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Ionization energy of the helium atom in a plasma
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The ground-state energy of the helium atom in a plasma is calculated by the variational
method with the static screened Coulomb potential as the interparticle potential. This is
used to calculate the ionization energy of the helium atom as a function of the screening
parameter. The critical value of the screening parameter at which the ionization energy be-

comes zero is also estimated.

I. INTRODUCTION

At least for classical charged particles, the effect
of the plasma sea on localized two-particle interac-
tions is to replace the Coulomb potential by an ef-
fective screened potential. ' This effective screened
Coulomb potential is known in plasma physics as
the Debye-Huckel potential and for the attractive
case it is given by

V(r) = e2e '/r—,

where a is a screening parameter. The bound-state
energies of an electron in the screened field of a pro-
ton have been calculated by a number of authors
with a variety of techniques. " The number of
H-atom bound states in such a case is found to be
finite and the energy eigenvalues are a function of
the density and temperature. The magnitude of the
ionization energy decreases as the screening in-
creases.

However, except for a calculation due to Rogers, '

the problem of plasma screening of two-electron
atoms appears to have received very little attention.
In the present paper we consider the case of the heli-
um atom in a plasma. We first calculate the energy
of the helium atom, with the use of the variational
method, when the interaction between the consti-
tuent particles is given by the potential (1}. We next
calculate the ionization energy of the helium atom
as a function of the screening parameter. We also
estimate the critical value of the screening parame-
ter at which the ionization energy becomes zero.
Sometimes, for clarity, a helium atom in which the
Coulomb potential is replaced by Eq. (1), shall be re-
ferred to as a "screened" helium atom. These calcu-
lations are relevant for investigating the behavior
and properties of helium atoms in laboratory and as-
trophysical plasmas.

We shall use atomic units, where the unit of

length is ao ——il /me2 and the unit of energy is equal
to me /fi —. Also 5=aao, a dimensionless screen-
ing parameter.

II. VARIATIONAL CALCULATION

where r& is the coordinate of the ith electron with
respect to the nucleus of charge Ze and r&2 is the
distance between the two electrons. We shall use
variational wave functions which are of the follow-
ing form:

f=f(r1 }f(r2 }g(r1,r2, r 12),

where f(r;) is a hydrogenlike wave function and
g(r1,r2,r, 2) is a correlation factor. This type of
wave functions have been widely used for heliumlike
systems, such as H, He, Li+, etc. ' ' We shall
restrict ourselves to relatively simple forms of
g(r1,r2,r12). The wave functions (unnormalized)
used by us are the following:

—a(r, +r, )
e (4)

l+ 21(1+br )1/2

g=e ' ' (1+br 12),
—o(r&+r2) br&2=e e

and

f=e ' ' [1+br12+c(r1—r2) ) . (8)

Here a, b, and c are variational parameters. For

The Hamiltonian of a heliumlike atom in atomic
units is

—5ri —5r2 —5r&2Ze I 2 Ze e&=—,~ + + —,~2+
f2
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the helium atom (5=0), wave function (8) is known

to give better results than wave functions (4)—(7).
However, when the screening is large, it was unclear
what the situation might be. Therefore, the calcula-
tions were carried out for all the five wave func-
tions. Equation (4) serves as a "zero" level for exa-

mining the role of correlation in the present prob-
lem. The energy is obtained from

The energy associated with the kinetic-energy

operator V 1 and the potential-energy operator

e '/r; can be integrated without much difficulty.
The integration associated with the interaction be-

tween two electrons is carried out in a different way.

The integrant e "/r12 has to be expanded in
terms of the coordinates r1 and r2. To do this, we

use the fact that

1k' l2e

12
=kjo(kr &

)ho+'(kr
& )

—5r )2e

12

Because

) sin(i5r & ) e

5

Sr —Sr

sin(i5r & )=i sinh(5r & ) =i

sjn(kr ) z' '&
=k

kr& kr&

where jo is the Bessel function and ho+' is the
Hankel function of the first kind. r & stands for the
smaller of the lengths r1 and r2, and r & stands for
the larger of the lengths r1 and r2. If we write

k=i5, it follows

TABLE I. Energy eigenvalues of the screened helium atom from various trial wave functions.

Screening
parameter

5

0.0
0.0001
0.0002
0.0005
0.001
0.002
0.005
0.01
0.02
0.05
0.1

0.2
0.25
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1.0
1.1
1.2
1.3
1.4
1.5
1.6
1.7
1.8
1.9
2.0
2.1

Eq. (4)

2.847 66
2.847 36
2.84706
2.846 16
2.844 66
2.841 66
2.832 68
2.817 77
2.788 10
2.70044
2.558 62
2.29031
2.16343
2.041 18
1.809 91
1.595 40
1.39668
1.21292
1.043 38
0.887 39
0.74439
0.613 85
0.495 32
0.38841
0.29279
0.208 20
0.13448
0.071 60
0.01982

—0.01991

Eq. (5)

2.871 59
2.871 29
2.87099
2.87009
2.868 59
2.865 59
2.85662
2.841 70
2.81203
2.72432
2.582 36
2.31354
2.18632
2.063 66
1.83148
1.61594
1.416 12
1.231 20
1.06047
0.903 29
0.759 10
0.62740
0.50772
0.39970
0.30300
0.217 35
0.142 60
0.078 70
0.025 84

—0.015 15

Energy
Eq. (6)

2.891 12
2.890 82
2.89052
2.889 62
2.888 12
2.885 13
2.876 15
2.861 23
2.831 56
2.743 85
2.601 88
2.33303
2.205 78
2.08309
1.850 81
1.635 12
1.43509
1.249 91
1.078 84
0.921 26
0.776 57
0.64428
0.523 93
0.415 12
0.31751
0.230 83
0.15490
0.089 63
0.035 15

—0.007 92

Eq. (7)

2.889 62
2.889 32
2.88902
2.888 12
2.88662
2.883 62
2.87464
2.859 73
2.83001
2.742 35
2.60042
2.331 68
2.204 51
2.081 91
1.849 85
1.63441
1.43466
1.249 78
1.07903
0.921 76
0.77740
0.645 43
0.525 39
0.416 87
0.31954
0.233 11
0.15738
0.092 27
0.037 88

—0.005 23

Eq. (8)

2.90243
2.902 13
2.901 83
2.90993
2.89943
2.89644
2.88746
2.872 55
2.842 89
2.755 24
2.613 50
2.34549
2.218 82
2.096 82
1.86620
1.652 53
1.45486
1.272 33
1.10421
0.949 81
0.808 51
0.67973
0.56294
0.45764
0.363 35
0.27963
0.20604
0.142 20
0.087 76
0.04247
0.00630

—0.020 10
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TABLE II. Energy eigenvalues of screened He and screened He+ atoms, and the ionization
energy of the screened He atom.

Screening
parameter

5

0.0
0.0001
0.0002
0.0005
0.001
0.002
0.005
0.01
0.02
0.05
0.10
0.20
0.30
0.40
0.50
0.60
0.70
0.80
0.90
1.00
1.10
1.20
1.30
1.40
1.50
1.60
1.70
1.80

E(screened He)

2.90243
2.902 13
2.901 83
2.90093
2.89943
2.89644
2.88746
2.872 55
2.842 89
2.755 24
2.613 50
2.34549
2.096 82
1.86620
1.652 53
1.454 86
1.272 33
1.10421
0.949 81
0.808 51
0.67973
0.562 94
0.457 64
0.363 35
0.27963
0.20604
0.14220
0.08776

E(screened He+)

2.00000
1.999 80
1.99960
1.99900
1.99800
1.99600
1.99002
1.98007
1.96030
1.901 85
1.80727
1.628 23
1.461 84
1.30723
1.16368
1.03055
0.907 32
0.793 50
0.688 68
0.59247
0.504 53
0.42454
0.35223
0.287 33
0.229 60
0.178 82
0.13477
0.09726

Ionization
energy of the

screened
He atom

0.90243
0.902 33
0.90223
0.901 93
0.90143
0.90044
0.89744
0.89248
0.882 59
0.853 39
0.80623
0.71726
0.63498
0.558 97
0.488 85
0.424 31
0.365 01
0.31071
0.261 13
0.21604
0.175 20
0.13840
0.105 41
0.07602
0.05003
0.027 22
0.00743

—0.009 50

therefore

Sr —Sr —Sr
e 1 e ' —e ' e

12

III. RESULTS AND DISCUSSION

The energy expression for each of the five trial
wave functions was minimized by varying the corre-
sponding parameters. The resulting energy eigen-
values are shown in Table I for a number of values
of 5.

It is of interest to examine the role of the correla-
tion factor as 5 increases. At 5=0.0001, as com-
pared to Eq. (4), the improvements obtained from
Eqs. (5)—(8) are 0.83%, 1.5%, 1.45%, and 1.89%,
respectively. The corresponding figures at 5=1.8
are 23%, 44%, 48%, and 77%. This clearly shows
that the factor g(r~, r2,r, 2) becomes more important

as 5 increases.
The three-parameter trial wave function (8) gives

the best results for the whole range of 5 values. It is
known that for the helium atom, this wave function
gives fairly good results; the difference between the
calculated and the experimental energy is only
0.046%%uo. At low values of 5, we can expect the same
sort of accuracy in the results presented here. At
high values of 5, however, experience with the
screened H atom" suggests that the accuracy is ex-
pected to diminish.

Among the three two-parameter wave functions
that we have considered, Eq. (5) gives the poorest re-
sults. The energy from Eq. (6) is better than that
from Eq. (7) for 5 &0.74, though only by a small
margin (less than 0.1%). But this situation is re-
versed above 5=0.74, and by 5=1.8, the energy
from Eq. (7} is better than that from Eq. (6} by
7.8%. If one expands e " and retains the terms up
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to the first order of briz in Eq. (7), Eq. (6) is readily
obtained.

Table II shows the energies of screened He and
screened He+ atoms, and the difference between the
two which is the ionization energy of the screened
He atom. The tabulated results for the screened
helium atom are from Eq. (8). The energy of
screened He+ atom was calculated using the wave
function suggested in a previous paper" where it
was shown to give very good results for the screened
H atom. As the ionization energy is given by the
difference between two numbers, in percentage
terms, even small errors in those two numbers can
get magnified in the resulting ionization energy. At
5=0, the difference between the observed and the
calculated value [Eq. (8)] of the ionization energy is
0.14%. It would be reasonable to expect the same
sort of accuracy in the calculated value of the ioni-
zation energy when 5 is small. As 5 increases, the

accuracy of both, E(screened He) and E(screened
He+), is expected to diminish, but as the errors will

be in the same direction, there will be some cancella-
tion. Overall it is reasonable to surmise that the ac-
curacy of the ionization energy will also diminish
with the increase of 5.

Our results indicate that the ionization energy of
the screened helium atom becomes zero at about
5=1.74, but as our results in this region may have
poor accuracy, this value of 5 can only be considered
to be a lower limit for the critical screening parame-
ter; the true value is expected to be a few percent
larger.
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