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Classical dilute relativistic plasma in equilibrium. Two-particle distribution function
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We consider here a dilute hot plasma which is homogeneous and in equilibrium in the
framework of classical relativistic statistical mechanics as formulated recently by the au-

thors. No external fields are present. The two-particle distribution function of the plasma
is calculated for any temperature. This distribution will be physically significant, as long as
the creation of pairs can be neglected. Several limits which apply at low or high tempera-
tures are discussed. Comparison with previous work from several authors is made.

I. INTRODUCTION

e «ae ' 10 e '~ &10 (2)

This is the first in a set of two papers dealing with
classical relativistic plasmas in equilibrium. We will
start with a few dimensional considerations in order
to fix the limits of validity of the calculational
framework used in these papers.

We consider a system of particles which may have
different charges and masses. For dimensional pur-
poses it is convenient to consider the typical charge
e and the smallest mass m. In practice, m and e will
be the electron mass and charge. The combination
of these two parameters with the universal constants
R (Planck constant) and c (speed of light) makes it
possible to obtain a single dimensionless number
a —=(e2/Rc } which, for the elementary charge, takes

1
the well-known value a =,37 A homogeneous plas-
ma is characterized by two parameters: the density
of particles p and the temperature T (if there are
several kinds of particles it is also necessary to state
their concentrations). There are different energies
associated with the plasma, namely, (1) energy of the
rest mass per particle mc, (2) kinetic energy per
particle of order kT, k being the Boltzmann con-
stant, and (3) Coulomb energy of order e2p'~ per
particle.

The ratios of these energies give us the two main
dimensionless parameters of the plasma:

6—=kT/mc e~ =e p /kT .
In what follows we study the ranges of e and e~ for
which our calculations are valid.

The first question is whether the plasma can be
considered classical. The system is safely classical if
=—4/p «p ', p being the typical linear momen-
tum of the particles. This leads, for not very rela-
tivistic plasmas, to the condition

Nevertheless, we must take into account that, strict-
ly speaking, a classical system of charged particles
cannot be in equilibrium because the energy is not
bounded from below (the Coulomb energy of a pair
of particles with opposite charges can be indefinitely
negative). Therefore, we must resort to the quantum
behavior to prevent collapse. In consequence, all
classical predictions about correlations at very short
distances will be meaningless.

Another important point is that of the walls. We
shall study a plasma which is homogeneous and iso-
tropic but the plasma must be confined or it will ex-
pand. We may assume that the plasma is confined
by some kind of walls which prevent the escape of
particles, but that the container is so large that the
effects of the walls are negligible.

The starting point of our treatment is the "predic-
tive relativistic mechanics" (PRM). ' As this theory
is not widely known, we present its main idea as fol-
lows. Assume two isolated particles which, in a
given frame, have positions and velocities F~(0}, v~,
and rz(0), v2, respectively, at time t =0 If the pa.r-
ticles are noninteracting, their paths are

rj(t}=rJ(0)+vJt, j=1,2 (3)

even if the velocities are close to that of light. If the
particles are charged, then Eqs. (3) do not give the
actual paths, but if the charge e of each particle is
very small then Eqs. (3) are approximately correct
for t not too large. A correction of order e to the
paths (3) can be obtained by calculating from Eqs.
(3) the (retarded) electromagnetic force of particle
1(2) on particle 2(1) and solving afterwards the (rela-
tivistic) equations of motion. The procedure can be
repeated and, finally, the correct paths of the parti-
cles can be expressed as an expansion in powers of e
Eqs. (3} being the zeroth-order term in that expan-
sion. Predictive relativistic mechanics is a theory
that can be seen as the rigorization and generaliza-
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tion of this idea. Its main achievement is the possi-
bility of writing the equations of motion of a system
of N interacting relativistic particles as a set of N
(Newtonian-like) second-order differential equations.
The fields do not appear explicitly in the formalism,
but one may obtain equations which lead to exactly
the same results as conventional electrodynamics.
The formalism allows the calculation of the energy,
the momentum, and the angular momentum of the
system of N particles as functions of the positions
and velocities of these particles. These quantities in-
clude the contributions to the energy, momentum,
and angular momentum usually associated with the
fields. In practice, the differential equations of
PRM can be written only up to a given order in
powers of the charges. The expression up to second
order in the charges has been evaluated explicitly
and it will be our starting point [see Eq. (16) below].
Note that no expansion in v/c is involved.

In a plasma an expansion in powers of the typical
charges is actually an expansion in powers of the
parameter e~ introduced in (1), which is the "dilu-
tion parameter. " Therefore, our study is only valid
for dilute plasmas (ee «1}.This is convenient be-
cause a similar inequality for e~ is obtained from the
following consideration. The method that we use
for the study of the thermodynamics of the plasma
is a generalization to relativistic systems of the Bo-
goliubov method which starts from the Bogoliubov-
Born-Green-Kirkwood- Yvon (BBGKY) hierarchy
cutoff at the level of the two-body distribution func-
tions. In fact, this method provides a first-order ap-
proximation in the density parameter t.~. On the
other hand, we do not set, in principle, a limit on the
value of the parameter e of (1) which measures the
relativistic character of the plasma. Actually, when
e is greater than or of the same order as 1, the
creation of electron-positron pairs becomes possible
and our classical treatment loses all its meaning.

A final point which deserves attention is that of
the radiation. As we have stated above, PRM takes
into account all interactions between relativistic par-
ticles, including the radiation produced by the parti-
cles themselves. Radiation is an effect of order e
and, therefore, is not included in our treatment.
Nevertheless, radiation may be important because,
even a small rate of radiation produces a cooling of
the plasma which may be large after a long time.
Therefore, a more earful analysis is worthwhile.

If we want to study a plasma strictly in equilibri-
um (i.e., it does not change in an indefinitely large
time interval), then we must assume that the walls
of the container are perfectly reflecting for the radi-
ation. Then, the radiation comes to the plasma after
reflected by the walls and this effect is not taken
into account by PRM. We need to assume that,

aside from the interacting particles, we have a back-
ground of (external) radiation which interacts with

them. An estimation of the relevance of that radia-
tion is obtained if we assume that is is a blackbody
radiation with Planck spectrum, whose energy densi-

ty is given by Stephan's law. If we calculate the ra-
tio r of that energy to the typical Coulomb energy of
neighboring particles in the plasma we obtain

r=(n /60}(e Itic) ed (4)

If this ratio is much smaller than one, we may
neglect the effects of the radiation. This gives the
condition

ee ))(e2/~)3/4 10—2

In the opposite direction, if eq is very small (much
less than 0.01) a good approximation should be to
assume that each particle interacts with the radia-
tion but not with other particles (except through ra-

diation}. Then the plasma can be studied consider-

ing a single particle in a random background radia-

tion, which leads to the relativistic Boltzmann distri-
bution.

A comparison of (2) and (5) shows that a plasma
strictly in equilibrium can be studied with our for-
malism only if @&&1, i.e., the plasma can be only
slightly relativistic.

Actual plasmas do fulfill (2) but do not fulfill (5}.
For instance, fusion plasmas with magnetic confine-
ment have e~-10 and a=10 . Nevertheless, our
framework can be applied to these plasmas as fol-
lows. In a fusion plasma radiation escapes through
the walls so that there is no equilibrium, strictly
speaking. However, the loss of energy by radiation
is an extremely slow process in a dilute plasma. A
characteristic time for the process is the ratio be-
tween the energy per particle of order kT, and the
power emitted. A particle of the plasma has a typi-
cal acceleration of order e p /m so that the radiat-
ed power per particle is of order e p m c
Therefore, the cooling time should be of order

t =e e p '~3c (6)

which for fusion plasmas is of the order of 10 sec.
This macroscopic time is presumably much larger
than any relaxation time in a near-equilibrium plas-
ma. This enables us to consider our radiating plas-
ma as nearly in equilibrium at a given time.

II. GENERAL FRAMEWORK:
RELATIVISTIC BBGKY HIERARCHY

AND TWO-PARTICLE CORRELATIONS

In this paper we calculate the classical two-
particle distribution function of a dilute relativistic
plasma. No external fields are present and so the
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plasma is homogeneous and isotropic. In principle,
the calculation is valid for any temperature T.
However, as has been pointed out in Sec. I, for tem-
peratures such that e=kT/mc2& 1 the creation of
pairs becomes possible and our classical treatment
loses its meaning. In a future paper this two-
particle distribution function will be used to work
out the thermodynamics of the plasma to first order
in 6.

Our calculations are grounded in the classical re-
lativistic statistical mechanics developed by the au-
thors in the framework of predictive relativistic
mechanics. Before summarizing here the prominent
facts of this formulation of the statistical mechan-
ics, let us state the basic notation of this paper: For
a macroscopic system of N particles, x stands for
the four-position of the particle a, which means that
a,b, . . . = 1, . . . , N and a,P, . . .=0, 1,2, 3 and in an
obvious notation x, =(t„x,). Also, u, stands for
the space components of the four-velocity u, of the
particle a that is, u, =y, v„with y, =(1—u, )'
and v the three-velocity. The speed of light c is
taken equal to one. Then, in Ref. 6, we define the
generalized distribution function

F(t)~x)~u)~. . . , t~&x~, uN)= F(t„x~,u—,),
where the word "generalized" refers to the fact that
in this distribution function we have, in principle, a
different time for every particle. Now if we take
t, =t, Va, we recover the usual distribution function
f(t, x„u, ), that is,

f(t, x„u, )=F(t, =t, x„u, ) .

For the generalized distribution function F there are,
in our formalism, N continuity equations which
constitute a system of differential equations for F,
which are compatible as a consequence of the funda-
mental equations of predictive relativistic mechan-
ics.

Then we consider in Ref. 6 the case of a relativis-
tic dilute plasma which is isolated (i.e., no external
fields). There, and here, we assume that the dilution
parameter e~ is small enough. The zeroth order in
e~ corresponds to the ideal gas and in Ref. 6 and in
this paper, we are interested in calculating the lowest
corrections to that. According to what has been ex-
plained there, to lowest order in the charges, i.e., e,
only two-body interactions need to be considered.
Therefore, the acceleration produced on a given
charge by the electromagnetic field created by all
others is a sum of terms, each one due to one parti-
cle. In this way, the problem of the interactions in
the plasma reduces to the calculation of the ac-
celeration produced on one particle, say 1, by anoth-
er one, say 2. Now, this problem can be dealt with

as if only particles 1 and 2 exist in the universe, all

corrections to that model being of higher order in e.
At first sight, the calculation of the relativistic in-

teraction between two charged particles seems rather
involved, because the force on particle 1 at time t
would depend on the position and velocity of parti-
cle 2 at a retarded time. Also, the position and velo-

city of 1 at that time depends on the position and

velocity of 1 at an earlier time, and so on. As we

have said in Sec. I, the main success of predictive re-

lativistic mechanics has been to show that the self-

consistent motion of two interacting particles 1 and

2 can be solved in a relatively easy way be writting a
pair of coupled Newton-like (differential second-

order) equations whose solutions give all the compa-
tible paths for the pair of particles. If one chooses a
frame of reference, the acceleration on particle 1 due

to the presence of 2 can be calculated from the posi-
tion and velocity of 2 at that time. This does not
mean that actions propagate instantaneously, but
rather that there is a precise scheme to take retarda-

tion into account automatically, through the equa-

tions of the theory. All we shall need in that paper
is the time component of the acceleration of particle
2 due to particle 1, which has been calculated to
second order in the charges in Ref. 2. Its actual ex-

pression can be seen below [see Eq. (16)].
The fact that the basic interaction in a dilute plas-

ma splits into two-body interactions allows us to
reduce the N continuity equations for the general-
ized distribution F to N Liouville equations and
hence we obtain the relativistic BBGKY hierarchy

gF(s) gF(s)
uA ~ ++CAB

+A B ~A

gF(s+1)+g Jgga, d'xad'us ——0, B~A
R BQA

where F"' is the reduced generalized distribution
function

N
F"(t,,-...-, )= f F g d', d", .

R =s+1

Here s=1,2, . . . , N —1. The first capital letters
A,B,. . . run from 1 to s and the latest ones R,S,. . .
from s+1 to N. Finally, g„s is the acceleration of
the charge A in the presence of the charge B to first
order in the product of the charges, i.e.,
g = g, g, +is, to this order, the acceleration of
the charge A, since as mentioned before, in this ap-
proximation we only have two-body interactions.

In (7) the Einstein summation convention is only
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valid for Greek labels. Therefore, for each value of
s we have s equations, since A = 1,2, . . .s. As in the
nonrelativistic case, the determination of the re-

duced generalized distribution function F"' can only
I

be made when the hierarchy is cut off somewhere,

that is, when for some value s we give F' +" as a
function of the other F" functions with r &s + 1.
According to this we have, for any particles 1,2,3,

(10)

F' '(1,2}=F"'(1}F"'(2}[1+@(1,2}], (9)

F' '(1,2,3)=F'"(l)F"'(2)F'"(3)[1+@(1,2)+p(1,3)+p(2,3)],
in analogy with the nonrelativistic case.7 It is supposed that the "correlation function" p(1,2) is much smaller

than 1 ~

Let us now treat the more particular case of when the dilute plasma is homogeneous and in equilibrium.

Then, putting (9) and (10) into (7) for s = 1,2, we obtain

g f F"'(R )g,„8[F
"'( 1 )p( 1,R )]/Bu, d x„d u„=0, (1 1)

R

uA =P mA(A~+A'mq g f F"'(Rg„zp(B,R )d xad u~
Bxg R

(12)

Here, for the one-particle distribution function E'"
we have the relativistic Maxwellian distribution

F"'(1)= [P'm ) exp( P'm, y, )]—/4n VXp(P'm
~ },

(13)

where m
&

is the mass of the particle labeled 1, V is
the volume of the system, and E2 is the modified
second-order Bessel function. Equation (13) is the
free relativistic Maxwellian distribution except for
the constant P' which replaces here the Boltzmann
factor P—:1/kT. According to Kosachev and Trub-
nikov, P' coincides with P in the nonrelativistic
limit, but in general we have P'&P because of the
relativistic interaction terms. We shall discuss this
point further in a later paper.

Then, in order to get the two-particle generalized
distribution function F'2'(1,2) of the plasma, we

must solve the integro-differential equation (12) with
the supplementary condition (11). In this work we

will be concerned only with the usual two- particle
distribution function f' '(1,2) =F' '(1,2)

~ ..
I

I

Next, Sec. III is devoted to the explicit calculation
of f'2'{1,2 } starting from Eq. (12) and condition

(11),and in Sec. IV we consider the special case of a

slightly relativistic plasma and we compare our re-

sults with previous ones.

III. TWO-PARTICLE
DISTRIBUTION FUNCTION

FOR A RELATIVISTIC DILUTE AND
HOMOGENEOUS PLASMA IN EQUILIBRIUM

WITHOUT EXTERNAL FIELDS

The calculations of this section are valid, in prin-
ciple, whatever the temperature of the plasma but,
in fact, for a temperature of the order of the
equivalent temperature T, of electrons {kT, equal
rest mass of the electron) the creation of electron-
positron pairs should be considered, which is not
done here.

From Eqs. {1}with A = 1,2, respectively, and set-
ting t ~ t2 ta, VR,——we obtain (see ——Ref. 6)

v~. ' —P'm&yi f ~2 P'may& g 4—is F (R)G(2,R)d xttd uR+v2BG( 1,2), i p BG(1 2)

Bxy p R 8X2

P'm, y, 'gz, —P'm, y2 'g f (~a F ' (R)G(1,R)d xad ua ——0, (14)
0

where the notation

G(1,2)—=G(x, vi, v2)=p(1, 2)
i .. .,, gi2 i 0=/F2 i .. .,, x—=xi —x2 (15)

has been used. Notice that only the time components g,2 and g~, of the four vectors g,q, g2, appear in Eq.
(14).

For g, ~ ~ 0 we have the expression

0 3
Cu 10=&i&2y&y2x'vi/miR &2
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where R12 —=[r2+(x.u2}2]I'2, r2= x and el,e2 are the charges of particles 1 and 2. Then Eq. (14}becomes

—p'mls f glsF (R)G(R,2)d xgd ug —p™1(12BG(1,2} (1) 3 3

BX( R

with

+v2 —p'm2+ f gzaF'"(R)G(R, 1)d xad ua —p'm2(q I
——0 (17)

BXg R

(12——ele2y2x/mlR 12

for any pair of particles 1 and 2.
The Fourier transform of Eq. (17}gives

k vl —(k v2)(vl v2)
G(k, vl, v2)k vl+(2/n)' P'ele2

k —(k v2)

k vl —(k va}(vl.va)+~p'eI ge.f, 2
F'"(R)G(k, v2, va)d us —G(k, vl, v2}k.v

R k —(k.va}

k v2 —(k vl}(vl v2}—(2/m)' P'ele2
k —(k.vl)2

k v2 —(k.v~)(v2 v~)
~P'e2 pea f F"'(R}G(k,v„v„)d'ua ——0,

R k —(k va)

where G(k, vl, v2) is the Fourier transform of G(1,2)—=G(x, vl, v2), i.e.,

G{k,vl, v2)=(2m) f G(x, vl, v2)exp(ik x)d x.

(19)

(20)

The linearity of Eq. (19) and the functional form of the inhomogeneous term suggest trying the following
"ansatz":

5

G(k, vl, v2}=ele2 gA;(k}G(n, vl, v2}, n—= k/k (21)

with

(Il VI) (n V2)

[1—(n.vl) ][1—(n v2) ] [1—(n vl) ][1—(n v2) ]

v) V2 (vl v2)(n. vl)(n v2)

[1—(n vl) ][1—(n v2) ] [1—(n vl) ][1—(n v2) ]
Putting (20) into Eq. (19) we obtain

5 IMP' ll'Vl {Il'V2)(V1 V2) (Il'Vl}(V1 V2} ll'V2
g A;(k)G;(n, vl, v2)+(2/m )' — +
~ ] k ] (nv2) 1 —(n. v~)

+4m P'g eeA;(k)I;(P'me) =0,
R,i

where v —= v& —v2 and where

k.vl —(k va)(vl ve)
II(P'ms) —= f F'"(R)G;(n, v vs) d ua

k2 —(k vR)

k v2 —(k vR)(vz vR) 3F'"(R)G,.(n v ) vR )
2 2

d uR .
k2 —(k.vR )2

After some calculation we obtain

(22}

(23)

(24)
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II (p'mR )=, II (p'mR )=0,kV'
(n. vl)(n v2)(n v)[1+(n vl)(n vq)]

I3(p™R)=C(p™R)
2 3, I4(p™R)=0,

k[1—(n vl) ][1—(n vq) ]
n. v[ +(n vl)(n vl)]

Iq(p'mR)= —
I 2

[[C(p'mR) B(—p'mR)](n vl)(n vq)+B(p'mR)vl vqjk [1—(n vl) ][1—(n. v3) ]
with C(p'mR ) and B(p'mR ) standing for the integrals

F"'(R} 1+"R
C(p'mR)= V '+2lr ln uRduR,

V~

2

B(P'mR)=Ir f F (R) ln —3 uRduR .(i) 3 "R 1+VR 2

2' 1 —Ug

Substitution of (25} into (23) gives, after a little algebra,

k +4Irp'V 'geR k +4Irp'geRB(p'mR)
R R

which according to (21) gives for G(k, v „v2),
(2/Ir)' p'ele3

G(k, v»vl)=-
k2+K2

(2/Ir)' p'ele2 [1+(Il'vl)(11'v2)][(11'vl}(I1'v2)—YI'vl]

k +a [1—(n v, )'][1—(n v, )']
Here ~ and a mean

II =4Irp'V 'geR, a =4Irp'geRB(p'mR}
R R

with B(p'mR ) given by (27}. The calculation gives for B(p'm )

B(P'm ) =Ko(P'm )/ (VP' m)KI(P'm ),

(25)

(26)

(27}

(28)

(29)

(30)

(31)

(32)

where Ko and E2 are the modified Bessel functions of zeroth and second order, respectively. It can be seen
that the constant a is positive for any positive P'm.

From (29), the inverse Fourier transform gives the correlation function

p'elel „, p'elel (n vl}(Il V2}—VI VI e
—'"'*

r 2Ir (1+n.v, )(l+n vz) k +a
Here r —= (x }'~ . We recognize in the first term of the right-hand side the well-known Debye-Hiickel term of
the nonrelativistic theory (except for the change p~ p'}. On the other hand, G( x, v I, v2) given by (32) satisfies
the supplementary condition (11)for tz ——t&, VR as it must be. One can be convinced of this by noting that the
integrand of (11)becomes in that case an odd function of x I

—xR.
In (32} the integration over k can be explicitly made and, alternatively, we can write

P'ele2 P'eleq (n. vI}(n vq}—vl vq

P 477 (1+n. v )(1+n v )
(33)

where 5(n x) is the Dirac 5 and the integration is over all directions of n, that is, dQ „=sin8 d8 dy.
Finally, for the usual two-body distribution function f' '(1,2)=F' '(1,2) ~, , we get, according to (9) and

(15),

f' '(1,2)=F'"(l)F"'(2) 1 — e "'+ f d k (34)
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with I""given by (13).
One can readily be convinced that for the 6{x, v &, vq) of (32}we have

I 6(x,v|,vq)d x=0.
Hence, from (34}it becomes

If' '(1,2}d xd u d u = V

as it must be.

(36}

IV. EXPANSION OP THE TWO-BODY CORRELATION FUNCTION: LOWEST-ORDER CORRECTION

In this section we consider the fact e is a small parameter. Then, u (u standing for a typical velocity of the

charges) is of order e. So, to begin with, let us expand the function under the integral in (33) in powers of the

velocities. %e obtain

6(x,vl, v2)= —P'eie2exp( —~r)/r

+{p'e,e, /4e) g g J [(n.v, ){n v, )—v, v, ](n v, )r(n v, )&

p=Oq=O

X [25(n x)—a exp( —a
i

n x
i
)]dQ-„, (37)

where p+q takes only even values.
%forking out the first term in this expansion we have

6(x, v |,v q) = —p'e |e2exp( ~r }lr-
+(p'eie2/4~) J [(n v|)(n.v2) —v| v2][25(n x)—a exp( —a

i
n x

i
)dQ-„+0(u ) .

After some calculation we get explicitly

8i82
6(x,v|,v2) = — e

r

(38)

peieg 3 3 (X'Vl)(X'V2)
+ e ' 1+ +

r ar r
1 11+ + v) v2

Ar ~2r2

p'ei&2 1 (x.vi)(» V2)
+ z z v|vz —3

2
+0(u ).

A r r
(39)

Here, the lowest-order correction in e to the classical
Debye-Huckel term shows a long-range term de-

creasing like ll(ar) r plus two sorts of shielded

terms. The apparent shielded terms vary as

exp( ar}lr Oth—er relati. vistic shielded terms are

included in the formal Debye-Huckel term

P'e, e2e /r. This is so —because P'+P in general

and then a only coincides with the screening Debye-

Huckel constant for nonrelativistic plasmas. In a
later paper it will be shown that p'lp =1+0(e }.

In order to have a better qualitative insight on Eq.
(39) let us consider the behavior of the relativistic
screening constant a for low temperatures. Then

P'm »1 and

Xo(p'm )~g(p'm )

=(e/2Pm )'i~ exp{—Pm)

which, according to Eq. (31), means

B(P'm )=1/V(Pm)2, P'm »1
and so, from Eq. (30)

2

a =4uPV ' pea/{Pma) — z,
(pm, )

P'ms »1 (41)



27 CLASSICAL DILUTE RELATIVISTIC PLASMA IN. . . 429

where ~D means the strict Debye-Huckel screening
distance.

Through the relation

f"'(1,2)=F"'(1)F'"(2)[l+G(x,v), vp}]

the expression of G(x, vl, vz) in (39) gives the two-

body distribution function to first order in e. To
this order, in Eq. (39},we can approximate p' by p,
K by an and, according to (41), a by sD/(pm )

An apparently very similar expression to (39) has
been obtained before by Kosachev and Trubnikov.
Actually, their expression agrees with ours in form
but the constant a is very different. In fact, it can
be seen that their relativistic screening distance d,
acts like a constant d, -(mV/Ne )' for Pm »1
which is to be compared with the behavior at low
temperatures of our relativistic screening distance
d„ i.e., d, -(Pm )'~2 [one obtains this relation from
Eq. (41)]. Then the apparent coincidence between
Eq. (39) and the results of these authors is mislead-

ing since, in fact, there is only coincidence up to or-
der e.

What is the reason for these discrepancies? Actu-
ally, we do not think that the calculation of B. A.
Trubnikov in Ref. 10, where he obtains our Eq. (39)
with a different constant a, is a correct calculation.
In fact, Eq. (2.1) of part II of this reference is in-

correct since Trubnikov takes as the one-particle dis-
tribution function the Maxwellian distribution func-
tion to the lowest order in the velocities. Obviously,
since he starts his calculation from the Darwin's La-
grangian, "which, as it is we11 known, retains terms

up to second order in the velocities, he should have
to take the Maxwellian distribution up to the same
approximation. According to this, Eqs. (2.17),

(2.19}, (2.20}, and {2.22) of Ref. 10 are wrong since
in all these formulas second-order terms coming
from the kinetic relativistic energy, i.e.,

&
m U, are missing and these terms are of

the same order as the first corrections to the
Coulomb energy, which are retained everywhere in
Trubnikov's work.

Our results do not ever coincide with those of Kri-
zan, ' who also gets nonscreened terms for the two-
particle distribution function, because we do not
find the oscillatory behavior of his distribution func-
tion. The reasons for this new disagreement are to

be considered in a future paper. Also, new argu-
ments will be given to show that the calculations re-
ferred to above from Kosachev and Trubnikov are
not consistent.

In Ref. 6 the authors have found a particular
solution [see Eq. (49) of that reference] to Eq. {14}
modulus O(e ), which does not coincide with the
correlation function given by (39} (even after ap-
proximating p', s., and a by low temperature values
as explained above). We think that this old correla-
tion function is unphysical. On the one hand, it has
no relativistic screening terms. On the other hand,
the remaining relativistic long-range terms, when in-

tegrated with the Darwin Hamiltonian as to give the
macroscopic energy of the plasma to order O{e2),
give infrared divergences. This is not the case with
the two-particle correlation function presented here,
as will be seen in a future work. Let us remark that
one can obtain the above unphysical solution by tak-
ing the limit ar ~0 in Eq. (39).

In the high-temperature —or ultrarelativistic-
limit (which is rather academic, however, as long as
pair creation is not considered), it can be seen that
both a and a vanish. Then, G(x, vl, vq) as given by
Eq. (33) goes to zero with p, and the two-particle
distribution function (34) becomes that of a free gas,
as it must be in the ultrarelativistic limit.

Finally, the limit r +00 of G(x-, vl, vq), i.e., the
long-range behavior is dominated at any tempera-
ture by a term of the form (p'e~e2/a2r ) times a
function depending only on vi v2, x vi/r, x v2/r.
This case can be easily derived from (32} through
the change kr:—q and the neglect of q compared
with a /r . That asymptotic form is clearly visible
in (39) for the case of a slightly relativistic plasma.

The good behavior shown by the distribution
function (34) in all the limiting cases studied in this
section, and reasonable results obtained by using it
(to be studied in a future paper}, convince us that the
function G( x, v &, vz) of Eq. (33) is the right physical
solution of the integrodifferential Eq. (17).
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