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Lattice of disclinations: The structure of the blue phases of cholesteric liquid crystals
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We argue that the basic mechanism stabilizing the blue phases is the appearance of dou-

ble cholesteric twist. The free-energy cost of the disclination lattice that inevitably accom-

panies double twist becomes small near the clearing point. We use the director picture and

the Oseen-Frank equations in a computer calculation of the free energy for three specific

models, with 0, 0, and 0' symmetry. Disclinations are treated as having an isotropic

core. Comparison of the results of the computation with a number of experimental quanti-

ties is given. In a final section, a mean-field theory of disclinations is presented. It is ar-

gued there that the biaxiality, which is a characteristic of Landau theories of the blue phase,

can be considered as an "escape" of the core of the disclination, forced by the implicit re-

quirement of analyticity.

I. INTRODUCTION

The blue phases of cholesteric liquid crystals ap-
pear in a narrow temperature range (of the order of
I'C) between the regular cholesteric and the isotro-
pic phases. ' Even in this narrow range a succes-
sion of two or three thermodynamically stable blue
phases is often observed. ' Experimentally, it is
now well established that most of the blue phases
have a periodic cubic structure, with a unit-cell
dimension of the order of the cholesteric pitch. An
exception is a phase, variously designated as "gray
phase, "' "blue fog," of BPIII, which appears in
some materials at the high end of the blue-phase
temperature range. The structure of this phase is
still obscure; light scattering indicates that it does
not have a periodic lattice, but that it does have heli-
cal elements. In the present paper we deal with the
cubic phases exclusively.

Saupe was the first to suggest a cubic structure
for the blue phases but presented no justification as
to why such phases would become stable, relative to
the helical structure, at temperatures near the clear-
ing point (i.e., the transition to the isotropic liquid).
Brazovskii et al. ' were the first to present calcula-
tions showing how this might happen. Their treat-
ment is based on Landau theory, and suggested a
hexagonal structure. Similar theories by Alexander
and by Hornreich and Shtrikman' ' advanced cu-
bic structures. In these theories the local order
parameter is strongly biaxial.

In the present paper we discuss a somewhat dif-
ferent approach, an outline of which was given pre-
viously in a short communication. ' Our model of
the blue phases is based on the idea of lowering the

free energy by the introduction of double twist to
satisfy chirality in a symmetric fashion. It results in
a lattice of disclinations, with the material between
the disclinations satisfying the Oseen-Frank elastic
equations. That is, we treat a director field contain-
ing a lattice of singular lines (disclinations). In con-
trast, the Landau theory treats a nonsingular field of
a tensorial order parameter and introduces strong
biaxiality. The relationship between the two treat-
ments will be discussed in Sec. VII. It will be ar-
gued there that they can be considered as different
approximations for the same basic models, and that
the biaxiality can be attributed to the mean-field
description of the core of the disclinations.

The organization of the paper is as follows: In
Sec. II the physical basis of the theory will be dis-
cussed. In Sec. III we advance various models for
which detailed calculations have been made. Section
IV gives an outline of the computer program used
for the energy calculations of these models. In Sec.
V the results of the calculations are given and in
Sec. VI these are compared with experimental re-
sults. Section VII presents a treatment of disclina-
tions in nematic liquid crystals in the mean-field ap-
proximation. This serves as the basis for the com-
parison of the present theory with the Landau treat-
ment referred to above.

II. CHIRALITY AND DOUBLE TWIST

In order to understand the reason for the existence
of the blue phases, it is necessary to realize the
underlying symmetry implied by chirality and its
mathematical manifestation in the elastic energetics
of liquid crystals. Cholesteric liquid crystals invari-
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F, = [(8 n—p+qpe ~n~) qp] . —
e 2 a (2.1}

Here K is the elastic constant, a,P,y index the coor-
dinates, 8 denotes the derivative with respect to x,
E'+py is the antisymmetric tensor, and qo is the re-
ciprocal of the cholesteric pitch times 2n. The —qo
term is included to make the zero of energy corre-
spond to that usually adopted. This expression is
manifestly symmetric in the plane perpendicular to
the director n and consequently has the correct sym-
metry for chiral molecules. In fact, if one inserts in
this expression a director of the form

n =(1,q~, —q~), (2.2)

describing a lacal double twist, one obtains for the
elastic energy F,(r=0)= —(K/2)qp. Its value for
the usual cholesteric, described by

n = ( I,qpx, O), (2.3)

is zero, so that locally the normal cholesteric is of
higher energy.

The F, abave is simply related to the usual
Oseen-Frank expression for the elastic energy densi-

16.

F,= —,Ei~( V-n) + —,E22(n V X n+qo)

+ —,K33[n X( V X n)]

+ —,(K22+K24) V.[(n V)n —( V.n)n] . (2.4}

By evaluating each term in this expression it is
found that the term involving a total divergence
contributes a —2qp term when Eq. (2.2) is inserted

ably contain chiral molecules, i.e., molecules with
one or more asymmetric centers. Such molecules
have a built-in screw sense, and as a result they will
stack in the liquid crystalline phase with their long
axes at a slight angle relative to one another, rather
than parallel on the average, as nonchiral molecules
do. The important point is that they tend to do so
for all directions of stacking perpendicular to their
long axis. This is so house in the nematic and
cholesteric phases the molecules rotate essentially
isotropically abaut their long axes. To use a sugges-
tive (though maybe not strictly accurate) simile, one
can think of the molecules as screws which inter-
leave the groaves of their threads by being at a slight
angle, one relative to another. In a cholesteric with
a single twist axis one has satisfied the energetics of
chirality in only one direction. Consequently, one
expects that at least locally there are textures which

have a lower free energy than the cholesteric config-
uration. In order to verify that this is so, consider
the elastic free-energy density in its simplest form
with all elastic constants equal':

and is the source of the local energy lowering in that
case. The fact that the chiral symmetry is contained
in a divergence term, i.e., one that can, in principle,
be converted into a surface integral, can be under-
stood in terms of global topology —namely, that one
cannot continue rotating the director along two in-

dependent directions without eventually either undo-

ing one of the rotations, or introducing surfaces or
defects in the liquid. Therefore, attempting to satis-

fy chirality by dauble twist through the volume of
the liquid is not possible. Thus, we interpret all the
phenomena near the cholesteric-isotropic
transition —blue phases, batonnets, the blue fog,
etc.—as a result of the liquid attempting locally to
satisfy chirality while introducing surfaces and de-
fects in order to satisfy global constraints. Such
phenomena only occur sufficiently close to the phase
transition, where the energy to create defects or iso-
tropic regions is not prohibitive.

In the ordered cubic phases —blue phase I and II,
which are the two primary phases observed —we ar-
gue that the most likely structure involves ——, dis-

clinations. It is clear that an attempt to introduce
point defects will not result in large contributions
from the divergence term in Eq. (2.4), since when
this term is reduced to a surface integral surround-
ing a point defect the contribution will be propor-
tional to the radius of the core of the defect. Since
this radius is expected to be of order 100 A, one can-
not expect large contributions. For line defects,
however, the situation is quite different. In particu-
lar, for a ——, disclination we obtain the following
for the energy per unit length of disclination:

—f ds. [(n V)n —(V n)n]= — K. (2.5)—
2 2

Since this result does not depend on core radius, it
can give rise to a much larger contribution than
point defects. One could, of course, introduce sur-
faces, but presumably the surface area and the large
volumes of isotropic medium would be energetically
unfavorable as one moves away from the transition
temperature. The blue fog and other growth phe-
nomena that occur extremely close to the isotropic
phase may be the result of surfaces introduced to
surround regions of double twist.

Before going on to calculate the energetics of
three-dimensional periodic structures, it is instruc-
tive to consider a simple example to illustrate how
the surface integral surrounding a disclination and
regions of double twist are coupled. First, consider
simply a ——, disclination in a finite system, that is,
suppose

n = cos+, —sin+, 0
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where (ts is the azimuthal angle in cylindrical coordi-
nates. If the surface integral, Eq. Q.5), is evaluated,
then the integral around the core of the disclination
is canceled exactly by the integral on the outside sur-
face. However, in such a case there is no region of
double twist and one does not expect to obtain a net
contribution. On the other hand, consider the tex-
ture in Fig. 1. The shortened marks in the central
region are to indicate an "escape" into the vertical
orientation at the center. It is easily seen that, since
n becomes uniform at large distances, there is no
contribution to the surface integral except —~E
from the two disclinations. %hen the divergence
term is viewed as a bulk integral, the —~E arises
from the central region of the texture, which con-
tains considerable double twist. This example is ac-
tually a defect in a nematic and one cannot consider
energetics. However, from this illustration it is clear
that three-dimensional models for the blue phases
should be constructed by forming cylinders contain-

ing double twist such as the central region in Fig. 1,
compensated by ——, dischnations. Such models are
discussed and evaluated in Sec. III.

III. MODELS FOR THE BLUE PHASES

Saupe was the first to propose a cubic model of
the blue phases incorporating double twist and
singularities. A model with the same symmetry was
used by Hornreich and Shtrikman' and by Alex-
ander in their first papers on the I.andau theory.
This structure has 0 (I432) symmetry. A sketch of
the unit cell is given in Fig. 2.

Other models can be made up by visualizing tubes
in which the director points along the tube axis in
the center, but twists away from this direction as
one moves radially outward. The angle on the sur-
face of the cylinder can be adjusted to fit cylinders
together. The director field between the cyhnders
forms either ——, disclination or (escaped) + I dis-
clinations, depending on the director configuration

FIG. l. Example of the relation between double twist
and disclinations. Lines indicate director orientation in
the plane of the figure; "nails" a tilted director; point in
the center a director normal to the plane. Center part il-
lustrates double twist; it can be thought of as an "es-
caped" + 1 dischnation. It is flanked by two ——dis-

clinations.

FIG. 2. Unit cell of the 0' structure. Top figure
shows the double twist. Note the reversal of the director,
indicated by arrows, as one circles a body diagonal.

disclinations are along the body diagonals', as indicated in
the lower figure.
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on the adjacent cylinder surfaces. Sethna' con-
sidered a structure in which sets of cylinders were

arranged parallel to the cubic axes. Such a model

produces ——, disclinations along half of the body

diagonals; see Fig. 3. This is a simple-cubic struc-
ture, of symmetry 0 (P4z32).

An attractive structure has been suggested by
Hornreich and Shtrikman, " in which four sets of
tubes are arranged in the directions of the body di-

agonals of the unit cell along lines whose
1 1

coordinates are (x,x,x ), ( —,+x, —,—x,X),
1 1 1 1

(x, —, +x, —,—x ), ( —,—x,x, —,+x ), plus the body-

I~UN

centered equivalent lines. This gives a body-
centered structure of 0 (I4&32} symmetry. The ar-
rangement of the disclinations we have used for the
numerical calculations is sketched in Fig. 4. They
run along the lines ( —,,O,z), (x, —,,O), (O,y, ~ ), plus

the body-centered equivalent lines. However, it
should be noted that these lines are the 4~ axes of the
0 group, and therefore symmetry requires only
that the disclinations spiral about these lines.

For the computer calculations of the elastic ener-

gy (to be described in Sec. IV}, it is crucial to have a
starting trial director configuration which has the
correct symmetry of the model. The numerical re-
laxation of this configuration will minimize the en-

ergy, but cannot change the topology of the director
field. The overall symmetry of the lattice is deter-
mined by the boundary conditions on the unit cell
and by the initial topology. This symmetry is
preserved in the relaxation process. To obtain an in-
itial trial function for a model of given symmetry, as
well as the configuration of the disclination lines for
this model, we use the following systematic pro-
cedure.

We use the mean-field solutions of Alexander
and of Hornreich and Shtrikman. " They write

Q p(r)=E p
—1/35 pe

iq„r=a+Q pe (3.1)

where e & is the dielectric tensor and e its trace, and
q„are the various first-order reciprocal lattice vec-
tors of the particular lattice to be studied. The Qesp

are determined by the symmetry group. There is

T

r

FIG. 3. Unit cell of the 02 structure. In the cylinders
the director rotates by 45' away from the axis direction on

going radially out to the cylinder surface. Rotation is
right handed everywhere. When following the arrows in
the top figure, note that the sense reverses when travers-
ing the upper circuit, but not when traversing the lower
one. ——disclinations, shown in the lower figure, are in

accord with this fact. This is a simple-cubic structure;
though the corners of the unit cell exhibit the same con-
formation of disclinations as the center, they are rotated
by 90'.

I

I

I

I

p8

FIG. 4. Unit cell of the 0' structure [Hornreich and
Shtrikman (Ref. 11)]. Topology of this structure can be
described by four sets of cylinders similar to those of Fig.
3. Axes of the cylinders are oriented parallel to the body
diagonals of the unit cell. We have not tried to sketch
this arrangement. Figure gives the locations in the unit

cell of the resulting ——disclinations.
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only one set of Q"~ for a given symmetry group.
Q~(r) is an analytic function of position that can
be diagonalized to obtain its eigenvalues and eigen-
functions at any point in space. We choose n(F) to
be the eigenfunction giving the maximum positive
(prolate) eigenvalue at each point in the unit cell.
This procedure is well defined except on lines where
there are two degenerate maximum eigenvalues.
These lines actually describe ——, disclinations in the
structure as defined. This result is most easily seen

by noting that, if one looks along a line perpendicu-
lar to the line on which the degeneracy occurs, the
two eigenvalues cross, so that on moving along this
perpendicular line n will suddenly change direction

by 90' as required by orthogonality of the eigenfunc-
tions. Such a change is the mark of a —, disclina-

1

tion. By careful analysis one can show they are ——,

disclinations. As discussed in Sec. VII, this
behavior is identical to a new analytic solution for
the core of a ——, disclination.

IV. COMPUTER CALCULATIONS

The program to calculate elastic energies is a
direct application of the Oseen-Frank equation, Eq.
(2.4), the energy being minimized with respect to the
director n. Note that the surface term does not
enter the variational equations, but does contribute
to the total energy. As always, these equations are
transformed into difference equations, with the
director defined at the intersections of a three-
dimensional NXNXN mesh. Periodic boundary
conditions apply on the faces of the unit cell. The
computation starts with an initial director field
which has a topology in accordance with the partic-
ular model being treated. The procedure to deter-
mine the starting n field and the location of the dis-
clinations has been outlined in Sec. III.

The energy is minimized by letting the director
field relax towards its equilibrium configuration.
The relaxation is treated as a quasiviscous response
to the torque acting on the director, the latter being
the standard mean-field expression from the Oseen-
Frank equation. Standard Lagrange multiplier pro-
cedure is used to satisfy the auxiliary condition that
the director have unit length. To ensure stability of
the solutions, the relaxation is done in small steps,
and iterated until the energy stops dropping appreci-
ably. Generally 10 to 20 iterations were sufficient.

Although the above computation procedure is
straightforward, a number of aspects require ela-
boration. First, because the models have noninteger
disclinations, it is impossible to define a global posi-
tive sense for the director field. This is illustrated in
Fig. 2 by the arrows: As one follows the director

around a closed path around a ——, disclination, the
arrowhead reverses sense on each traverse of the cir-
cuit. Thus consistent director alignment can be ob-
tained only locally. The program, in fact, checks
alignment on each iteration, and reverses the direc-
tor sense whenever required. If this were not done,
one would overestimate the elastic energy.

A second important point is the treatment of the
disclinations. Because we consider the disclinations
as having an isotropic core of radius R, we wish to
exclude the volume of the core from the elastic ener-

gy calculations {the core energy will be introduced
separately). Moreover, we assume that on the sur-
face of the core the director reorients under the elas-
tic torques exerted by material outside the core only,
i.e., the core interface as such exercises no orienting
torque. This situation is realized in the program by
the following procedure: In calculating the torque
on the director at a specific mesh point, we consider
the eight mesh cubes immediately surrounding the
point. For each cube we calculate the change of
elastic energy with the change of central director
orientation; i.e., its contribution to the director
torque. However, we exclude from this calculation
every mesh cube which has any corner on a disclina-
tion. We also exclude these mesh cubes from the
calculation of the elastic energy.

A corollary of this procedure is that the mesh size
adoped for the calculation also determines an effec-
tive radius of the disclination core. In fact, we shall
simply take the mesh size, written as d/N, as the ef-
fective disclination radius (here d is the size of the
unit cell, and N the number of divisions along each
axis of the mesh). '7 One objection to this procedure
could be that N determines the mesh size, and thus
the accuracy of the difference approximation. To
evaluate this factor, we have made a computation
with N=24, in which the effective core radius was
doubled by excluding not only mesh cubes which
touched the disclination lines, but also those that
were once removed. This computation gave for the
elastic energy density, Eq. (2.4), with all elastic con-
stants equal to 3 X 10 dyn, the value

F,=—0.3376' 10 erg cm . The corresponding
value for the regular computation with N =12 pro-
duced F,= —0.3381X10 ergcm . (For reference,
these numbers apply to the point for d =1.5)& 10
cm in Fig. 6.) It can be concluded that a mesh of
N = 12 gives already ample precision.

Actual computations were made for N values up
to 24, and on occasion 26. Larger N's become im-
practical, because of the rapidly increasing computa-
tion time and memory requirements, even on the
Cray-1 computer, on which most of the computa-
tions were made. It is, however, simple to calculate
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energy values for larger N's. As N increases, the ra-
dius of the disclination core becomes small com-
pared to the pitch, and thus near the disclination the
director configuration can be approximated by
the one for a ——, disclination. The elastic energy
per unit length for such a disclination, integrated be-
tween radii R ~ and R2, is'

F, = ln(R2/Ri),
vK

e 4
(4.1)

where it is assumed that K~~ ——K33=K. Using
R& ——d/N& and R2 ——d/N2, we have

F,(N, )=F,(N2)+ ln(N, /N, ) . (4.2)
4

In Figs. 5—12 the curves with N's larger than 24 or
26 have been calculated from those for N =24 or 26,
using the above equation. As a check, we show in
Fig. 7 values for N=24 calculated from those for
N=20. Although the agreement is not perfect, it
seems satisfactory in view of the fact that the ap-
proximation should become better as N increases.

V. NUMERICAL RESULTS

The results of the calculations are given in graphi-
cal form in Figs. 5—10. The curves in the left half
of each figure give the computer results for the elas-
tic energy density F, plotted against the reciprocal
of the unit-cell dimension 1/d. This elastic energy
includes the splay, twist, bend, and divergence
terms, and applies to the ordered region outside the
disclination cores. The various curves are labeled by
the value of N, the number of divisions used in the
numerical integration. As explained in Sec. IV, N
determines the effective radius of the disclinatior.
core as d /N.

We equate the elastic energy of the ordered region
to its free energy. This can be done because any oth-
er contribution to the free-energy difference between
helical cholesteric and the ordered material of the
blue phase must be due to changes in the magnitude
of the order parameter induced by the elastic defor-
mation. The contribution will be of order (gc/d)
compared to the elastic terms, i.e., about 1% (here
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FIG. 5. Free-energy curves for the 0' structure for the case of equal elastic constants. Curves in the left graph give the
computed elastic energy density F, as function of the lattice constant d, and do not include the energy of the disclination
cores. Radius of the latter is given by d/N, as explained in the text. Curves in the right graph give the energy density
when the core free energy is included, plotted as a function of N. Parameter T —T, is the temperature relative to the
clearing point T,. Because the core contribution depends on N, but not on d [Eq. (5.1)], it is sufficient to draw the curves
for the values of d which minimize the free energy, i.e., the minima of the curves in the left part of the figure. Stable
states are given by the minima of the curves in the right-hand side. Construction to find the corresponding lattice parame-
ter is given in Fig. 7. Parameters used are as follows: K» ——K22 ——K33—K0=3X 10 dyn; cholesteric pitch,
Po ——2.5X10 ' cm; entropy of transition ao ——SX10 ergcm 'K '. Scaling factors to be applied to the d, F„and T—T,
scales for other parameter values are indicated in the graph.
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FIG. 6. Free-energy curves for the 0 structure for the case of equal elastic constants. Other details as for Fig. 5.

gc is the coherence length; see Sec. VII.) This esti-
mate may fail near the disclination cores, where dis-
tortions are extreme. However, such a contribution
is approximately accounted for as part of a surface

energy at the core interface, as introduced below.
To obtain the total free-energy density, the energy

of the disclination cores has to be added. No
rigorous theory of disclination cores is available.

¹
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FIG. 7. Free-energy curves for the 0 structure for the case of equal elastic constants. Other details as for Fig. 5. Ar-

rowed lines illustrate the construction for obtaining the lattice parameter for the minimum free-energy state at T,—0.5 'C.
Four points indicated by squares give values for N =24 calculated from corresponding ones for N =20.
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FIG. 8. Free-energy curves for the 0' structure for the case K» ——2K» ——K33 —Ko ——3 X 10 dyn. Other details as for
Fig. 5.

We shall here consider three simple models. (I) An
isotropic core whose free energy is given by the
difference in free energy between isotropic and
cholesteric material is considered first. (2) Later in
this section we shall show how the addition of a sur-

face term, accounting for an interface energy be-

tween the isotropic core and the cholesteric, influ-

ences the results. (3) A mean-field theory of dis-
clinations will be given in Sec. VII.

At a temperature T close to the first-order transi-
tion at T„ the difference in free energy between the
isotropic and cholesteric phases is given by
a(T, T), where —a is the entropy of transition. '9

Taking the 0 structure as an example, the core
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FIG. 9. Free-energy curves for the 0 structure for the case K» ——2K» ——K33—Ko ——3X10 dyn. Other details as for
Fig. 5.
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FIG. 10. Free-energy curves for the 0' structure for the case E» ——2K22 ——E33—3 X 10 dyn. Other details as for Fig.

contribution to the free-energy density is

F„„=a(T,—T)V

=a(T, T)(6dmR2)—ld3

=a(T, T)6n /N— (5.1)

where V is the core volume per cm of material, and
R =d/N the effective core radius. 6d is the length
of the disclinations in the 0 unit cell.

We are interested in the minimum of the total free
energy, taking d and N as variables, at a constant

N=
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FIG. 11. Free-energy curves for the 0 structure for the case of equal elastic constants. A surface-energy term f'or the

isotropic-cholesteric interface has been added. A surface tension of o =1X10 ergcm has been used in the calcula-

tions. Other details as for Fig. 5, except that scaling does not apply here.
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FIG. 12. Free-energy curves for the 0 structure for the case K~~ ——2Kqq ——K33—3X 10 ' dyn. Other details as for Fig.

temperature. Because the expression for F „,Eq.
(5.1), does not depend on d, we need only consider

the minima of the I, vs d curves. Thus, taking Fig.
7 as an example, we plotted the minima of F, as
function of 1/N as the lower curve in the right half
of the figure. We then add F„„[Eq.(5.1) for 0 ]
for a number of temperatures, obtaining the set of
curves in the right half of the figure. The curves are
labeled by the temperature, in 'C below the clearing

point T, . The minima of these curves represent the

stable states.
A number of conclusions can be drawn from the

figure. For instance, it shows that the 0 structure
will become stable relative to the planar cholesteric
(which has a free energy equal to 0 for the energy

scale used} at a temperature about 0.95'C below T, .
As the temperature increases, the minimum of the
curves shifts to smaller N; the corresponding lattice
constant d also decreases. The construction to ob-

tain the latter is illustrated for the T—T, =—0.5
curve by the vertical and horizontal lines marked

with arrows.
Some remarks on the values of the variables used

in the computations are in order. The numbers on
the coordinate axes of Figs. 5, 6, and 7 apply for
elastic constants K» ——Kzz=K33=3X10 dyn, a
cholesteric pitch PD ——2.5 X 10 cm, and an entropy
of transition of a=8X10 ergcm K '. We al-

ways take Kiq+Kq4 (Kii+Kii)/2, a ——relation
which can be derived from rather general assump-
tions. ' A perusal of Eqs. (2.4) and (5.1}shows that
it is a simple matter to scale the results for other

F;„t=0.(6d2m.R )/d

=cr(12m. )/Nd, (5.2)

where cr is the surface tension, and the other quanti-

ties are defined following Eq. (5.1).

values, provided the ratios of the various K's remain

the same. We denote the new pitch by P, a new

representative elastic constant by K, the new entropy
of transition by a, and the corresponding original

values, as specified above, by Po, Ko, and ao. Then
the curves will apply to the new values if the num-

bers on the energy scale are multiplied by
(Ps/P) (K/Ko), those on the d scale by P/Po, and

values of the temperature parameter by

(ao/a )(Po/P) (K/Ko). (Note that it is the numeri-

cal values that must be multiplied, not the symbols. )

The assumption of equal elastic constants, though

simplifying theory considerably, is often not a good
approximation for actual materials. In particular,

Kzq is generally smaller than K&i and K33 As Kzz
is a crucial parameter in the present theory, we have

explored its influence by recalculating the various

graphs for the case Kqq ——K~i/2=1. 5X10 dyn;
all other parameters are unchanged. The results are
given in Figs. 8, 9, and 10. As expected, the tem-

perature range of stability of the blue phases is
somewhat reduced.

The effect of introducing an interface energy is il-

lustrated in Figs. 11 and 12 for the 0 structure (the
other structures give similar results). The contribu-
tion to the energy density can be written
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We have found only two values for cr in the litera-
ture. Kahlweit and Ostner ' give an estimate of
5 X 10 erg cm as a lower limit for p-
azoxyphenetole. But their method of measurement
{rate of coalescence of nematic droplets in an isotro-
pic environment} does not preclude a much larger
value. Langevin and Bouchiat give a value of
(2.3+0.4)X 10 2 ergcm 2 for MBBA (methoxy-
benzylidene-butylaniline), determined from light
scattering measurements. We have, arbitrarily, used
a value of cr=1X10 erg cm in drawing Figs. 11
and 12, which apply to identical parameters as Figs.
7 and 10, respectively, except for the introduction of
the additional term, Eq. (5.2). It is seen that for this
value of cr a stable blue phase persists. On the other
hand, the Langevin and Bouchiat value would just
about eradicate the blue phase. At present we lack
the knowledge to elucidate this issue: We just do
not have anything approaching a complete set of ex-
perimental parameters (o,K's,a} for any one sub-
stance. It is our hope and belief, partly based on the
results described in Sec. VI, that the interface energy
does not play a decisive role in the energetics.

VI. COMPARISONS WITH EXPERIMENT

portionality to convert d into the Bragg reflection
wavelength A, is chosen to make experimental and
calculated curves coincide at the rightmost experi-
mental point. The temperature {T T,—) has been
scaled by the factor (ao/a)(Po/P), as defined in
Sec. V. Values used are as follows: for the
cholesteryl nonanoate mixture a =2.76' 10
erg cm K ' (Ref. 1), P =280 nm (Ref. 5, assum-

ing a refractive index of 1.5}; for cholesteryl ben-
zoate a=3.24X10 ergcm K ' (Ref. 19), P=217
nm (Ref. 1, refractive index 1.5). We were unable to
scale for the elastic constant K, as no values for the
compounds involved are available. The calculated
curves so obtained are indicated in Fig. 13 by the
full circles and triangles for the cholesteryl
nonanoate and by diamonds and inverted triangles
for cholesteryl benzoate.

The pronounced flattening off with falling tem-
perature of the curve for cholesteryl nonanoate is
not well reproduced in the calculations. Some of

800-

Here we discuss some observations on the blue
phase taken from the literature, and compare them
with the predictions of the present theory. We can
only expect qualitative, or at best semiquantitative
agreement, since, as already pointed out, we do not
have a complete set of parameters for any one sub-
stance. Moreover, at this stage we do not know
which structure corresponds to a specific observed
phase.

I. Temperature dependence of the lattice constant.
For all the cases shown in Figs. 5—12 the lattice
constant d decreases with increasing temperature
(the procedure to obtain d is indicated in Fig. 7 by
the arrowed vertical and horizontal lines). In Fig.
13 we have plotted two sets of experimental values
for the wavelength A, of the first Bragg reflection,
which is of course proportional to the lattice con-
stant. The first set, indicated by open circles, is
from Ref. 5, and applies to cholesteryl nonanoate
with 15% cholesteryl chloride. The second set, indi-
cated by open squares, is from Ref. 1 and applies to
cholesteryl benzoate. Both sets include a super-
cooled blue-phase region. For comparison, the fig-
ure also presents a number of calculated curves. All
are for the 0 model (the other models give compar-
able results), and curves for both the
K) )

——K22 ——K33 and K) )
——2K22 ——K33 cases are

given. The curves are constructed by reading off the
lattice constant d as function of temperature from
Figs. 7 and 10, respectively. The constant of pro-

700—

E
C

600—

500—

c Pe)

FIG. 13. Wavelength of first Bragg reflection in the
BPI as a function of temperature. Curve indicated by
open circles is experimental from Ref. 5 and applies to
cholesteryl nonanoate-cholesteryl chloride mixture. Curve
with squares is from Ref. 1, and applies to cholesteryl
benzoate. Other curves are calculated for the 0 struc-

ture, with elastic constants as indicated in the figure. Full
curves are for temperature-independent elastic constants,
while for the dashed curves a temperature dependence has
been introduced. See Sec. VI for details.
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this discrepancy might be due to the variation of the

elastic constants with temperature: Very near the

clearing point T, the elastic constants vary rapidly

with temperature, for nematics their values about

double for a 3'C drop. Although we have no mea-

surements for the compounds involved, we believe

this behavior may be typical for nematics and

cholesterics. When such a variation is taken into ac-

count, we obtain the dashed curves in Fig. 13.

2 6d &r
V~re 7TH

d3 N
(6 1)

For the case of equal E's we find from Fig. 7 that at
the transition 1/%=0.032. Thus for cholesteryl
myristate we find ddI=(6n /N )1100=21.1
Jmole '. For the case E~~ ——2K' ——E33 (Fig. 10)
we have 1/%=0.048 and ddt=47. 8 Jmole '. The
corresponding figures for cholesteryl nonanoate are
10.2 and 23.0 Jmole ', respectively.

In the above estimates we have neglected the

change in elastic energy at the transition. An upper
estimate for the elastic energy is —,Eqo. With

E=3X10 dyn, a pitch =2.5)&10 em=2m. /qo,
and a molecular weight of 597 for cholesteryl myri-

state, we obtain 0.56 Jmole, which is quite negli-

gible.
3. Density of the blue phase Experim. ental values

for cholesteryl myristate have been published by
Demus et a/. In Fig. 14 the full circles indicate
the results from that paper. To obtain a calculated
value for the density, we again consider the blue

phase as consisting of a fraction f, of cholesteric
material and a fraction f; of isotropic material in

the cores. Again taking the 08 structure, we have

f; =1 f, =6m /N . One can re—adily show that for
this model the density p is given by

(6.2)

where a, and u; are the coefficients of expansion for

2. Enthalpy of the cholesteric-blue-phase transi

tion. We refer to experimental values given by
Stegcmeyer and Bergmann. ' They are for
cholesteryl myristate: cholesteric-BPI transition, 34
J mole ', blue-phase-isotropic, 1100J mole '. The
values for cholesteryl nonanoate are as follows:
cholesteric-BPI, 17 J mole ", blue-phase-isotropic,
530 Jmole '. We can calculate values for the
cholesteric-blue-phase transition by taking the
volume of the disclination cores per unit volume of
material at the transition, and multiplying it with

the enthalpy of the cholesteric-isotropic transition.
Taking again the 0 structure as an example, we

have for the core volume per cm material

8
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FIG. 14. Density variation with temperature of the

cholcstcric, blue, and isotropic phases. Full circles and

lines give experimental values from Ref. 23. Triangles

and open circles give calculated values for the 0' struc-

ture for, respectively, the II ~~
——2E22 ——E33 and

El &

——K2q ——EC33 cases.

the cholesteric and isotropic, respectively, po the
density at the cholesteric-blue-phase transition, t the
temperature measured from that transition, and 4p
the change in density at the (extrapolated)
cholesteric-isotropic transition. The results of ap-

plying Eq. (6.2) to the 0 structure are given in Fig.
14. The triangles are for the Eii ——2E22 ——E33 case,
and the open circles for the E&i ——E22 ——E33 case.
It should be noted that, although Demus et al. state
in their paper that they find no density discontinuity
at the cholesteric-blue-phase transition, their Fig. 3
does seem to show a small jump, which we have at-
tempted to reproduce in our Fig. 14, and which can
be estimated at about 0.3&10 gem . The calcu-
lated values for the two cases are 0.8&10 and
0.35 X 10,respectively.

4. Dependence of the temperature range of the

blue phase on pitch. It has already been remarked
that in Figs. 5—10 the temperature scales with pitch
as (po/P) . One way to investigate the validity of
this relation is to plot the temperature range over
which the blue phase is stable for a series of mix-
tures with varying pitch. Such measurements have
been published by Stegemeyer and Bergmann, ' and
by Marcus and Goodby. ~ The first authors use
mixtures of cholesteryl myristate and nematogenic
PCPB [p-pentylphenyl-2-chloro-4-(p-pentylbenzoyl-
oxy)-benzoate). In Fig. 15 we have plotted the
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0
Sx10-3l R

IIX(nm-I)

FIG. 15. Temperature range over which the blue phase
is stable as a function of the wavelength of the first
Bragg reflection. Curve with open circles is from Ref. 1,
the one with triangles from Ref. 26. Full lines plot a c /A, ~

dependence, with c adjusted so that the right-most value
fits the experimental point. Introduction of a surface en-

ergy of the disclination cores will move the latter curves
down, so that a cutoff wavelength appears. See Section
VI 4 for an estimate of this wavelength.

width of the BPI and BPII region in their phase dia-
gram as function of I/1{, (the open circles in the fig-
ure). Here A, is the wavelength of the selective re-
flection in the cholesteric phase, which is propor-
tional to the pitch. For comparison we have plotted
a 1/A, curve, normalized so as to fit the rightmost
experimental point. At short pitches (large I/1{,) its
slope fits the experimental points remarkably well,
but at long pitches the simple scaling obviously fails.

A weak point of the above measurements is that
the mixture is made up of two very dissimilar com-
pounds, and thus the relevant parameters {K's, a)
may well vary with composition. To minimize such
effects, Marcus and Goodby have investigated
mixtures of the chiral and racemic forms of the
same compound [terephtaloyloxy-bis-4-(2'-
methylbutyl}benzoate]. Their results are plotted as
triangles in Fig. 15, and again a 1/A, curve is given
for comparison. Here the situation is complicated
by the fact that, unexpectedly, there is a BPI to BPII
transition with changing composition.

The inclusion of an interface energy cr has the ef-
fect of making the blue phases unstable relative to
the planar cholesteric beyond a given critical pitch.
It is convenient to approximate curves for the elastic
energy by an analytic function, as follows:

Ap 1 Az 3mF,)„=K 2
— + i + i lnN . (6.3)

Here Ap, Aq, and d& are parameters which are ad-
justed to fit the computed curves. For the 0 curves
in Fig. 7, for example, we fit the N =24 curve with

the following values: Ap ——0.0140, Aq ———1.14, and
1/d ~

——13.4X 10 cm '. The logarithmic term
expresses the dependence on N, in accordance with
Eq. (4.2). Note that its coefficient as given applies
to the 0 structure, in which the disclination length
per unit cell equals 6d. (For the 0 and 02 struc-
tures the coefficients are m v 3 and 2 e ~3, respec-
tively. ) We now add an interface energy, Eq. (5.2},
to obtain (for the 0 case}

=K p 1 2 3~
l

d 12+08
2d2 g d2K

{6.4}

We need here consider only a temperature just below
T„as at a lower one the energy will be greater.
That is, we omit the term for the core free energy.
In respect to R, the expression (6.4) has a minimum
for R =K/(8o). Thus F«, is a function of d only.
We solved numerically for the value d;„which
minimizes F„„to give a value F;„Equa.tion (6.4}
scales with pitch as follows: Ap and A2 are indepen-
dent of pitch, and a/d& scales as Pp/P. Thus it is
easy to solve for various P values, and find the one
(P, ) for which F;„becomes positive. For the Os

structure with all K's equal and cr = 1 X 10
ergcm, we find Pp/P, =0.31, or P, =810 nm.
This compares with the values 420 and 890 nm for
the two cases of Fig. 15 (an index of refraction of
1.5 is used).

There is a notable by-product of the above treat-
ment. It is found that for zero or small interface en-

ergy (o }F„,does not have a minimum for a positive
d. This corresponds to the fact that the minimum
of the curves in Figs. 5 to 10 continue to decrease as
N decreases. It seems probable that this fact is relat-
ed to the appearance of the blue phase III: reduc-
tion of the energy implies an unrealistic decrease of
N and ultimately collapse of the periodic structure
into something new. It is noteworthy, however, that
a combination of nonzero interface energy cr and a
long enough pitch P will produce an F;„at a finite
d. We have calculated that for cr = 1)& 10
erg cm this occurs for pitches equal or larger than
P =Pp/0. 9.

This instability, and thus the blue phase III,
would appear at P values smaller than this. In fact,
it has generally been observed that the blue phase III
is the first to disappear as the pitch is increased. In
the phase diagram given by Marcus and Goodby,
the BPIII disappears at a pitch about —, of that of
which the other blue phases disappear. The Pp/P
values calculated by us, 0.9 and 0.31, would give a
ratio of about —,. However, it seems reasonable that
instability would appear at a larger pitch than the



27 LATTICE OF DISCLINATIONS: THE STRUCTUIW OF THE. . . 451

0.9 ratio indicates. For instance, a ratio of 0.8 pro-
duces stability at an N value of 3, and this is quite
unrealistic for a periodic structure. A Po/P value of
0.5, which produces stability for N=9, seems a
reasonable guess.

Q p(r)=e p(r) ——,5 p~(r} (7.1)

in terms of the local tensor dielectric function, the
standard free-energy density is

k a 2 bF= BaQpyBaQpy+ Qap QapQpyQra

VII. CORE ENERGIES AND
THE LANDAU THEORY +—(Q'p)' . (7.2)

A. Core energies

The nature of the core of a ——, disclination in a
cholesteric should not be very different from that of
a nematic liquid crystal. The typical coherence
length for the magnitude of the order parameter is
approximately 100 A, while a typical cholesteric
pitch is a few thousand angstroms. Therefore, we
investigate this problem considering only a nematic
free energy within Landau theory. In addition, we
will consider all the Oseen-Frank elastic constants to
be equal. Defining the order parameter

+p(m mp ——,5 p) . (7.3}

The n and m are orthogonal unit vectors. If either
a or p is zero we obtain the usual nematic, while
with both a and p nonzero the order parameter is
biaxial. Substituting this expression into the gra-
dient terms in Fgives

Repeated indices are summed. The most general
formfor Q p is

I

Q p ——a(n np ——,5 p)

F~ ———I(Va) +(VP) —Va VP+3[a B npB np+P B mpB mp+2aP(mpB np)(n&B m&)]I,
3

(7.4}

while the remaining terms become

Fo= —(a +p —ap) — [2(a +p ) —3(a p+p a)]+ (a +p —ap)—
3 27 9

(7.5)

(7.6)

Here s:a/ao-=(T T—)/(T, —T —). This expression must be minimized with respect to n, m, a, and P to ob-
tain a solution.

The variational equations for n and m are

Assuming the only temperature dependence is in the coefficient a, the transition is defined by ao ——b /27c. At
that point a =ao ——b/3c. If we define a =a /ao and P =P/ao and measure energies in terms of aoa 0/3 and
lengths in units of the coherence length g = (k/ao)'~, the total free energy is

F=(Va) +(VP) —Va VP+3[aiB npB np+PiB mpB mp+2aP(mpB np)(n&B mr)]

+e(a +p ap) (2a +2p —3a p—3ap )+(a—+p —ap)—

and

B(a B n—P)+aPm&B n&B mP B(aPm—Pn&B mr)=AnP+ymP

B.(P'B.—mp}+aPn~B m~B np B(aPnp—m, B n~)=vmp+) np,

(7.7)

(7.8}

where A.,y, v are Lagrange multipliers for the three
auxiliary conditions n =1, n.m=0, and m =1,
respectively.

Assume n describes a ——, disclination in
cylindrical coordinates. We take
n =(c sPo2/, —si Pn2/, )0for definiteness. Assume
also that m does not depend on r, the radial distance
from the center of the disclination. Then if a and P
only depend on r their gradients will be orthogonal
to the other gradients in Eqs. (7.7) and (7.8). We

I

have

m= sin+, cos+,02' 2' (7.9)

3 (a —P)
2 4 r2

(7.10)

As can be easily verified, m generates a solution to
the variational equations. The resulting terms in the
free energy involving the gradients of n and m be-
come
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We have solved for the solutions to the variational
equations obtained by varying

F= Jd r (Va} +(VP) —Va VP+—

+s(a'+p' —ap)
0.5

I I I i i i i i i

b 1.0

—(2a +2p —3a p —3ap )

I

0 1 2 3 4 5 6 7

5 I I I I I I I

I I

8 9 10

+ (a'+ p' —ap)' (7.1 1)

with respect to a and p.
At small r, a+p =A +Air and

a p=B—ir+B2r, while at large r,
a =a„—:

~ [3+(9—8e}'~ ] and p=0 and the first
corrections are of order 1/r . The variational equa-
tions were solved using a standard software package
for nonlinear differential equations written by N. L.
Schryer. The results for a and p for three values of
a{1.0,0.8,0.0) are shown in Fig. 16. One observes
that P is generally small and decreases rapidly. In
fact, a variational calculation with p=O gave total
energies within a few percent of the minimum ener-

gy when p is included. In Table I we give the final
result for the total energy written as

05
6 *0.8

1.5
I I I I I

6*0.0

0 I I I

0 1 2 3 4 5 6
rtf

I I I

7 8 9 10

0 1 2 3 4 5 6 7 8 9 Q

F=ED+ a ln
3e 2 R
2 r~

so that r, is determined by equating
T

f"23{a—p) 3m 2 R
d r— = a„ln

4 r2 2 " r,

(7.12)

(7.13)

FIG. 16. Variation of order parameters with radius in
the mean-field theory of a disclination. In each graph the
top curve gives a, and the bottom one P; the abscissa is
the radius from the center of the disclination in terms of
the correlation length f. These quantities are defined in

Eq. (7.3) and below Eq. (7.5). Temperature T is given as
e=(T—T )/(T, —T ), where T is the (extrapolated)
second-order transition temperature, and T, the first-
order transition temperature.

and Eo is the contribution from the remaining terms
in the free energy. The core radius clearly contracts
as e or temperature decreases. The variation of the
core energy obtained here is very similar to that ob-
tained by using Eqs. (4.1), (5.1), and (5.2). In fact,
the results in Table I can be fitted using these equa-
tions provided temperature-dependent elastic con-
stants are used. Since it is not clear that mean-field
theory gives a good description of these energies we
have chosen to study the stability of various three-
dimensional structures with the simple phenomeno-
logical expression involving simple physical parame-
ters. It should be noted that the solutions in Fig. 16
do not appear as an isotropic core with an interface
between it and the nematic. Within mean-field
theory including only first-order terms there is only
one length in this problem, so that such a structure

1.0
0.8
0.6
0.4
0.2
0.0

3ma „gF=ED+ "ln
2 Pc

a =—[3+(9—8e)'~]
Eo

4.36
5.51
6.16
6.97
7.73
8.48

*
rc

2.70
1.59
1.29
1.13
1.02
0.94

TABLE I. Numerical results from mean-field calcula-
tions.



27 LATTICE OF DISCLINATIONS: THE STRUCTURE OF THE. . . 453

is unlikely. However, including higher-order terms
in the free energy introduces different length scales
and a more accurate description may contain an in-

terface.

a+@=A(r}=QAgr
1=0

a P=B(r)—=r g Bkr
k=0

rb (r), — (7.14)

so that A and b are analytic functions at ~ =0. Sub-
stitution of the results into Eq. (7.3) for QNp gives

1
0 0

3 x —y 0
Q= —0 — 0 +——y —x 0 . (7.15)

A b

2 3 2
0 0 —2 . 0 0 0

3

Thus, Q p( r ) is completely analytic at the origin. A
detailed examination of the plane-wave solutions

generated by Hornreich and Shtrikman for various
possible symmetries reveals that they indeed have
lines in the real space unit cell about which QNp

varies as described by Eq. (7.15}. Thus, our interpre-
tation of their biaxial solutions is that the biaxiality
is present in order to describe the core of the dis-
clinations required to satisfy the double twist desired

by chirality. Because the solutions are plane waves,
the core of the disclinations is necessarily rather
spread out in the unit cell. The fundamental
mechanism of both approaches is the energy gain
from double twist coupled to the topological impos-
sibility of introducing double twist throughout
space. The biaxiality is as much a property of dis-
clinations in nematics as in cholesterics. It would be
interesting to investigate experimentally the core of
disclinations near T, in nematics to ascertain wheth-
er the mean-field solutions presented here are

B. Landau Theory

The solutions in the Sec. VIIA give the connec-
tion between the theory for the blue phases present-
ed here and the Landau Theory as discussed by Bra-
zovskii, Hornreich and Shtrikman, and others. The
solution in Sec. VII A is easily seen to be analytic at
the center of the disclination. From the variation
equations for a and P that derive from the free ener-

gy in Eq. (7.11),it is easily shown that

correct. It is known that mean-field theory gives a
rather poor description of the phase transition itself
in that the magnitude of the order pa+meter at T,
is considerably larger than expected from extrapola-
tions of susceptibilities in the isotropic phase. How
this affects the disclination core is unclear at
present.

VIII. CONCLUSIONS

A really quantitative comparison of theory and
experiment is at present impractical. We lack a
complete set of experimental parameters for even
one cholesteric substance, and the energetics of dis-
clinations is not well known: One cannot ascribe
quantitative accuracy to either the isotropic-core
model or the mean-field calculations. For the same
reason, it is rather speculative to try to correlate the
various blue phases that have been observed with
specific symmetry structures on the basis of calcu-
lated free energy. Although a comparison of the
various cases given in Figs. 5 —10 shows that there
can be ample opportunity for one structure to pro-
duce the lower free energy in a given temperature
range, while another structure does so in an adjacent
range, the balance is obviously a delicate one. In-
cidentally, such an explanation of the blue phase I to
II transitions does predict a first-order transition, as
is indeed observed.

The calculations presented clearly indicate that
the structures discussed are possible stable crystal-
line structures. From the group-theoretical analysis
of Hornreich and Shtrikman one concludes that the
three examined here are the most likely ones to oc-
cur. Within our parametrization scheme, the 0
and 0 structures appear somewhat lower in free en-

ergy than 0 . The two are therefore the best possi-
bilities for the BPI and BPII.

Note added in proof. (1). A detailed description
of the computer program is given in Ref. 27. (2}.
We have recently treated a new structure with 0
symmetry, obtained by reversing the sign of the ten-
sorial order parameter of the present 0 structure.
Computation gives a lower free energy for the new
structure, compared to the one reported here.
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