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Convective transitions induced by a varying aspect ratio
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The Rayleigh number for convective instability of a horizontal layer of fluid to two-

dimensional disturbances depends on the wavelength of the disturbance. In a finite rec-

tangular domain with stress-free boundaries, there are critical lengths at which instability to
two different sets of rolls occurs simultaneously. This paper gives a nonlinear analysis of
this multiple-bifurcation problem. We present a complete characterization of the transitions

which occur for lengths near critical. For small values of the Prandtl number the transition

between the two sets of rolls occurs via a new type of solution which is represented by the

superposition of the two sets of rolls with comparable amplitude. For higher Prandtl num-

bers the transition is an abrupt one, and is accompanied by hysteresis.

I. INTRODUCTION

Recent experimental results' on convection in
liquid He in a box of finite size have revealed an
unexpectedly rich variety of behavior. In particular,
the transition in the nonlinear regime between dif-
ferent numbers of convection rolls can now be inves-
tigated by doing experiments in boxes of appropri-
ately chosen sizes. The experiments on the transi-
tion from 3 rolls to 2 rolls as the Rayleigh number is
increased have revealed the possibility of a mixed-
mode transition, as well as more complicated oscilla-
tory behavior between the two different convection
states. The present paper describes a calculation
that shows that the mixed-mode transition is charac-
teristic of low-Prandtl-number fluids (such as heli-
um), but that an abrupt transition involving hys-
teresis is to be expected in higher-Prandtl-number
fluids. The critical Prandtl number dividing these
two possibilities is close to that of liquid He. By
varying the basic temperature of the system (and
hence the Prandtl number) it might be possible to
realize both kinds of transitions.

The classical analysis of a two-dimensional Bous-
sinesq convection in a horizontally infinite layer
with stress-free boundary conditions at the top and
bottom shows that, as the Rayleigh number is in-
creased, convection begins as rolls whose aspect ra-
tio is v 2. In the present problem, we are interested
in examining the effects of free vertical boundaries
placed as x =O, A, . When the height of the fluid is
normalized to 1 and A, is not a multiple of v 2, an
integral number of rolls of aspect ratio v 2 does not
fit the box, and the first set of rolls must have an as-

pect ratio different from v 2. We are interested in

studying both how the aspect ratio of the rolls de-

pends on the width A. of the box and, given A,, how it
depends on the applied Rayleigh number. This
problem can be studied using a bifurcation analysis.
Classical perturbation techniques require the selec-

tion of a distinguished parameter that is to be varied
while the remaining ones remain fixed. In this pa-

per we use a new method of analysis which does
not require the selection of such a distinguished
parameter and in which a small parameter is intro-
duced naturally in terms of a distance from a multi-

ple bifurcation. Since the neutral curve of Rayleigh
numbers for rolls of varying aspect ratios has a
minimum at v 2, it follows that there will be certain
critical lengths A,,(k) at which the smallest allowed
critical Rayleigh number occurs at two wave num-

bers k, k+1 with lI,/k+1& v 2&){,/k. At
A, =A,,(k), a multiple bifurcation from the conduc-
tive solution occurs. In this paper we determine
finite-amplitude motions which occur for widths
that are close to these special values of A,. The
method we use, sometimes called the method of nor-
mal forms, takes full advantage of the symmetry
properties of the underlying system. Moreover, the
center manifold theorem provides a justification for
the reduction of the bifurcation problem to a two-
dimensional system of ordinary differential equa-
tions. In the present case, we compute cubic non-
linearities in the normal-farm equations. By includ-
ing all the modes which contribute to these cubic
terms and doing a stability analysis of the resulting
two-dimensional system, we obtain rigorous approx-
imations to all of the stable steady solutions which
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occur near the multiple bifurcation. In addition, we
conclude that with the boundary conditions used
here all solutions tend to steady-state solutions in
this regime.

For systems with a large aspect ratio A, , one can
adopt an alternative viewpoint based upon the tech-
niques of Newell and Whitehead. These authors
examine modulated wave trains in an infinite layer
at values of the Rayleigh number slightly larger
than the critical Rayleigh number Rp for rolls of as-
pect ratio v 2. Their analysis has been extended to
the case of rigid sidewalls by Cross et al. In this
approach, one considers the effects of sidewalls on
the allowed solution for the infinite problem with
R &Rp fixed. Our approach differs in that we fix
the width of the box A, and then increase the Ray-
leigh number through the corresponding critical
Rayleigh number.

The effects of sidewalls on convection rolls have
been studied before, ' but with particular atten-
tion paid to the bifurcation structure that arises as a
result of symmetry breaking owing to heat leakage
from the sides. Hall and Walton" did, however,
also consider the effects of changing the box width,
although with different boundary conditions from
those used here and only one value of the Prandtl
number. Kidachi' has studied the 2-roll to 1-roll
transition using modified perturbation theory, and
obtained results that are in qualitative agreement
with ours. Issues similar to those addressed in this
paper also arise in studies of the effect on the num-
ber of Taylor vortices of varying the height of the
fluid in a Taylor apparatus. ' '

The formulation of the problem and the results of
our calculations are presented in Sec. II, followed by
some brief conclusions in Sec. III. The mathemati-
cal details are contained in the Appendix.

II. DESCRIPTION OF THE PROBLEM

Two-dimensional Boussinesq convection in a box
[(x,z): 0&x &A,h, 0&z&h j is described by the
equations

the thermal conductivity, and the acceleration due to
gravity g is taken to act downwards in the negative

z direction. The density change arising from a tem-

perature change is given by

p —p0 —— ap—0( T TD—), (4)

—[a,v'y+ J(y,v'1()) =Ra„8+ vs, (7)

a,8+J(y,8)=a„y+v'8,
where J(f,g)=f„g, f,g„. Here—R is the Rayleigh
number and is a nondimensionalized measure of the
temperature difference hT imposed across the fluid:

ga 6Th
(9)

KV

The Prandtl number 0. is given by

CT =V/K (10}

A complete specification of the problem requires
a choice of boundary conditions. For illustrative
purposes we adopt here the simplest boundary con-
ditions, with the temperature fixed at the top and
bottom, no sideways heat flux, and no tangential
viscous stresses. Thus we demand that

and is assumed to be negligible except when it cou-

ples to the gravitational term to provide the buoyan-

cy forces that drive the convection.
As usual it is convenient to define 8(x,z, t), a suit-

ably nondimensionalized departure of the tempera-
ture from the linear distribution present in the ab-

sence of convection, by

T —T0 b, T[1———z+8(x,z, t}),
and to introduce a nondimensionalized stream func-
tion f(x,z, t) by

u=(tt/h) V X(0,$,0) .

In Eqs. (5) and (6) the lengths are measured in units

of h, and time in units of the thermal conduction
time. On taking the curl of Eq. (1), we obtain the
nondimensionalized equations of motion:

pp +u.Vu = —Vp'+(p —pp)g+ppvV u,
at =8,=0 for z=0, 1,

=8„=0 for x =O, A, .

(l&a)

(1 lb}

V.u=0,
2

at
+u. VT=KV T,

where u(x, z, t) and T(x,z, t) are the velocity and tem-
perature fields, p is the density (p =p0 when T = TD),
and p' the perturbation pressure. The constants v
and K are, respectively, the kinematic viscosity and

These boundary conditions have the advantage that
the eigenfunctions of the linear problem are sines
and cosines.

Equations (7) and (8) admit the trivial conductive
solution 1( =8=0 for all values of R. This solution
loses stability to exponentially growing solutions of
the form

f ~ e "sin(knx/A, )sin(n.z)



410 E. KNOBLOCH AND J. GUCKENHEIMER 27

when R exceeds

&4A2 k2
Rp(k) =

2
1+ (12}

In an infinite layer there is a particular mode,
k/A, =2 '+, that first becomes unstable. In general,
however, an integral number of cells of this wave-

length will not fit into a box of width A,. Since the
neutral curve R =Rp(k) is concave upwards, it is

possible in this case to adjust the width so that when

the conductive solution loses stability, two modes,
I

with horizontal wave numbers k and k+1, set in
simultaneously, with the corresponding wavelengths
the first integral wavelengths to fit into the box {see

Fig. 1).
For this choice of A, , A, =A,,(k), we have that

Rp(k)=Rp(k +1)—=R (k) and the eigenvalue s =0
has multiplicity 2. In this paper we are interested in

computing the dynamics for parameter values close
to the critical value, and owing to the symmetries of
the problem, we have to go to .third order in

{A,—}1,, )'~ and (R —R, )'~ . The modes that contri-
bute to this order are given by

f(x,z, t) = [ak(t)sin(kmx/}{)+ak+1(t)sin[(k+1)mx/}{]Isin(mz)

+ [a2k+1(t)sin[(2k +1)ex /A ]+a1(t)sin(ex /A ) ]sin(2irz),

8{x,z, t) = [bk(t)cos(kirx /A, )+bk+1(t)cos[(k + 1)irx /A, ]J sin(irz)

+ [b2k+1(t)cos[(2k +1)px/k]+ b 1 (t)cos(nx /A)+c (t,) l sin(2irz) .

(13)

(14)

7r' km
ak + [{2k+ 1 }(pi pk+ i

—}ak+ia 1 (p2k+1 p—k+1)ak+ 1a2k+1] 0'R bk opkak, —
4Apk Vk

(k+1}ir
ak~i + [—(2k + 1)(pi pk)aka1 —+(p2k ~1 pk )aka2k+1] =aR bk ~1 opk+ 1ak—~1, (15b)

4Apk+1 APk g1

(15a)

The above choice of modes can also be justified using an amplitude expansion. Substituting these expressions
into Eqs. (7) and (8) and neglecting higher-order terms, we find that the modal amplitudes satisfy the nine

equations

Pk Pk+1 — (2k+1}m.
a 2k+1+ 4

akak /1 oR
A

b2k+1 op2k+1a2k+1
P2k+1 P2k+1

(15c)

2 (2k+1)Pk+1Pk
4A, P1

7r
akak+1 ——oR b1 —oP1a1,

Api
(15d)

(15e}

7T2
bk+1+ [—4(k + 1)ak+ ic +akb 2k+1 —(2k + 1 }akb 1 +a 2k+ ibk+ (2k + 1)a 1 bk ]

4A,

(k+1)ir
ak y] pk yibk+1 (150

t 1T k~
bk — [4kakc +ak+ ib2k+1+ (2k + 1 }ak+ib 1 +a2k+ 1 bk+1+ (2k + 1)a1bk+1]= ak Pk bk, —

4A,

(2k+1)p.
b2k+1 +

4A
( akbk+1+ak+1bk )

A
a2k+1 p2k /1b2k+1

~2 ma1
bi + (2k+1)(akbk+1+ak+ibk)= p1bi, —

7r2c'+ [kakbk+(k+1)ak+ibk+1]= 4tr c, —
2A,

(15g)

(15h)

(15i)

where

k ir 2 (k+1) p 2 (2k+1) ir
P1 +4~ Pk = + r Pk+1= +~ P2k+1 2 +~

A,
2

A,
2

A,
2

A,

(16)
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FIG. 1. Sketch of the neutral curve Rp(a), indicating

the points of multiple bifurcation.

Equations (15) are the basic equations of this pa-

per. By construction, when A, =A,„R=R, the
linearized problem has two zero eigenvalues, the
remainder having negative real parts. It follows,
therefore, that in the vicinity of this bifurcation,
solutions of the system (15) will contract onto a
two-dimensional invariant surface on which the
dynamics will be two dimensional. Methods of
reducing the dynamical equations to normal (i.e.,
simplest) form by means of local nonlinear coordi-
nate transformations have recently been reviewed by
Guckenheimer. The relation of these methods to
amplitude expansions has been discussed by Guck-
enheimer and Knobloch, who conclude that al-
though both yield identical results, the normal-farm
approach is more systematic. It is therefore the ap-
proach that is adopted in the present work.

The linearized problem in the two-dimensional

subspace of the zero eigenvalue has a Jordan normal
form

0 0
L 0 0 s

The normal form for this problem, owing to the
reflectional (Z/2Z) X (Z/2Z) symmetry of the basic
equations, is the same as that found for a codimen-

sion two bifurcation involving two simultaneous

Hopf bifurcations with irrationally related frequen-
cies. The calculation of the appropriate cases for
this problem is given in detail in the Appendix. The
result is summarized in the following equations:

2
I cr~

QI =—
2 (2k ak +Bak yj )ak +8k ak

(++1)16K,,
(18)

—0'7T 2

ak+ ~
——

2 [Cak+ 2(k + 1) ak+1]ak+ ~

2 2

(rr+ 1)16k,,
+Pa+ i&k+1 ~ (19)

The coefficients B,C,p~,pI, +i are given in the Ap-
pendix. The p; are called unfolding parameters and
take into account the departure of A, and R from
their critical values; they vanish at the degenerate bi-

furcation.
We regard both A. and R as bifurcation parame-

ters, and present bifurcation diagrams for the system
in the (A, —)I,, )'~2 —(R —R, )'~2 plane. This involves

a study of the dynamics represented by the normal-

form equations as functions of these two variables,
or equivalently as functions of pI, and pI, +&.

' This
is done by locating the fixed points, analyzing their
stability, and using the divergence test to locate pos-
sible limit cycles. The results depend on the signs of
the nonlinear terms. In the present case, the coeffi-
cients of aI„a~+&, and al, a~+i are all negative. The
sign of the remaining coefficient depends both on k
and on cr, and has to be determined numerically.
The results are presented in Table I. Three distinct
cases are possible. For small 0 the coefficient of
aI,aI, +& is positive; as cr is increased this coefficient
becomes negative, but the determinant of the coeffi-
cients remains positive. For still larger cr the deter-
minant becomes negative. The bifurcation diagrams
corresponding to these three cases are sketched in
Fig. 2. We note that, for the coefficient signs ob-
taining in the present problem, no limit cycles are
possible. This has the consequence that the normal
forms obtained are structurally stable; if limit cycles
were present fifth-order terms would have to be in-
cluded to obtain structurally stable bifurcation dia-
grams. This is also true of the degenerate case

TABLE I. Coefficients B,C in the normal

+(Yk/& ) C ak+1+(Pk+1/a)+(Yk+l/& ) ]
form equations. [Note: B =ak+(Pklo)

k A,,(k)

2.03
3.48
4.91
6.33

10.44
27.76
53.06
86.35

—0.25
—0.45
—0.66
—0.88

gk

—0.75
—1.14
—1.54
—1.95

+k+1

6.78
21.47
44.17
74.88

Pk+1

0.47
0.68
0.89
1.11

3 k+1

0.62
1.02
1.43
1.84

0,(k)

0.30
0.22
0.19
0.17
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(a)
ok+1

+k+1

Pk

ok+I

(b)
|Ltk+1 D/B

/A

(c) P k+1 C/A

D/B

'Ok+i

FIG. 2. Bifurcation diagrams for the normal-form
I 3 2 I

equations ak ———AaI, —BaI,+~ak+pI, aI, and a@+~
2 3= —CaI,ak+I —Dak+I +pk+iak+~, with A & 0, C & 0,

D&0 and (a) B(0, (b) B&0, AD—BC&0, and (c) B&0,
AD —BC&0. Owing to the symmetry of the normal form
only one quadrant of the aq —ak+~ plane is shown. The
straight line, traversed in the direction shown, indicates
the succession of phase portraits as the Rayleigh number
is increased. —24(R —R, )]uk, (20)

when the determinant of the coefficients vanishes.
In this case a larger number of equilibrium solutions
is possible. Values of o, (k} for this to occur are also
shown in Table I. Note that with the present boun-
dary conditions the values of this critical Prandtl
number are close to those of liquid He, in which ex-
periments on this problem have recently been carried
out. '

In the bifurcation diagrams the heavy lines indi-
cate the succession of phase portraits. as the Ray-
leigh number is increased for given A, —A, The
upper line obtains in the case A. & A,„the lower when

We see, therefore, that for A, gi,„the con-
ductive solution always loses stability to the steady-
state solution (ak, O} as the Rayleigh number in-

creases, and that this solution remains stable for all
higher R. On the other hand if A, )A,„then the con-
ductive solution first loses stability to mode k+1.
If the Prandtl number is small, then Fig. 2(a) ap-

plies, and mode k+1 loses stability to a mixed
mode which in turn loses stability to mode k, as the
Rayleigh number increases. The bifurcation dia-
gram for the second case, with all the coefficients
negative, and the determinant of the coefficients
positive, is shown in Fig. 2(b}. The sequence of
transitions is the same as in Fig. 2(a), except that the
mixed-mode solution sets in after the critical Ray-
leigh number for mode k is reached. In both cases
the range of Rayleigh numbers in which the mixed
mode is stable is quite small. For larger values of
the Prandtl number the determinant of the coeffi-
cients becomes negative, and the situation is much
different. The mixed-node solution is now unstable,
and instead there is a range of Rayleigh numbers at
which stable (ak, O) and (O,uk+i) solutions coexist.
Thus, at sufficiently supercritical Rayleigh numbers,
there are finite-amplitude disturbances that can
cause an abrupt transition from the stable mode
k+1 to the stable mode k. At still higher Rayleigh
numbers mode k +1 loses stability, and mode k be-
comes the only stable solution. The above results
may be summarized as follows: The preferred stable
mode tends to be the mode with the longer wave-
length; as A,~00 this wavelength decreases mono-
tonically to W2, the value for an infinite layer. The
range of Rayleigh numbers within which the shorter
mode is stable is typically small but increases with
decreasing Prandtl numbers.

The limit k, A,~ oo, with k/A, =2 ' and cr fixed,
corresponds to allowing the box width to become in-
finite. Equations (18) and (19) become

2
CT 7T

Qk =—
1+cr 16

[ak+2ai, ~i
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~k+i =— CT 7T
2

16
[2nk +nk + 1

—24(R —R, )]a~+, .

(21)

Although the amplitude ai is quadratic in the am-

plitudes of the primary modes and therefore very

small, it does show that there is a nonvanishing

large-scale mode that fills the entire box. In the case
of a large box, modes k and k +1 are essentially in-

distinguishable, and in this case one has rolls that
are slightly tilted. This effect disappears in the limit
of an infinite box.

In this limit the two modes k and k + 1 are indistin-

guishable. We therefore take uk+ i
——0. The

normal-form equations then reduce to

2

a~ ——— [a~ —24(R —R, )]a~ . (22)
1+sr 16

~k+1 = —ET' 2

[Bal, +a~+& 24(R —R—, )]a~+~,

(24)

where B =5@2/24o~A, &&1. In this case the bifur-
cation diagram [2(a)] still shows that the conduction
solution loses stability to mode k. The approach to
this solution is, however, qualitatively different
from that predicted by the Landau equation (22).
Strictly speaking, therefore, the two limits A,~00,
cr~0 do not commute, and the criterion that deter-
mines whether a given situation is closer to that
described by Eq. (21) rather than that described by
Eqs. (23) and (24) is approximately B&0(1). To
what extent this behavior is an artifact of the boun-
dary conditians remains unclear.

We have seen that if A, & A,, and the Prandtl num-
ber is small, then in the neighborhood of the bifur-
cation there is a small range of values of the Ray-
leigh number in which a stable mixed-mode solution
(ak, ak+i) is possible. Such mixed-mode solutions
are characterized by the same order of magnitude of
bath amplitudes. These mixed modes have the in-
teresting property that they are accompanied by
large-scale motions. To see this we observe that on
the invariant surface (see Appendix)

+1 ~ +k~k+1 (2&)

This is the usual Landau equation that describes
the pitchfork bifurcation for the mode that first be-
comes unstable. This result may also be seen from
Fig. 2 since the line along which the Rayleigh num-
ber increases is now given by pk ——pk+I. We have
thus recovered the usual results for an infinite layer.
On the other hand, when A, is large but finite, and
the Prandtl number cr is decreased, the normal-form
equations reduce to

2

a~ = [al, Ba~+ ~
2—4(R —R,—)]nI (23)

—O'IT

16

III. DISCUSSION

We have obtained nonlinear roll solutions close to
the onset of convection in a box of finite width A,, in
the case where A, is close to the critical value for
which the modes of wavelength A, /k and A, /(k +1)
become unstable simultaneously. We have found,
for free boundaries, that if A, & A,,(k) then convection
always sets in as the k mode, whereas if )(, & A,,(k)
then there is a narrow range of Rayleigh numbers

for which mode k + 1 is stable before it loses stabili-

ty to mode k as the Rayleigh number increases. Al-
though these results are in accord with both expecta-
tion and experiment, ' the use of the normal-form

approach makes them a rigorous result for the basic
fluid equations. In particular, there are no periodic,
quasiperiodic, or chaotic solutions in the neighbor-
hood of such a multiple bifurcation.

We have found that for small-Prandtl numbers,
cr & 0,(k), the transition between modes k + 1 and k
occurs via a stable mixed-mode solution. The range
of Rayleigh numbers over which the transition oc-
curs is typically quite narrow, but the transition is
not accompanied by hysteresis. This is in contrast
to the higher-Prandtl-number case, in which the
mixed-mode solution is unstable, and instead there is
a range of Rayleigh numbers in which stable modes
k+1 and k coexist. Initial conditions determine
which of the two possible solutions is realized. The
transition between these modes as the Rayleigh
number is varied is now an abrupt one, and is ac-
companied by hysteresis. Such a situation is highly
suggestive of the numerical results for infinite
Prandtl number. '

Recently, Libchaber, and Maurer' have reported
on an experimental study of the 3-roll to 2-roll tran-
sition in liquid He. Although they found that the
transition is complicated by the presence of oscilla-
tions, some of their data are in qualitative agreement
with the softer mixed-mode transition found above
for cr&o, (2)=0.22. In view of the proximity of
this value to the Prandtl number of liquid He,
0H, -0.4—0.7, the above calculations should be re-
peated for the more realistic rigid sidewalls. From
symmetry considerations it follows that the narmal-
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form equations would remain of the forms (18) and
(19), albeit with different coefficients. " Of interest
is the possibility that different boundary conditions
could significantly affect the Prandtl-number depen-
dence of these coefficients. In the present problem
both modes bifurcate supercritically, so that the
signs of the ak or ak+~ terms are always negative,
and no new transition can occur. However, if one or
the other mode were subcritical, then the corre-
sponding stable mixed-mode solution could undergo
a Hopf bifurcation. ' The limit cycle that appears
disappears again in a homoclinic bifurcation as the
amplitude increases. If the bifurcation were super-
critical, it would manifest itself as an oscillation be-
tween two different mixed-mode states, one more
nearly a pure mode k+1, the other more nearlv a
mode k. Such secondary Hopf bifurcations occur in
analogous situations in magnetoconvection, convec-
tion in a rotating layer, and thermohaline convec-
tion. In the present problem, although both modes
are supercritical, it is clear that a secondary Hopf bi-
furcation is responsible for the oscillatory transition
observed by Libchaber and Maurer, ' though ap-
parently not at an amplitude accessible by the
present analysis. Moreover, there is at present no
evidence for the long periods associated with a
homoclinic bifurcation. Finally, it must be em-
phasized that it is not clear to what extent the ob-
served phenomena are purely two dimensional.

It is also of interest to compare our results with
the analogous situation in the Taylor-Couette prob-
lem. Benjamin' and Schaeffer' have studied the
spatial planform of the initial nonaxisymmetric flow
between rotating cylinders as a function of the
height of the apparatus. The usual pattern which
forms in an apparatus with rigid end walls consists
of an even number of Taylor vortices. Here, as in
the situation we consider, there will be critical dis-
tances for the end-wall separation at which two
modes become unstable simultaneously. If the coef-
ficients of the cross terms in the normal form have
the same sign and are large relative to the diagonal
terms, then mixed-mode solutions do not appear in
the theory, and instead the system exhibits hysteresis
and parameter regimes in which two stable steady
states occur. All transitions are abrupt jumps be-
tween these stable pure-mode solutions rather than
the "softer" transitions involving mixed-mode solu-
tions. Such behavior is in excellent qualitative
agreement with the experimental results. ' Unfor-
tunately, for this problem the coefficients in the
normal-form equations have not actually been calcu-
lated because of the complexity of the calculations,
so that the conjectured conditions on the coefficients
have not been explicitly verified.
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APPENDIX: COMPUTATION
OF THE NORMAL FORM

1 1

lv —lm'

pI O.ipI
(A1)

and write Eqs. (15a), (15e), (15b), and (15f) in the
form

In this appendix we explain in some detail how a
system of nonlinear ordinary differential equations
is reduced to normal form in the vicinity of a bifur-
cation point. We suppose that the equations admit
the trivial fixed point 0 [cf. Eq. (15)], and note that
at a bifurcation point the real parts of one or more
eigenvalues of the linearized problem pass through
zero. The solution trajectories contract in the eigen-
directions corresponding to those eigenvalues that
have a negative real part, and end up on an invariant
surface, called the center manifold, whose dimension
equals the number of eigenvalues that pass through
zero plus the number of complex pairs of eigen-
values whose real parts pass through zero. In the vi-
cinity of the bifurcation, the dynamics of interest is
therefore that associated with the zero real-part
eigenvalues, and Mes place on the center manifold.
Mathematically, this is justified by the center mani-
fold theorem. The central part of the reduction is
therefore a computation of the center manifold and
of the appropriate coordinates on the center mani-
fold in terms of which the dynamics is as simple as
possible. The background to the method and its re-
lation to amplitude expansions are reviewed by
Guckenheimer and Knobloch.

In the present case the bifurcation has a two-
dimensional eigenspace for the zero eigenvalue. The
dynamics will therefore be two dimensional. The
first stage in the reduction is to write the equations
for the linear problem in Jordan normal form. We
introduce new variables (a~, bI), l =k, k+1, defined
by
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0
0

0 Q~

+si 'N~ (A2)

Here N~ represents the nonlinear terms. The
dynamics on the center manifold are associated with

the modes a~,a~+1. The center manifold is tangen-

tial to the surface defined by

bk =bk+1=0

This is because the center manifold is curved and, in

fact, has a quadratic tangency at the origin in these
directions. The quadratic terms in the equations for
a~,a~+1 which are of the form pq, where p =a~ or
a~+1 and q =c, a2k+1, a, b2k+1, or bi, will there-
fore contribute cubic terms to the normal form on
the center manifold.

The calculation involving mode c is typical. %e
suppose that, to second order, the center manifold is
defined by

together with five other conditions involving the
modes corresponding to c, a2k+1, a1, b2k+1, and b1.
The calculation of all these is similar, but the center
manifold cannot be specified simply by setting

c —~2k+1 —~1 —b2k+1 —b1 —0 ~

~ =c+Q(ak ak+i}

-2 —— -2
Q =&ak+2Pakak+i+'Yak+i ~

Writing Eq. (15i) in terms of z,ak, bk, we obtain

(A4)

(A5)

n k — 1 — (k+1)~ — 1—~ ~+4~Q 2 (ak+bk } ak bk + (ak+1+~k yl) ak+1 bk ~1
2A, Pk Pk+1 0'

(A6)

But on the center manifold (A3) holds, so that if we choose

k'e (k+1}'ir
2 , y=o,

S~ pk Sk Ipk+1

z =—4n- z+ (AS}

where the ellipses stand for cubic terms. To second order, the center manifold is therefore given by the condi-
tion z =0, or

Q(ak ak+—i) .

The computation for the other modes proceeds similarly.
agonalized, and written in terms of the coordinates

1~ok+1, ~2k+1=s;„. . . s,„„= ( + )«
b2k+1 2k+1 . )

, 12k+1 S2k+1

1

(2k+1)ir/A,

12k+1 S2k+1

(A10)

The coupled equations for (a2k+i, beak+, ) are first di-

where s 2k+1,s 2k+1 are the eigenvalues of the linear problem and satisfy

(2k+1) ir
(S —~S 2k+1)(S —S 2k+1)—~~

~ 12k+1
(Al 1)

The variable ztk+, is defined, analogously to (A4), to vanish on the center manifold. A straightforward calcu-

lation yields the condition

n' 3

+2k+1 =
4A, s2k+ 1D2k+

2k+1
2

@2k+ 1 S 2k+ 1

8k+1—Pk k k +1+ ~k~k+1
12k+1 Pk 7k+1

with similar results for b2k+1, a i,b1. Here D2k+1 ——detS2k+1. Note that with these values the nonlinear terms
in (A2) are cubic so that (A3) is indeed the correct condition for the center manifold. No further nonlinear

terms need to be taken into account for computing the cubic terms of the center manifold.
Using the results (A9), (A12), and their analogs we can now evaluate the nonlinear terms in the equations for

ak, ak+, . These can be simplified by eliminating the eigenvalues s; ' using the characteristic equations [cf. Eq.
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(Al 1)]. The result can be written in the form

an' 2 2 ~k )'k 2
2

2k ak+ ak+ + 2 ak+1 ak,
(o+1}16k,,

(A13)

ak+1—

where

CT7T

(o+ 1)16){,,
Pk y 1 Fk y 1 2-2ak+1+ + 2 a~+2(k+1) ak+1 a~+1,

CT 0
(A14)

2 Pk 2 Pk+1
2

pk+1(2k + 1)2

ak=2(k+1) +rl pl+
1

(1+5)+r2k+1 p2k+1+ k 1
(1—5),

Pk+1 k+1 k+1

Pk p1 —Pk+1
Pk r 1 P15+ (Pk Pk pl)+

Pk

2 2
Pk Pk+1
k k+1

2 22k+1 P2k+1 Pk+1 Pk Pk+1
+r2k+1 P2k+l~+ k Pk (pk pk+1}+ (2k+1)

Pk k k+1

Pk Pk+1
[rlpl(pl Pk 1+)+ 2rk~lp2k 1+(P2k 1+pk+1)] )

Pk

2 2
2Pk+1 Pk —1 Pk —1ak+1 ——2k +rl pl — (1+5 )+r2k+1 p2k~l+ —(2k+1) (1—5 ),

Pk k

pk+1 rl
P1

5
Pk+ 1 P 1 Pk

Pk Pk+1 +
Pk+1

2 2
Pk Pk+1
k+ k+1

—r2k+1

2 2
P2kpl

(2k 1)
Pk+1

( )
P2k+1 Pk

(2k +1) Pk Pk+1+ + k+1 Pk —Pk+1 + +

Vk+1

with

Pk pk+1
[rlPl(Pl Pk)+r2k+lp2k+1(P2kpl Pk)] ~

Pk+1

P1

(2k +1)2~2
'2

1 Pk

k

-3- ~ r2k+1=
3

p2k+1 1— 2k+1
k

'2
Pk

P2k+1

k+1 Pk
' 3 k p.,

We must consider what happens when the parameter of the problem, the width A,, differs by a small amount
from the critical value A,c(k) at which the k and k+1 mode become unstable simultaneously. In this case,
there will be two simple bifurcations in close succession, and the degeneracy of the bifurcation is broken. This
has the effect of adding linear terms y, kak and lmk+laq+1 to the right-hand sides of (A13) and (A14), respec-
tively.

We define e && 1 by the relation

)1, =A,,(1+@ },
and let

R =Rc(1+pe ),
where p =O(1), and A.,(k) and R, (k) are the width and Rayleigh number at which modes k and k +1 appear
simultaneously. It follows that
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A,,—2l
Ri=R, 1+

~ e +O(e ), I=k, k+1 .
A,,'+l'

Equation (A2} then has an additional term on the right-hand side given by

e (St '),

(rm I+
A.

col ~c

g2+ I2

I —A,,p+
2(l +A,, )

(Si ),
bI

where (Si), is the matrix (Al) evaluated for A, =A, After some simplification we find that
2 2

pi= 2 [+(21 —A,, )+(1 +)L,,}p] .(1+tr)iL, (A15)

Finally we note that on the center manifold bk ——bI, +~ ——0, so that ak ——a~ and ak+&
——ak+&. The normal-form

equations (A13}and (A14) can therefore be written in terms of the amplitudes ak and ttk+ t. With the contribu-
tions (A15) they can therefore be written in the form (19}. This completes the derivation of the normal-form
equations for this problem.
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