f„=cr '

~/lp
~

r ' of Eq. (30}must be canceled by
the pressure term. This leads to a unique wave
number at large distances in axisymmetric convec-
tion given by [cf. Eq. (37)]

q = —egpkp[b (o,O) ——,P(iT,O}], (41)

a wave number within the band of solutions stable
towards the zig-zag instability. Recently Manne-
ville and Piquemal' have independently reached
similar conclusions by direct calculation: The
difference between the results [Eqs. (41} and (37}]
given by the parameter P of Eqs. (33) and (34)
agrees with their explicit calculation.

A similar result holds for the free-slip case. Here
Pomeau and Manneville explicitly calculated the
wave-number selection criterion and found

k —kp ——0(e /). (42}
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As might be expected, this agrees with the old cal-
culations of the zig-zag instability boundary, '

which neglected the important vertical vorticity
corrections. Siggia and Zippelius' showed that in-
cluding these corrections removed the long-
wavelength zig-zag instability boundary close to
threshold altogether. Symmetry, however, requires
no vertical vorticity in axisymmetric convection, so
that the calculation leading to Eq. (42) remains
correct.

Thus in each case, the wave-number selection cri-
terion for axisymmetric convection is found to
operate, but the singular drift terms move the
selected wave number to a value within the band
stable against the zig-zag instability. A similar re-
sult will apply for convection rolls of closed con-
tours with a more general shape, although because
of the long-range nature of the drift correction the
exact wave-number selection may well depend on
the details of the curvature of the rolls.
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