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We present a simple approximation for the velocity autocorrelation function of a tagged

charged particle immersed in a liquid of charged particles. Application to a classical one-

component plasma and a simple molten salt manifests the importance of the coupling be-

tween single-particle motion and charge-density excitations in both systems. The theory is

also applied to molten sodium chloride with the result D„+/D =1.5 for the diffusion

coefficients of Na+ and Cl ions.

I. INTRODUCTION

Recently computer-simulation studies have re-

vealed some detailed features of single-particle
motion in liquids of charged particles. In the classi-

cal one-component plasma (OCP}' it was found that
the velocity autocorrelation function (VAF} for
high densities shows marked oscillations with a fre-

quency close to the plasma frequency co&. This os-
cillation indicates the strang coupling of single-

particle mation to charge-density fluctuations
which are daminated by plasma modes far small

wave numbers. In a molten salt, a two-component

liquid with both short-range repulsive and lang-

range Coulomb interactions, single-particle motion
was also studied by molecular dynamics. ' For a
symmetric molten salt (SMS)2 the VAP is found to
be rather similar to that of liquid argon, showing

no pronounced oscillations. This result gave rise to
speculations concerning the absence of coupling be-

tween the single-particle motion and the excitation

of charge-density fluctuations in the molten salt.
At present there is no microscapic theory to explain
the great difference between the VAF of the OCP
and that of the SMS.

In this paper we suggest a simple mode-coupling
approximation for the memory function of the
VAF of a tagged charged particle in a liquid of
charged particles. The theory provides an explana-
tion for the different behavior of the single-particle
motion when applied to OCP and SMS. Moreover,
the general farmulas are used ta estimate the cation
and anian diffusion coefficient of an unsymmetrical
molten salt (UMS), in which catians and anions
have different mass.

This paper is organized as follows. In Sec. II we

give the necessary definitions of static correlation
functions in a multicomponent system and we in-

troduce the VAF and its memory function. In Sec.
III we develop the approximation scheme which al-
lows us to calculate the VAF fram knowledge of all
(coherent} density correlations in the liquid. In
Secs. IV and V numerical results for OCP and SMS,
respectively, are presented, while Sec. VI contains
the application to an UMS.

II. FORMAL FRAMEWORK

Consider a system of N classical particles in a
volume V at temperature T. Let the system consist
of S different particle species s =1,2, . . . , S with
mass m„charge e„and number of particles N, im-

plying g, N, =N and g, e,N, =0. Denoting the
position of the jth particle of species s by r 1" the
Fourier-transformed partial number densities are

n, (q)= g exp( iq r J") .—
1pj pN

In the following, another set of density variables
will be useful. For tr = 1,2, . . . , S we define

S
p (q}= g n, (q)A, (q)(N/N, )'~,2

$=1

where A$~ denotes the unitary matrix which diago-
nalizes the real symmetric matrix af partial struc-
ture factors S (q),

g A,S~ (q)A, =5 So(q) (3)
$,$
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with

f d're-'q" [g {r)—1]

(4a}

S~ (q) = (Sn, (q)*5n;(q) ) /(N, N;)'~i

(N, Ng )'r
=5„+

V

Now let us assume the presence of a further

tagged particle of mass mo and charge eo with posi-

tion rp(t} and velocity vp(t). The velocity auto-

correlation function (VAF) is defined as'

, (vp(f'+t). v p{t') )
(t)= —,

S (q)=(5p (q)'5p (q))/N . (4b) =(up l exp( it&—) l up), (6)

=5„—[S '(q)] ~, (Sa)

or

Here 5B=B—(B), ( ) denotes the thermal

average, and g~.(r} is the pair-distribution function.
In addition to the partial structure factors the corre-

sponding direct correlation functions are defined by

(NgNg )'r
c~(q)=— ' f d re 'q'c (r)

V

where the last expression results from the introduc-
tion of Mori's scalar product in the space of
dynamical variables {A

l
B}=(5A~5B)/(ks T), and

W denotes the Liouville operator describing time
evolution A{t)=e"~A No.rmalized variables with

respect to Mori's scalar product are denoted by a
caret, A =A/(A lA)'~ . As derived earlier, the
VAF obeys a generalized Langevin equation

c (q)=1—1/S (q) (5b) 1((t)= f drK(t r)p(r)—, 1((t =0)=1
for the diagonal elements in the representation of
Eq. (2). with the memory function

K(t)=
& QEp g (Ep l

e +
~ le )

a=i

= i &Epg g g (P() lB k())( Bn( k)le '+ ~IBn'(k ))(B (k'} l~o) .
a cr, a' 7k, 7i'

(8)

Here Q =1—g l
up){up } and Fp is the force on

the tagged particle~

Eo =imo&UO

g g itp, (k)k~e 'n, (k)
k

I

The latter expression in Eq. (8) takes account of the

fact that the force Eo is a superposition of two-

mode variablp

B (k)=e p (k) . {11)

That second form of K(t) will serve as a starting

point for our approximation.

with

g pup (k)k e p (k)
iV

~ III. MODE-COUPLING APPROXIMATION
OF K(t)

up (k) = g tt(pk A}~g(k)(N, /N)'r,

up, (k) = f d~r e ' "'itp, (r),
and uo, (r) denoting the potential between a fluid

particle of species s and the tagged particle. Final-

ly, the Einstein frequency QEO of the tagged particle
is determined by

&s'p: Q(Fo IFo }
3mo

g (ik}2up (k)(e 'p (k)) .
3moV ~

(10)

A useful approximation suggested by the latter
expression in Eq. (8) consists of the factorization of
the normalized two-mode correlation functions

(B (k}le + ~IBn'(k ))

=5-„-„,fp(k;t)P~(o, o';k;t) (12)

which leads to

Q
K(t) = g f dk k 82'( ko)'W'(a', )k

6 N/V

Xgp(k;t){{i~(o,o';k;t)
(13)
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i k [ r()(t) —r()(p)]) {14a)

the liquid density correlation functions

with the tagged particle density correlation function Pp(o, o';k;t}={p (k)
l
e "

l p (k))

(5p (k;t)~5p .(k;0))
NS (k)'I S (k)'

and the vertex functions

(14b)

W(o;k) = W{o-.k) (15a}

with

W(o;k)=(B (k) l F() k/k)(N/trip)'i . (15b)

Note that Eq. {13}conserves the correct value

K(t =0}=Quip.
The exact evaluation of the function 8'(cr,'k) is

difficult due to the normalization of the two-mode

variables. We therefore introduce a second approxi-
mation by putting

B (k}=e p (k} (16)

in Eq. (15b) which is equivalent to applying the

diagonal-part approximation in the normalization

matrix {B (k) lB (k')). Inserting the approxi-
mate expression Eq. (16) into Eq. (15b) we find

' 1/2

W(o-, k) = ik (e' "p (k)) .AT
m()S (k)

(17)

Assuming the tagged particle to be a liquid particle
of species s, i.e., mo—=m,—, eo=e,—, ro=r~+i, the

S

thermal average in Eqs. (10) and (17) may be fur-

ther evaluated in terms of the static correlation
function of the liquid leading to the final expres-

sions dependent on s:

kt)TS (k)N
W(o ,k) =ik -A,—(k)c (k)

m,-N,—

{k& 0) (18a)

I

the memory function K(t) can be calculated from
Eqs. (13), (15a), (18), and (19) provided one knows
the potentials up, (r}, the pair-distribution functions

g~(r), and the coherent density correlation func-
tions pz(tr, tr';k;t). The latter have been calculated
in our preceding work for the OCP' and the
SMS." Moreover, in Refs. 1 and 2 one finds, be-

sides the required static correlation functions, excel-
lent memory function fits to the "experimental"

(computer simulated} spectral functions

1 +
P "(o,o';k;tp}= z

dte""P~(o, tr';k;t)

which will be used in Secs. IV and V in order to
check the validity of the above approximations.

Finally, we note that according to the exact rela-

tion

D, = f dr K(t)
S

(20)

our approximation Eq. (13) allows for an estimate
of the diffusion coefficient D,— of a particle of
species s in the liquid. However, we do not expect
very reliable results for D,—,since our simple approx-

imation neglects any explicit coupling between the
single-particle motion and shear excitations in the
liquid. From experience on simple liquids' ' one

might expect a contribution as large as 50% to D,—
which is due to the coupling to transverse current
excitations. On the other hand, in pure Coulomb
systems (OCP} one has evidence)i that the trans-
verse decay channel is not as effective as in liquids
with short-range interactions.

Q~p —— g ' f drr g-(r)I)tu-(r) .
S S

(18b)
IV. APPLICATION TO A

ONE-COMPONENT PLASMA
If now, as a third approximation, we employ the
well-known Gaussian approximation for the in-

coherent density correlation

AT
tttp(k;t)= exp —k f dr(t ~)P(r)—

m,— 0

For a one-component system (S= 1), the memory
function Eq. (13) reduces to

0
K(t)= f dk[kie(k)]imp(k;t)S(k)

Iocp

(19) x {{)p(k;t), (21a)
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or, the corresponding spectral function,

+~ dtK"(co)= f —e'~K(t)
00

0
=m f dk[k c(k)]2

nIOCP

&& f de SO(k;e)

K'(co}= P f de
0 E N

(24)

(where P is the principle part integral), is plotted in

Fig. 1{a}in comparison to the computer simulation

result of Ref. 1. For the self-diffusion coefficient
we find, from Eq. (20),

D~=D( , mn—)2~ /cop 0 ——002.7=0 7D.',„p, .

with the abbreviation (n =N/V)

)&S(k;co —e)

(21b}
These results show that the main features of the
VAF in the OCP at high densities are reproduced
well by the present theory.

Iocp =n f dk [k~c{k)]S(k) q

and the Einstein frequency'

QocP pp cop =4me ~/2

The functions

1 +oo
So(k;co)= f dt e""$0(k;t),

+ co

S{k;co)= f dte""({)p(k;t)S( k)

(21c)

(21d)

(22a)

(22b)

V. APPLICATION TO A
SYMMETRIC MOLTEN SALT

pi(q)=ni{q)+n2{q)=p (q}/m,

p2(q) =ni(q) —n&(q)=p~(q)/e,

(25a)

(25b)

For a two-component system (S=2) in which the
particle species differ only in the sign of their
charge, one has N, =N/2, m, =m, e& ———e2 ——e,
and A ii ——A ip

——A2i ———A2i ——1/W2; i.e.,

are known as incoherent and coherent scattering
laws, ' respectively, and the other symbols are obvi-

ous specializations of the more general quantities
defined in Secs. II and III.

It is interesting to note that the expression Eq.
(21a) is closely connected to the result KoM(t) ob-

tained by Gould and Mazenko. ' One has

COp

K(t) = KoM(t)/KGM(t =0),
3

i.e., our present approach —in contrast to the earlier

result —conserves the correct value

K(t=0)=~ ' f dcoK"(co)=cop/3.

There have been other attempts' ' to conserve this
sum rule in the OCP. However, these authors

manage to keep K{t=0}correct at the expense of
loosing the guarantee for positivity of the spectral
function K"(co ).

We calculated K"(co ) according to Eqs. (21) and

(19) for the plasma parameter I = 140 taking all in-

put information from Ref. 1. The resulting velocity
autocorrelation spectrum

+ dt
g "(co)= f ei™tp(t)—

or, for the corresponding spectral function

0
K"(co)=n g f dk[k co(k)]

~ISMS

X f de$0(k;e)

(26a)

XS (k;co —e)

with the abbreviation (n —=N/V)
(26b}

IsMs =n g f dk[k c (k)] S (k)

(27)

and the mass- and charge-density van Hove func-
tions

denote mass- and charge-density variables, respec-
tively. Owing to the charge-conjugation symmetry
of the SMS, mixed mass-charge correlations vanish,

and Eq. (13) reduces to

0
K(t) = g f dk [k'c (k))'((},(k;t)

~~SMS 0 = i, 2

&&S (k)P (o,o ,k;t)-

where

K"(co )

[co+K'(co)] +[K"(co)]
(23)

+oof dt e'~Pp(o, o",k;t)S (k) . (28)

Owing to the symmetry of the SMS the Einstein
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(a)

2.0

0

1.0

0.5 1.0

[}i, is the separation at which the cation-anion po-
tential ui2(r)=u(r) e /—r has a minimum]. All

necessary input information was taken from com-

puter simulation work. The resulting velocity au-

tocorrelation spectrum is plotted in Fig. 1(b) in

comparison with molecular dynamics (MD) results

(we Fourier transformed the VAF given in Ref. 2
for this purpose}. For the diffusion coefficient,
which is identical for cations and anions of the
SMS, we find

20- (b)

3 1.0

1.0 1.5

frequency of a tagged cation does not differ from
that of an anion. From Eq. (18b) one finds

2

+sMs
3 f, «r' , [gi(r}+g (r}—]

FIG. 1. Normalized velocity autocorrelation spectra of
(a) the one-component plasma and (b) the simple molten

salt. Full line, present theory (I =140); dashed line,
computer simulation (I =152.4) from Ref. 1. Diffusion
constants are D,h „——0.0027 (D,„~,=0.00393) for the
OCP and D,h, ——0.0046 (D,*„~,=0.0049) for the SMS,
where D» co~ '(4=en/3) ~ 'P"(ei =0).

D» =D/(A, —a)p ) =0.0046=0.94D',„p, .

Again, our approximation for the memory spec-
trum K"(co) reproduces the main features of the

velocity autocorrelation spectrum of the SMS which

shows a broad maximum at about 0.4' with no

additional sharp resonance close to co& which was

the case for the OCP [Fig. 1(a}].
The properties of the VAF can be traced back

directly to the behavior of K"(co) which is plotted
in Figs. 2 and 3 for the OCP and SMS, respectively.
While the memory spectrum of the OCP shows a
sharp maximum close to the plasma frequency (Fig.
2), the spectrum of the SMS does not; it is a mono-

tonously decreasing function of ei (Fig. 3). This
qualitative difference in the memory spectra has the
following reasons: (a} While the OCP has a sharply
defined plasma mode for small k, this excitation is

strongly damped in the SMS expressing the finite
conductivity of the melt, ' (b) the dispersion of the
plasma mode is much stronger in the SMS than in
the OCP; and (c) the diffusion constant D* is larger
in the SMS than in the OCP, i.e., for small k
S0(k;c0 } is narrower in the one-component system.
From these three facts the difference in the memory

10-
X hu (r)/e', (29)

where gI(r) =gi$(r) =g22(r) and g„(r)=g(2(r),
denote the pair-distribution functions of like and
unlike particles, respectively, u (r) =u»(r) —e /r is
the (non-Coulombic} short-range part of the two-
particle potential, and ~z ——4m.ne /m is the plasma
frequency.

We calculated K"(ei) according to Eqs. (26) and
(19) with the model potential

0.5 1.0
I

1.5

QPp

FIG. 2. Spectrum of the memory function for OCP.
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spectra is easily understood. Any residual influence
of the plasma peak is washed out in the k and e in-

tegrations in Eq. {26b) in the case af the SMS, while

for the OCP the small-k contribution to the integral
in Eq. (21b} is responsible for the pronaunced peak
in K"(cp) close to to~.

In Fig. 3 we separately indicated the contribution

KJ(tp } to K"(to} which is due to the coupling be-

tween single-particle motion and charge-density
fluctuation. Roughly speaking, Kt')- —,K", mani-

festing the great importance of this decay channel

also for the molten salt and disproving earlier as-

sumptions concerning the effectiveness of this cou-

pling.

0

0.5

0.5 1.0 1.5

FIG. 3. Spectrum of the memory function for SMS
(full line). Dashed line: Contribution Kg'(co) to K"(co)
from the term a=2 in Eq. {26b).

VI. APPLICATION TO AN UNSYMMETRIC MOLTEN SALT

For a two-component system (S=2},in which particles differ not only in the sign of their charge but also
have different masses (mi+m2) and interactions [u»(r)&uq2(r)], the partial structure factars Si&(q) and

$2'(q} are na langer equal and the matrix elements A,~(q), eigenvectors p~(q },and Eq. (3) are quite different
from those of the SMS. However, we obtain from Eqs. (13), (15), and (18), after lengthy calculations,

2

K{t}= f dk k g cD(k) S(D D;k, t)+(2 4S r)qc{—nk) gc(k)S(N, Q;k, t) $p(k, t)
~IUMS D —N g

(30)

with the Einstein frequency

2

n„'„s= ' g f drr z[g;,(r)hu (r)]Ie
m- 3

where to& 4trne Im, m——'=(m i '+m2 ')/2, and

IUMs n' f——dkk g cD(k) $(D,D;k, t =0)+(2—45,- )2c n( k)c $(r2(N, Qk, t =0)
D=N, Q

(31)

(32)

The c function cn(k) is expressed as

cD(k) =c~(k)+sgn(D)c„(k} (33}

with the direct correlation function c~ (k) defined

by Eq. (Sa), s=1(2) for s =2(1) and sgn(D)=1 for
D =N and —1 for D =Q. The van Hove function
S(D,D';k, t) is defined by

with

S(D,D';k, t)=N '(pz(k;t)~pz(k;0))

pn(k) =n+(k)+sgn(D)n (k) .

(34)

(35)

Thus, as in the case of SMS, the memory function

K(t) is expressed with the direct correlation func-

tions c (k), Eq. (Sa), and the van Hove functians
for number- and charge-density fluctuations. Note
that now K(t) or E"(co) depends on the species s to

I

which the tagged particle belongs (a} explicitly via
the prefactor m/m in the Einstein frequency and
the functions g- (r), u,—,{r), and cz(k}, and (b) impli-

citly via the single-particle density correlation

Pp(k, t). Finally, according ta Eq. (20) the diffusion
coefficients of cations and anions were determined
for the case of molten sodium chloride by evaluat-
ingK"(to=0)= f dtK(t) for Na+ and Cl . The

necessary input data to calculate E"(co=0) were

taken from Ref. 19. Since the mixed correlation
function S(N, Q;k, t) of number and charge is usu-

ally small compared with the autocorrelation func-
tions S(N, N;k, t) and S{Q, Q;k, t), we neglect it in

Eq. (30). We find D,+ 0 0041a iron ——a.nd

=0.0027a co& resulting in D +/D =1.5.
This must be compared to the experimental
values D +(expt)=0. 0058a cd and D& (expt}
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=0 00.42a r0~ with (DN +/Dc, ),„~,=1.38. While

the ratio of the diffusion coefficients agrees well

with the experiment, the calculated absolute values

are small by about 30%%uo. As discussed at the end of
Sec. III, such discrepancies are not surprising

within the present simple approximation.
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